
The GOMS Family of User Interface
Analysis Techniques: Comparison and
Contrast

BONNIE E. JOHN
Carnegie Mellon University
and
DAVID E. KIERAS
University of Michigan

Since the publication of The Psychology of Human-Computer Interaction, the GOMS model has
been one of the most widely known theoretical concepts in HCI. This concept has produced
several GOMS analysis techniques that differ in appearance and form, underlying architec-
tural assumptions, and predictive power. This article compares and contrasts four popular
variants of the GOMS family (the Keystroke-Level Model, the original GOMS formulation,
NGOMSL, and CPM-GOMS) by applying them to a single task example.

Categories and Subject Descriptors: H.1.2 [Models and Principles]: User/Machine Sys-
tems—human information systems

General Terms: Human Factors

Additional Key Words and Phrases: Cognitive modeling, GOMS, usability engineering

Work on this article by B. John was supported by the Office of Naval Research, Cognitive
Science Program, under contract number N00014-89-J-1975N158, and the Advanced Research
Projects Agency, DoD, and was monitored by the Office of Naval Research under contract
N00014-93-1-0934. Work on this article by D. Kieras was supported by the Office of Naval
Research, Cognitive Science Program, under contract number N00014-92-J-1173 NR 4422574,
and the Advanced Research Projects Agency, DoD, and was monitored by the NCCOSC under
contract N66001-94-C-6036. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official policies, either
expressed or implied, of the Office of Naval Research, NCCOSC, the Advanced Research
Projects Agency, or the U.S. Government.
Authors’ addresses: B. E. John, Human-Computer Interaction Institute and Departments of
Computer Science and Psychology, Carnegie Mellon University, Pittsburgh, PA 15213; email:
bonnie.john@cs.cmu.edu; D. E. Kieras, Department of Electrical Engineering and Computer
Science, University of Michigan, Advanced Laboratory Building, 1101 Beal Avenue, Ann
Arbor, MI 48109-2110; email: kieras@eecs.umich.edu.
Permission to make digital /hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1996 ACM 1073-0516/96/1200–0320 $03.50

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996, Pages 320–351.

1. INTRODUCTION

Since the publication of The Psychology of Human-Computer Interaction
[Card et al. 1983] (hereafter, CMN), GOMS analysis has been one of the
most widely known theoretical concepts in HCI. The GOMS concept, that it
is useful to analyze knowledge of how to do a task in terms of Goals,
Operators, Methods, and Selection rules, provided the stimulus for much
research that verifies and extends the original work. Today, there are
several variants of the GOMS analysis technique, and many applications of
the technique in real-world design situations [John and Kieras 1996].1

However, the clear differences between these techniques can create confu-
sion about how they relate to each other and to the original concept. The
purpose of this article is to compare several of the popular variants,
demonstrating and discussing their similarities and differences.
This article is not a tutorial in how to use any version of GOMS; that

information is elsewhere in textbooks, handbooks, and tutorial notes [Card
et al. 1983; John and Gray 1995; Kieras 1988; 1996]. It is also not a guide
for deciding when to use the variants of GOMS in a particular design
situation; that information is in the companion article [John and Kieras
1996]. This article presents how different GOMS techniques are related.
We will examine four variants of GOMS: the simplest version presented

by Card, Moran, and Newell, called the Keystroke-Level Model (KLM); the
original formulation of GOMS, which we will refer to as CMN-GOMS; a
more rigorous version called NGOMSL; and a version that can model
overlapping human activities, CPM-GOMS. To make the comparison, we
analyze the same task in each of these variants and then discuss the
qualitative and quantitative similarities and differences.

1.1 The Example Task

Throughout this presentation, we use a single example task and present
how each GOMS technique represents this task. A GOMS model can, and
should, start at a high level of a task such as collaboratively writing a
research paper with a coauthor. At such a high level, the subtasks involve
many different applications: a word processor to actually write the paper, a
graphics application to make figures, bibliographies to look up related
work, email to send the drafts back and forth, the operating system used to
manage the files, and so forth. This wide inclusion of applications, many of
which were not designed with the others in mind, gives a broad perspective
on the knowledge people need to accomplish such a complex task. GOMS
models can then show how knowledge transfers from one application to
another or how much additional time is spent moving information between
applications that do not fit together well. However, presenting such a broad
task is impossible within the confines of this article, so we will present a
very small part of it, editing a paragraph in a word processor (Figure 1),
and make reference to the larger task as appropriate.

1See pages 287–319 in this issue.

