Chapter 1

Concurrent Task Trees

Recap

Slide Context Toolkit:

- Context Toolkit
  - Context Abstraction
  - Design Methodology

1.1 Task Models

Slide HCI Lecture Summary:

- Theories
  - Levels-of-analysis
  - Stages-of-action
  - GOMS
  - Widget-level
  - Context-of-use
  - Object Action Interface models
Slide Describing user interaction:

- Remember GOMS - Goals, Operators, Methods, Selection Rules
- The user wants to reach a Goal, he uses Operators and Methods that he selects via Selection Rules
- With GOMS, we can look at a sequence of Methods and analyze it.
- We can analyze a system using GOMS, but a GOMS model does not tell us how to implement a system
- Question: How can a GOMS-like system support development?
- A Task Model can be used to guide the implementation.

Slide Task Model:

- Task models indicate the logical activities that an application should support to reach users’ goals. (Paterno, 1999)
- Goals are either state changes or inquiries
- Tasks can be highly abstract or very concrete
- Task models can be built for existing systems, future systems, and for the user’s view of the system
- Task models are formalized, other methods are often informal

Slide What’s the use of a Task Model?:

- Understand the application domain
- Record the result of user discussions
- Support effective design
- Support usability evaluation
- Directly support the user in using the system
- Documentation
Slide Task Model Representation:

- GOMS can represent a task model
- GOMS is mainly textual
- GOMS cannot represent concurrency, interruption, order independence, optionality and iteration.
- Alternative: ConcurTaskTrees (Paterno, 1999)

1.2 ConcurTaskTrees

Slide ConcurTaskTrees:

Image from Paterno, 1999

Slide CTT: Features:

- Hierarchical structure
- Graphical Syntax
- Many temporal operators
- Focus on activities
1.2.1 Temporal Operators

Slide CTT: Temporal Operators:

- Hierarchy

Slide CTT: Temporal Operators:

- Enabling
• Choice

Slide CTT: Temporal Operators:

• Enabling with information passing

Slide CTT: Temporal Operators:

• Concurrent Tasks
- Concurrent Communicating Tasks

Slide CTT: Temporal Operators:

- Task Independence

Slide CTT: Temporal Operators:

- Disabling
1.2.2 Examples

Slide CTT: iterative task:

- Task sequence with iteration: only the last transition ends the iteration

Slide CTT: optional tasks:

- Optional Tasks are marked with [ and ] brackets
Slide CTT: inheritance of temporal constraint:

- ShowAvailability inherits the temporal constraint (executed after SelectRoomType) from its parent MakeReservation
Chapter 2

Abstract and Wearable UIs

Slide Wearable UIs:

- Supporting a primary task, i.e. UI driven by external task
- Context-dependent (primary task is one context source)
- Non-“point-and-click”, i.e. No WIMP-based UI
- Sometimes no graphical UI at all
- Rich set of in- and output devices
- Question: How to write (and reuse) code for “generic” wearable computer?

2.1 Abstract UIs

Slide Characterizing Wearable UIs:

- Displaying information and changing state (like CTTs)
- Additionally: Context information
  - Context-dependent presentation
  - context includes input and output modes and devices available
  - Context change triggers information display / state change
- Idea:
specify abstract UI using CTTs
use context change triggers like input in CTTs
decide context-dependent presentation during runtime

---

**Slide Context-dependent presentation:**

- Example: a web browser with two presentation modes
  - Desktop mode: Like firefox
  - Mobile mode: like opera “small screen rendering”
- Specification of UI (= html document, links) the same
- “Rendering” of UI different:
  - Compress graphics, change positions, use different fonts
  - Change interaction: no mouse click, but chose links via cursor keys

---

**Slide Abstract Specification:**

- Simple Example: Write Aircraft Repair Report
  - Input text of repair report
  - Indicate that the repair report entered is complete
- i.e. use CTT to specify abstract model
- Web browser equivalent: Form
  - Text input field
  - “submit” button

---

[fragile] **Slide AWT implementation:**

- PDA: Java 1.2 (AWT)
```java
private void makeTextInput( Container c, TextInputItem i, int depth ) {
    Panel p = new Panel();
    p.setLayout( new FlowLayout( FlowLayout.LEFT ) );
    if( depth == 0 ) {
        c.add( p );
    } else {
        c.add( p, BorderLayout.NORTH );
    }
    p.add( new Label( i.getDescription().getText() ) );
    TextField tf = new TextField( i.getInput(), i.getExpectedLength() );
    TextInputListener l = new TextInputListener( this, i, tf );
    tf.addTextListener( l );
    mActions.add( l );
    p.add( tf );
}
```