The GOMS Family of User Interface Analysis Techniques • 321

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

Text editing was the original task used in the development of GOMS and
is of course still an important task domain. However, it is incorrect to
assume that GOMS is somehow limited to text editing; GOMS is much
more general. In fact, nine cases presented in John and Kieras [1996]
concern task domains radically different from text editing, as do other
published works (e.g., Beard et al. [1996] and Vera and Rosenblatt [1995]).
But this familiar domain, with task goals and typical procedures familiar to
all readers, makes the best example context to present and compare the
different GOMS techniques.
Before presenting the analyses, we define each of the components of the

GOMS model and discuss an important distinction between two forms that
GOMS models take.

1.2 Definitions of GOMS Components

1.2.1 Goals. Goals are what the user has to accomplish. The common-
sense meaning of the term applies here; a goal is the “end towards which
effort is directed.”2 In the collaborative writing example mentioned above,
the highest-level goal is to write the paper. Goals are often broken down
into subgoals; all of the subgoals must be accomplished in order to achieve
the overall goal. Some subgoals for collaborative writing might be to format
the bibliography, send the current draft to the second author, or incorpo-
rate marked-up comments into the text file (Figure 1). Expanding the
latter, the subgoal could be EDIT-MANUSCRIPT, and its subgoals might
be MOVE-TEXT, DELETE-PHRASE, and INSERT-WORD. All of the sub-
goals must be accomplished to accomplish the higher-level goal.
Goals and subgoals are often arranged hierarchically, but a strict hierar-

chical goal structure is not required. In particular, some versions of GOMS
models allow several goals to be active at once, and some versions represent

2Webster’s New Collegiate Dictionary, 1977, page 493.

Fig. 1. The example task: Editing a marked-up manuscript.

322 • Bonnie E. John and David E. Kieras

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

extremely well practiced behavior in a “flattened” structure that does not
contain an explicit hierarchy of subgoals.

1.2.2 Operators. An operator is an action performed in service of a
goal. Operators can be perceptual, cognitive, or motor acts, or a compos-
ite of these. Operators can change the user’s internal mental state or
physically change the state of the external environment. The important
parameters of operators, in particular execution time, are assumed to be
independent of how the user or the system got into the current state
(i.e., independent of the history of operators). Execution time may be
approximated by a constant, by a probability distribution, or by a
function of some parameter. For instance, the time to type a word might
be approximated by a constant (e.g., the average time for an average
word by an average typist) or a statistical distribution, or by a function
involving the number of letters in the word and the time to type a single
character (which could, in turn, be approximated by a constant or a
distribution). The accuracy of execution time predictions obtained from a
GOMS model depends on the accuracy of this assumption and on the
accuracy of the duration estimates. In our text-editing example, with the
goal hierarchy defined above, some operators could be MOVE-MOUSE,
CLICK-MOUSE-BUTTON, SHIFT-CLICK-MOUSE-BUTTON, and HIT-
DELETE-KEY.

1.2.3 Methods. Methods are sequences of operators and subgoal invoca-
tions that accomplish a goal. If the goals have a hierarchical form, then
there is a corresponding hierarchy of methods. The content of the methods
depends on the set of possible operators and on the nature of the tasks
represented. One method for accomplishing the goal DELETE-PHRASE (in
the text editor we are using to write this article) would be to MOVE-
MOUSE to the beginning of the phrase, CLICK-MOUSE-BUTTON, MOVE-
MOUSE to the end of the phrase, SHIFT-CLICK-MOUSE-BUTTON, and
finally, HIT-DELETE-KEY (the mark-and-delete method).

1.2.4 Selection Rules. There is often more than one method to accom-
plish a goal. Instead of the mark-and-delete method just described, another
method for accomplishing the DELETE-PHRASE goal in Figure 1 would be
MOVE-MOUSE to the end of the phrase, CLICK-MOUSE-BUTTON, and
HIT-DELETE-KEY 11 times (the delete-characters method). If there is
more than one method applicable to a goal, then selection rules are
necessary to represent the user’s knowledge of which method should be
applied. Typically such rules are based on specific properties of the task
instance. Selection rules can arise through a user’s personal experience
with the interface or from explicit training. For example, a user may have a
rule for the DELETE-PHRASE goal that says if the phrase is more than
eight characters long, then use the mark-and-delete method; otherwise use
the delete-characters method.

The GOMS Family of User Interface Analysis Techniques • 323

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

1.2.5 Goals versus Operators: Level of Detail. It is important to clarify a
common point of confusion about goals and operators. The distinction is
strictly one of the required level of detail:

The difference between a goal and an operator in a GOMS analysis is merely
a matter of the level of detail chosen by the analyst. For a goal, the analyst
provides a method that uses lower-level operators to specify the details of
how it is to be accomplished; in contrast, operators are not broken down any
further.

That is, an analyst will decide that certain user activities do not need to be
“unpacked” into any more detail and thus will represent them as operators,
while other activities do need to be considered in more detail, so the analyst
will represent these in terms of goals with their associated methods. Thus,
any particular GOMS analysis assumes a certain grain of analysis, a
“stopping point” in the level of detail, chosen to suit the needs of the
analysis. Continuing the text-editing example, a GOMS analysis could have
only one goal (EDIT-MANUSCRIPT) and a few high-level operators (e.g.,
MOVE-TEXT, DELETE-PHRASE, and INSERT-WORD). Or, if the design
situation required a finer level of detail, the analysis could have four goals
(EDIT-MANUSCRIPT, with MOVE-TEXT, DELETE-PHRASE, and IN-
SERT-WORD as subgoals) and finer-grained operators like MOVE-CUR-
SOR, CLICK-MOUSE-BUTTON, DOUBLE-CLICK-MOUSE-BUTTON,
SHIFT-CLICK-MOUSE-BUTTON, and HIT-DELETE-KEY to accomplish
these goals.
In principle, the goals and operators of a task could be described at much

higher levels (e.g., collaboratively writing a paper) or ever-deeper levels of
detail, down to muscle group twitches. However, at any stopping point, the
analyst must be sure that it is reasonable to assume that the execution
times of the lowest-level operators (primitive operators) are constant re-
gardless of the surrounding context (or are a constant function of some
given parameter). The times can be estimated from data, often from
previous similar tasks found in the literature, and used to predict perfor-
mance on new tasks. The dual constraints that primitive operators be
context free and already estimated leads most GOMS models to stop at the
command or keystroke level.
It is not necessary to bring all parts of an analysis down to the same level

of primitive operators. In many design situations, different parts of a
system or different user tasks may require different levels of scrutiny, and
GOMS allows such selective detail of analysis. Starting from the high-level
user goals, the analyst expands only those parts of the goal hierarchy as
necessary for the questions at hand. Other parts can be expanded later as
other questions arise. For instance, in collaborative writing, a GOMS
analyst might first chose to expand all the search-functions in the different
applications (word-processor, bibliography, email) and weeks later expand
on the spell-checking functions. Thus, decomposing goals into subgoals and
primitive operators is a very flexible analysis tool that suits many design
situations.

324 • Bonnie E. John and David E. Kieras

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

1.3 Form of a GOMS Model

Different GOMS models in the literature differ substantially in the basic
form and appearance of their methods. There are two basic forms: the
program form and the sequence form.

1.3.1 Program Form. A GOMS model in program form is analogous to a
parameterized computer program. The methods take any admissible set of
task parameters and will execute the corresponding instance of the task
correctly. For example, if the mark-and-delete method described above was
represented in program form, it would take as task parameters the starting
and ending locations of the to-be-deleted phrase and when executed would
move the mouse to the corresponding locations. Thus, a GOMS model in
program form describes how to accomplish a general class of tasks, with a
specific instance of the class being represented by a set of values for the
task parameters. Typically, such a model will explicitly contain some form
of conditional branching and invocations of submethods to accomplish
subgoals. The procedural knowledge represented in program form is fixed,
but the execution pathway and sequence of operators through the task will
depend on the specific properties of the task instance. Once the model is
defined, all of the possible tasks can be covered by different execution
pathways through the model. Thus, a program form model is a compact,
generative3 description that explicitly represents the knowledge of what
features of the task environment the user should attend to and how the
user should operate the system to accomplish the task goals.
The program form has the advantage that all procedural knowledge is

visible to the analyst. In addition, if many task instances need to be
analyzed, the generative nature of the program form allows those tasks to
be instantiated quickly, especially if implemented in a running computer
program. However, program form has two disadvantages. First, the only
way to determine the sequence of operators used in a task instance is to
run the model (either by hand or machine) and obtain a trace of the method
execution steps. Second, defining and expressing a complete and accurate
program form model can be quite time consuming, especially if it is
represented as a machine-executable model.

1.3.2 Sequence Form. In contrast, the methods in a sequence-form
GOMS model contain a fixed sequence of operators for accomplishing a
particular task instance. There may be some conditionality and parameters
included in the sequence model. For instance, in the text-editing example
above, listing the exact operators necessary to delete the phrase indicated
in Figure 1 is a GOMS model in sequence form (e.g., MOVE-MOUSE,
CLICK-MOUSE-BUTTON, 11 *HIT-DELETE-KEY). A more general se-
quence model would take the number of characters in the phrase as a
parameter and contain an implicit iteration. For example, for the delete-

3The term generative is used analogously to its sense in formal linguistics. The syntax of a
language can be represented compactly by a generative grammar, a set of rules for generating
all of the grammatical sentences in the language.