[fragile] Slide Swing implementation:

- Desktop: Java 5 (Swing)

```java
JPanel p = new JPanel();
p.add(new JLabel("Enter Report");
JTextField tf = new JTextField("Your Report Here", 256);
p.add(tf);
JButton b = new JButton("Save");
p.add(b);
```

[fragile] Slide QT implementation:

- QT 4

```java
QLabel *reportLabel = new QLabel(tr("Enter report"));
QTextEdit *reportEdit = new QTextEdit;
QPushButton *saveButton = new QPushButton(tr("Save"));
myLayout = new QHBoxLayout;
myLayout->addWidget(reportLabel);
```
Slide Abstract to concrete:

- How to get from abstract to concrete?
- Idea 1: Use an expert programmer, give him the spec, let him program, use result
- How about different devices?
- Idea 1a: Use expert for every possible device, send to expert programmer, let them work together.
- How about different contexts?
- Idea 1b: Use domain expert to describe contexts, send to device expert to design context-dependent optimal display for specific device, send to programmer, program
- Only viable for small number of devices and huge sales. i.e. mobile phone games

Slide Abstract to concrete (2):

- Can we do without all these experts?
- Idea 2: Divide the application program in two parts: The abstract UI and the renderer
- How about different devices?
- The renderer can be device-specific: It knows best how to use UI elements of the target device
- How about different contexts?
- The renderer itself can use context information in a device-specific way
- The abstract UI can choose from a number of available renderers. This choice can be based on device availability, user preference, context.

[fragile] Slide AbstractUI implementation:
• AbstractUI

```java
mSave = new TriggerItem2(
    new TextData( "Save" ), false, this );
mComment = new TextInputItem2(  
    new TextData( "Comment" ),  
    20, "Your text here", this );
mComment.setNext( mSave );
mRoot = new GroupItem2(  
    new TextData( "Write Repair Report" ),  
    this );
mRoot.setSub( mComment );
```

---

Slide Open questions:

• Fundamental question: What can the AbstractUI express?
  – Speech-driven UI?
  – How to deal with non-renderable objects? (picture on audio-UI)

• Technical question: How can we implement it?
  – How can we specify an AbstractUI Model? XML?
  – How can the renderer decide what subtree of the CTT it renders? on-demand query mechanism?

---

2.2 Wearable UIs

Slide Wearable UI Methaphor:

• Output Mechanism
  – Visual: HMD
  – Audio

• Input Mechanism
  – Keys: Keyboard, Twiddler
  – Hands: gestures, direct manipulation
  – Speech

• Interaction Methods
– menu selection, direct manipulation, form fillin
– command language, natural Speech

Slide Winspect GUI:

- Java Implementation
- Uses HMD and “hands-free interaction”
- GUI elements optimized for wearable use
  - Colors, font sizes, highlighting
- Interaction based on dataglove
  - Direct Manipulation: Motion, Turn
  - Gesture for selection

Slide Winspect UI HMD:

Image from T. Noceti

Slide Winspect Direct Manipulation:
Slide WearableUI:

- Renderer for AbstractUI
- Uses HMD and “hands-free interaction”
- GUI elements optimized for wearable use
  - Colors, font sizes, highlighting
  - Few elements displayed
  - shows in the area of visual focus
- Interaction based on dataglove
  - Hand gestures to navigate and select
  - Additional keyboard for text entry

Slide Wearable UI Gesture:
Slide Wearable UI Glove:

Slide Wearable UI HMD:
Chapter 3

Wearable Evaluation

Recap

Slide Abstract/Wearable UI:

- AbstractUI
  - Device-independent
  - Context-aware
- WearableUI
  - Uses AbstractUI
  - Wearable interaction mode

3.1 Adaptive UIs

Slide WUI-Development:
Slide WUI-Structure:

Slide Adaptive UIs:

- Why adapt an UI?
- UI can be optimized due to changes in environmental context
  - Light conditions
  - User motion
  - Environmental noise
- UI cannot be controlled anymore under current context
  - affected by user activities
  - interaction device failure (e.g. low battery)
Slide Layers of adaptation:

- Image from H. Wei

Slide Finding adaption rules:

- How to find rules for adaptation?
- What’s the user reaction on adaptation?