The GOMS Family of User Interface Analysis Techniques • 325

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

characters method, there would be a MOVE-MOUSE operator, a CLICK-
MOUSE-BUTTON operator, and then the HIT-DELETE-KEY operator
would be repeated until there were no more characters in the phrase.
The advantages and disadvantages of the sequence form are the inverse

of the program form. That is, the analyst does not have to explicitly define
the procedural knowledge for every possible task situation in program-like
detail, and the sequence of operators is clearly visible to the analyst. But
there may be more information about the structure of the methods than can
be captured by the operator sequences for a set of task instances; such
unrepresented aspects will not be inspectable. Finally, even though listing
the operator sequence for an individual task instance is usually easy, if a
large number of task instances are involved, it could be time consuming to
construct and evaluate the corresponding large number of sequence form
models.

2. COMPARISON OF GOMS TASK ANALYSIS TECHNIQUES

We now apply each technique to the example task, discuss the underlying
architectural basis and the ensuing constraints for each technique, and
compare and contrast the analysis with that of the other GOMS variants.

2.1 The Keystroke-Level Model

The Keystroke-Level Model (KLM) is the simplest GOMS technique [Card
et al. 1980a; 1983, Ch. 8]. To estimate execution time for a task, the analyst
lists the sequence of operators and then totals the execution times for the
individual operators. In particular, the analyst must specify the method
used to accomplish each particular task instance. Other GOMS techniques
discussed below predict the method given the task situation, but the KLM
does not. Furthermore, the specified methods are limited to being in
sequence form and containing only keystroke-level primitive operators.
Given the task and the method, the KLM uses preestablished keystroke-
level primitive operators to predict the time to execute the task.
The original KLM presentation included six types of operators: K to press

a key or button, P to point with a mouse to a target on a display, H to home
hands on the keyboard or other device, D to draw a line segment on a grid,
M to mentally prepare to do an action or a closely related series of
primitive actions, and R to represent the system response time during
which the user has to wait for the system. Each of these operators has an
estimate of execution time, either a single value, a parameterized estimate
(e.g., K is dependent on typing speed and whether a key or mouse button
click, press, or release is involved), or a simple approximating function. As
presented in CMN, the KLM technique includes a set of five heuristic rules
for placing mental operators to account for mental preparation time during
a task that requires several physical operators. For example, Rule 0 reads
“Insert Ms in front of all Ks that are not part of argument strings proper
(e.g., text or numbers). Place Ms in front of all Ps that select commands
(not arguments)” [Card et al. 1983, p. 265].

326 • Bonnie E. John and David E. Kieras

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

Subsequent research has refined these six primitive operators, improving
the time estimates or differentiating between different types of mental
operations [Olson and Olson 1990]. Practitioners often tailor these opera-
tors or define new ones to suit their particular user group and interface
requirements (e.g., Haunold and Kuhn [1994]). In addition, the heuristics
for placing mental operators have been refined for specific types of subtasks
(e.g., for making a fixed series of menu choices [Lane et al. 1993]). Since the
original heuristic rules were created primarily for command-based inter-
faces, they had to be updated for direct-manipulation interfaces. Thus,
heuristic Rule 0 should be expanded to “Insert Ms in front of all Ks that are
not part of argument strings proper (e.g., text or numbers). Place Ms in
front of all Ps that select commands (not arguments) or that begin a
sequence of direct-manipulation operations belonging to a cognitive unit.”4

2.1.1 Architectural Basis and Constraints. The KLM is based on a
simple underlying cognitive architecture: a serial stage model of human
information processing in which one activity is done at a time until the task
is complete. All of the human information-processing activity is assumed to
be contained in the primitive operators, including internal perceptual and
cognitive actions, which are subsumed by black-box Mental (M) operators.
This restricts the KLM to tasks that can be usefully approximated by a
series of operators, with no parallel activities, no interruptions, and no
interleaving of goals. Luckily, many single-user computer tasks are use-
fully approximated with these restrictions. However, these restrictions,
along with primitive operators defined to be at the keystroke level, make
the KLM impractical for representing an entire high-level task like collabo-
ratively writing a research paper. The next two GOMS variants are more
able to handle that task.

2.1.2 Example KLM. Figure 2 provides a sample KLM for moving the
circled phrase in Figure 1. To construct this model, we used heuristics for
placing Ms that have been updated for mouse-based interfaces [Card et al.
1983, p. 265 and above] and the original operator types and times supplied
by Card et al. [1983, p. 264]. Figure 2 also includes illustrative observations
that an analyst might make about the model.
Quantitatively, the KLM makes the prediction that this task will take

about 14 seconds. Qualitatively, the analyst can use the model to highlight
several ideas. The subgoal structure is not explicit in the KLM itself, but an
analyst can see it in the model (as annotated) and use it to look for
recurring subprocedures that might be combined or shortened. For in-
stance, the analyst has made an annotation to consider a MOVE command
instead of CUT and PASTE. A KLM for MOVE would show what time
savings this would provide, which could then be weighed against other
considerations like users’ prior knowledge or other functionality (e.g., the
ability to paste multiple copies). Considering the subgoal structure is an

4The concept of a cognitive unit is discussed in Card et al. [1983, p. 268].

The GOMS Family of User Interface Analysis Techniques • 327

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

important use of all GOMS versions, and the next two variants will make it
explicit in the model itself.

2.2 Card, Moran, and Newell GOMS (CMN-GOMS)

CMN-GOMS is the term we use to refer to the form of GOMS model
presented in Card et al. [1983, Ch. 5] and Card et al. [1980b]. CMN-GOMS
has a strict goal hierarchy. Methods are represented in an informal
program form that can include submethods and conditionals. A CMN-
GOMS model, given a particular task situation, can thus predict both
operator sequence and execution time.
Card et al. [1983] do not describe the CMN-GOMS technique with an

explicit “how to” guide, but their presentation of nine models at different
levels of detail illustrates a breadth-first expansion of a goal hierarchy
until the desired level of detail is attained. Card et al. report results in
which such models predicted operator sequences and execution times for
text-editing tasks, operating systems tasks, and the routine aspects of
computer-aided VLSI layout. These examples are sufficiently detailed and

Fig. 2. A Keystroke-Level Model for moving the text in Figure 1. The notes on the right
represent handwritten notes an analyst might add to the KLM to highlight ideas.

328 • Bonnie E. John and David E. Kieras

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

extensive that researchers have been able to develop their own CMN-
GOMS analyses (e.g., Lerch et al. [1989]).

2.2.1 Architectural Basis and Constraints. In the context of the CMN
book, it would appear that CMN-GOMS is based on the Model Human
Processor (MHP), a simple conventional model of human information
processing with parallel stages described by Card et al. [1983, Ch. 2] and
summarized in Section 2.6.1. But in fact Card et al. do not establish this
relationship and do not derive the GOMS concept from the specific proper-
ties of the MHP.
Rather, CMN-GOMS is based on two of the MHP “Principles of Opera-

tion,” the Rationality Principle and the Problem Space Principle, both of
which developed in the problem-solving theoretical literature (e.g., Newell
and Simon [1972] and Card et al. [1983, Ch. 11]). The Problem Space
Principle postulates that a user’s activity can be characterized as applying
a sequence of actions, called operators, to transform an initial state into a
goal state. With experience, the sequence of operators to accomplish a goal
no longer has to be inferred; rather the sequence, termed a method, can be
routinely recalled and executed when the same goal situation is recognized
[Card et al. 1983, Ch. 11]. The Rationality Principle asserts that users will
develop methods that are efficient, given the structure of the task environ-
ment (i.e., the design of the system) and human processing abilities and
limitations. Thus, human activity with a computer system can be viewed as
executing methods to accomplish goals, and because humans strive to be
efficient, these methods are heavily determined by the design of the
computer system. This means that the user’s activity can be predicted to a
great extent from the system design. Thus, constructing a GOMS model
based on the task and the system design can predict useful properties of
the human interaction with a computer.
CMN-GOMS, like the KLM, is based on the simple serial-stage architec-

ture, and even though it has program methods and goal structure, no
further assumptions are made about how these methods are executed or
represented. Consequently, CMN-GOMS is easy to write, but the lack of an
explicit description of the method representation and mechanisms involved
in task execution means that CMN-GOMS models are relatively vague and
unspecified compared to the next two GOMS techniques.

2.2.2 Example CMN-GOMS Model. Because the goal hierarchy is ex-
plicitly represented, a CMN-GOMS model could start at the level of
collaboratively writing a research paper, with subgoals like SEND-DRAFT-
TO-CO-AUTHOR, FORMAT-BIBLIOGRAPHY, or EDIT-MANUSCRIPT.
Figure 3 displays only those goals and operators at and below the EDIT-
MANUSCRIPT subgoal. It includes details for the MOVE-TEXT subgoal
and illustrative analyst annotations. Moving is accomplishing by first
cutting the text and then pasting it. Cutting is accomplished by first
selecting the text and then issuing the CUT command. As specified by a
selection rule, selecting of text can be done in two different ways, depend-

The GOMS Family of User Interface Analysis Techniques • 329

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

ing on the nature of the text to be selected. Finally pasting requires
selecting the insertion point and then issuing the PASTE command.
Quantitatively, CMN-GOMS models predict the operator sequence and

execution time. Qualitatively, CMN-GOMS models focus attention on meth-

Fig. 3. Example of CMN-GOMS text-editing methods showing the top-level unit-task method
structure, an expansion of one method, and a selection rule.