3.2 Wearable Evaluation

Slide Wearable Evaluation:

- How to measure the performance of a wearable system?
- Remember: Supporting a primary task
- Idea: measure the performance in the primary task.
- Example: Wearable Maintenance support
Slide Wearable Evaluation (2):

- Drawbacks:
  - Long time needed
  - Variation in users/Tasks: Even more time needed
  - System has to be built and integrated to be evaluated
  - What if evaluation outcome is negative?
- Real-world evaluations are rare

Slide Wearable Evaluation (3):

- Idea: Implement parts of the system in a lab.
- “Living Lab” approach
- Question: How to simulate primary task in the lab?
- Aspects of the primary task:
  - Physical Task
  - Cognitive Task
  - Attention

Slide Physical tasks:

- Simple tasks: Walking, running, biking
- Strenuous tasks: Running fast, carrying loads
- Manipulative tasks: Push buttons, operate machines, use tools, select tools
- Precision tasks: Handle tools carefully, avoid damage and spills
- Also physical tasks: input (e.g., gesture input)
- Body has physical limits: accuracy, force, energy limits

---

**Slide Cognitive tasks:**

- Simple tasks: Reading, Listening, Identify objects, following signs, “matching tasks”
- Complex tasks: calculations, translations, geometric tasks (see your favourite IQ test)
- Also cognitive tasks: input, understanding output
- Analog to physical limits: “cognitive load” limit
- Cognitive load varies with age, familiarity with task, between persons

---

**Slide Matching task:**

![Match by colour](Image from H. Wei)

---

**Slide Attention !:**

- Both physical and cognitive tasks need attention
- Attention is limited
• e.g.: you can only memorize a small (5-11) Number of things at the same time in your short time memory
• Some brain functions have limits: Humans only have one motor cortex
• Degrading attention leads to degraded performance: Precision lowers, reaction time rises, task execution takes longer
• Divided attention: affected by task similarity, task difference, practice

---

**Slide Measuring performance:**

- Idea: Use this information to craft artificial tasks to measure performance
- Cognitive tasks: simple but measurable tasks, measure execution time and correctness
- Examples: Matching tasks, find repetitions in letter sequences, …
- Physical tasks: Not too easy, but easy to measure
- Examples: Pushing buttons, “Hotwire experiment”
- Experiment:
  - Measure physical task w/o cognitive task
  - Measure cognitive task w/o physical task
  - Measure both together

---

**Slide The Hotwire experiment:**

- Origin: Children’s game, used to train hand-eye-coordination
- Conductive wire, bent in different shapes
- Conductive loop tool
- Task: move the loop tool over the wire without touching the wire

---

**Slide Hotwire:**
Slide Interruption by cognitive task:

- Interruption studies: Well-known approach in HCI evaluation
- Matching task is presented to the user on a HMD
- Answer is given with gesture interface
- Different ways to present cognitive task
  - Immediate
  - Negotiated
  - Scheduled
  - Mediated

Slide Hotwire-Task:
Slide Measuring Hotwire performance:

- Time (to complete wire task)
- Contacts (tool-wire)
- Error rate (in matching task)
- Average age (Answer time for matching task)

Slide Results:

![Graphs showing performance metrics](image)

*Figure 5. Averages of user performance.*
Slide Results:

- Tasks have an influence to each other
- Matching error rate almost unchanged
- Effect of the interruption methods
  - on Time: negotiated methods take longer
  - on Contacts: negotiated methods have more errors (additional interaction)
  - on Error: nothing
  - on Average Age: unclear, side effects disturbe result

Slide Larger Hotwire (on CeBit):

Slide Summary:

- Task Trees
  - Formal specification of user interaction
  - Can be used to support development
• ConcurTaskTrees
  – Temporal Operators
  – Examples

• AbstractUI
  – Device-independent
  – Context-aware

• WearableUI
  – Uses AbstractUI
  – Wearable interaction mode

• Evaluating wearable interfaces
  – simulate primary task
  – study effects of wearable use
  – use standardized experiments and measures for comparable results