330 • Bonnie E. John and David E. Kieras

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

ods to accomplish goals; similar methods are easy to see; unusually short or
long methods jump out (as annotated) and can spur design ideas. In
addition, the annotations indicate that this analyst has observed that the
VERIFY operator explicitly records points of feedback to the user.

2.2.3 Comparison to the KLM. A major difference between the KLM and
the CMN-GOMS models is that CMN-GOMS is in program form; therefore,
the analysis is general and executable. That is, any instance of the
described class of tasks can be performed or simulated by following the
steps in the model, which may take different paths depending on the
specific task situation. Subgoal invocation and method selection are pre-
dicted by the model given the task situation, and these need not be dictated
by the analyst as they must for the KLM. Another major difference is that
the goal hierarchy is explicit in CMN-GOMS, while it was implicit in the
KLM.
Comparing Figure 3 with Figure 2 shows the relationship between

CMN-GOMS and the KLM. For instance, there is a one-to-one mapping
between the physical operators in the CMN-GOMS model and the Ks and
Ps in the KLM. The CMN-GOMS model has other operators at this level:
VERIFY-LOCATION and VERIFY-HIGHLIGHT, which are not overt phys-
ical actions. The KLM has no explicit goals or choices between goals,
whereas the CMN-GOMS model represents these explicitly. Roughly, the
VERIFY operators, subgoal invocations, and selection rules of the CMN-
GOMS model are represented as the M operators in the KLM. That is, such
operators appear in the CMN-GOMS model in groups that roughly corre-
spond to the placement of Ms in the KLM. This is only approximately the
case, as the VERIFY operators sometimes occur in the middle of a group of
physical operators, but the approximation is close.
Given the task specified by the manuscript in Figure 1, this model would

predict the trace of operators shown with the estimates of operator times in
the far-right column. The estimates for the physical operators are identical
to the ones in the KLM. The VERIFY-HIGHLIGHT and VERIFY-POSI-
TION operators are assigned 1.35 seconds, the same value as the KLM’s M
operator because this is Card et al.’s best estimate of mental time in the
absence of other information.5 Thus, the CMN-GOMS model produces the
same estimate for task completion as the KLM.
Notice that the CMN-GOMS technique assigns time only to operators,

not to any “overhead” required to manipulate the goal hierarchy. In their
results, CMN found that time predictions were as good with the assump-
tion that only operators contributed time to the task as they were when
goal manipulation also contributed time. However, they suggested that at
more detailed levels of analysis such cognitive activity might become more

5Some design situations may require, or provide opportunity for, using better estimates of
specific types of metal operators. Analysts can look at the additional empirical work of Card et
al. [1983, Ch. 5] where they measure many specific mental times, or other HCI empirical work
(e.g., John and Newell [1987] for estimates of time to recall command abbreviations and Olson
and Olson [1990] for mental preparation in spreadsheet use).

The GOMS Family of User Interface Analysis Techniques • 331

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

important. Also notice that where the KLM puts Ms at the beginning of
subprocedures, the CMN-GOMS model puts the mental time in VERIFY
operators at the end of subprocedures. Since mental time is observable only
as pauses between actions, it is difficult to distinguish between these two
techniques empirically, and only appeals to more detailed cognitive archi-
tectures can explain the distinction. Pragmatically, however, this difference
is irrelevant in most design situations. We will discuss the issue of mental
time again after presenting all the GOMS techniques.

2.3 Natural GOMS Language (NGOMSL)

NGOMSL is a structured natural-language notation for representing
GOMS models and a procedure for constructing them [Kieras 1988; 1996].
An NGOMSL model is in program form and provides predictions of operator
sequence, execution time, and time to learn the methods. An analyst
constructs an NGOMSL model by performing a top-down, breadth-first
expansion of the user’s top-level goals into methods, until the methods
contain only primitive operators, typically keystroke-level operators. Like
CMN-GOMS, NGOMSL models explicitly represent the goal structure, and
so they can represent high-level goals such as collaboratively writing a
research paper.

2.3.1 Architectural Basis and Constraints. The NGOMSL technique
refines the basic GOMS concept by representing methods in terms of a
cognitive architecture called cognitive complexity theory (CCT) [Bovair et
al. 1990; Kieras and Polson 1985]. CCT assumes a simple serial-stage
architecture in which working memory triggers production rules that apply
at a fixed rate. These rules alter the contents of working memory or execute
primitive external operators such as making a keystroke. GOMS methods
are represented by sets of production rules in a prescribed format. Learning
procedural knowledge consists of learning the individual production rules.
Learning transfers from a different task if the rules had already been
learned (see also Anderson [1993]). CCT has been shown to provide good
predictions of both execution time, learning time, and transfer of procedure
learning [Bovair et al. 1988; 1990; Kieras and Bovair 1986].
NGOMSL originated from attempts to define a higher-level notation to

represent the content of a CCT model [Bennett et al. 1987; Butler et al.
1989]. It is a structured natural-language notation in which methods are
represented in program form as a list of steps which contain operators, both
external keystroke-level operators and internal operators that represent
operations of the CCT architectural mechanisms, such as adding and
removing working memory information or setting up subgoals. The rela-
tionship between the NGOMSL notation and the CCT architecture is
direct: there is essentially a one-to-one relationship between statements in
the NGOMSL language and the production rules for a GOMS model written
in the CCT format. Therefore, the CCT prediction results can be used by
NGOMSL models to estimate not only execution time like KLM and
CMN-GOMS, but also the time to learn the procedures.

332 • Bonnie E. John and David E. Kieras

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

Although an NGOMSL analysis can provide useful descriptions of a task
at many levels of analysis [Karat and Bennett 1991], quantitative predic-
tions of learning and execution times are meaningful only if the methods
use operators that the user is assumed to already know and that have
known properties. CCT and NGOMSL models have been empirically vali-
dated at the keystroke-level of analysis (operators like DETERMINE-
POSITION and CLICK-MOUSE-BUTTON); thus models at that level can
produce reliable quantitative estimates. In principle, other levels could be
researched and empirically validated, but this has not yet been done.
Because NGOMSL models specify methods in program form, they can

characterize the procedural complexity of tasks, both in terms of how much
must be learned and how much has to be executed. However, the underly-
ing simple serial-stage architecture of CCT limits NGOMSL to hierarchical
and sequential methods. Thus, there is no provision for representing
methods whose steps could be executed in any order or which could be
interrupted and resumed. Also, there is no direct way to represent how
perceptual, cognitive, and motor processing might overlap. For example,
there is no provision for representing a user doing perceptual processing on
an icon while simultaneously homing the hand to the mouse and doing a
retrieval from long-term memory. To some extent it is possible to approxi-
mate overlapping operations by setting certain operator times to zero (as
has been done in Figure 4; see Gong [1993]). Direct representation of
processing overlap requires a different underlying cognitive architecture;
such an approach is represented by the CPM-GOMS technique, to be
discussed next.

2.3.2 Example NGOMSL Model. In the text-editing example, Figure 4
shows the NGOMSL methods involved in moving text. Notice that more
methods are represented here than are executed in the example task
instance.
Quantitatively, NGOMSL provides learning time as well as execution

time predictions, discussed in detail below. Qualitatively, NGOMSL pro-
vides all that KLM and CMN-GOMS provide, and more. For example,
NGOMSL makes the similarity between methods explicit, i.e., all menu
commands use a submethod for issuing a command. Like CMN-GOMS,
VERIFY operators draw the analyst’s attention to feedback. In addition,
NGOMSL models explicitly represent working memory and long-term
memory usage, allowing the analyst to assess the demands of the design on
those cognitive resources. In this example, working memory need only store
the command name and the menu name, a reasonable amount of informa-
tion. This model assumes that users will have learned which commands are
in which menus; if they have not they will either systematically search
through all the menus or guess. Because these assumptions are explicit,
they can be questioned and considered in design.

Learning Time Predictions. NGOMSL models have been shown to be
good predictors of time to learn how to use a system, keeping in mind that
what is predicted is the pure learning time for the procedural knowledge

The GOMS Family of User Interface Analysis Techniques • 333

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

represented in the methods. Note that, as mentioned above, the user is
assumed to already know how to execute the operators; the GOMS methods
do not represent the knowledge involved in executing the operators them-
selves, but only represent the knowledge of which operators to apply and in
what order to accomplish the goal. Innovative interface technology often

Fig. 4. An example of NGOMSL methods for moving text, showing a generic command-
issuing method that uses items in long-term memory to associate menu names to the
contained commands. Adapted from Kieras [1996].

334 • Bonnie E. John and David E. Kieras

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

results in new operators; moving the cursor with a mouse was a new
operator for many users in the early 1980s, and selecting objects with an
eye movement tracker or manipulating 3D objects and flying about in
virtual space with data-glove gestures will be new operators as these
technologies move into the workplace. Clearly, the time to learn how to
execute new operators is a critical aspect of the value of new interface
devices, but a GOMS model that assumes such operators cannot predict
their learning time. The time to learn new operators themselves would
have to be measured or simply not included in the analysis.
The total elapsed time to learn to use a system depends not only on how

much procedural knowledge must be learned but on how much time it takes
to complete the training curriculum itself. That is, most learning of
computer use takes place in the context of the new user performing tasks of
some sort, and this performance would take a certain amount of time even
if the user were fully trained. Thus the total learning time consists of the
time to execute the training tasks plus the extra time required to learn how
to perform the tasks (the pure learning time). As Gong [1993] showed,
training-task execution times can be estimated from a GOMS model of the
training tasks.
The key empirical result is that the procedure learning time is approxi-

mately linear with the number of NGOMSL statements that must be
learned. Thus, the pure learning time for the methods themselves can be
estimated just by counting the statements and multiplying by an empiri-
cally determined coefficient. Transfer of training effects can be calculated
by deducting the number of NGOMSL statements in methods that are
identical, or highly similar, to ones already known to the learner (see
Kieras [1988; 1996] and Bovair et al. [1988; 1990]). This characterization of
interface consistency in terms of the quantitative transferability of proce-
dural knowledge is perhaps the most significant contribution of the CCT
research and the NGOMSL technique. An important limitation of this
result is that the accuracy of absolute predictions of learning time will
depend on whether the analyst has followed the same “style” in writing the
methods as was used to obtain the empirical coefficient. This uncertainty
can be dealt with by performing relative comparisons using models written
in a consistent style. Further work is needed to describe and document a
style for analysts to follow that will yield consistently accurate absolute
predictions of learning time.
An additional component of the pure learning time is the time required to

memorize chunks of declarative information required by the methods, such
as the menu names under which commands are found. Such items are
assumed to be stored in long-term memory (LTM), and while not strictly
part of the GOMS methods, they are required to be in LTM for the methods
to execute correctly.
Including this component in learning time estimates is a way to repre-

sent the learning load imposed by menu or command terms, and the
heuristics suggested in CMN can be applied to estimate the time to memorize

The GOMS Family of User Interface Analysis Techniques • 335

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

these items based on the number of chunks. However, heuristics for counting
chunks are not very well defined at this time (see Gong [1993]).
The validity and utility of the learning time predictions depend on the

general requirements of the learning situation. Clearly, if the learner is
engaged in problem solving, or in an unstructured learning situation, the
time required for learning is more variable and ill defined than if the
learner is trained in a tightly controlled situation. The original work by
Kieras, Polson, and Bovair used a mastery-learning situation, in which the
users were explicitly trained on the methods and were required to repeat-
edly execute each procedure fully and exactly before going to the next
[Bovair et al. 1990; Kieras and Bovair 1986; Polson 1988]. The CCT
predictions were extremely accurate in this sort of learning situation. Gong
[1993] used a more realistic learning situation in which users were given a
demonstration and explanation and then had to perform a series of training
tasks at their own pace, without detailed feedback or correction. The
NGOMSL method length, transfer measures, and the number of memory
chunks were excellent predictors of this more realistic training time,
although the prediction coefficients were different than those in Kieras
[1988]. Finally, even in learning situations that are naturalistically un-
structured, at least the ordinal predictions of learning time should hold
true, as suggested by results such as in Ziegler et al. [1986]. It seems
reasonable that regardless of the learning situation, systems whose meth-
ods are longer and more complex will require more time to learn, because
more procedural knowledge has to be acquired, either by explicit study or
inferential problem solving. But clearly more work on the nature of
relatively unstructured learning situations is required.
The above discussion of estimating learning time can be summarized as

follows, using the values determined by Gong [1993]:

Total Procedure Learning Time 5 Pure Procedure Learning Time
1 Training Procedure Execution Time

Pure Procedure Learning Time 5 NGOMSL Method Learning Time
1 LTM Item Learning Time

NGOMSL Method Learning Time 5 17 seconds
3 No. of NGOMSL Statements

to be Learned

LTM Item Learning Time 5 6 seconds
3 Number of LTM Chunks

to be Learned

These formulas give a pure procedure learning time estimate for the whole
set of methods shown in Figure 4 of 784 seconds, in a “typical” learning
situation, assuming no prior knowledge of any methods and assuming that

336 • Bonnie E. John and David E. Kieras

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

learning the proper command words for the two menu terms will require
learning three chunks each.

Execution Time Predictions. Like the other GOMS models, execution
time predictions are based on the sequence of operators executed while
performing the benchmark tasks. A trace of the example NGOMSL model
performing the text-moving example is summarized in Figure 4. The trace
includes the same sequence of physical operators as the KLM and CMN-
GOMS models in Figures 2 and 3. The predicted execution time is obtained
by counting 0.1 seconds for each NGOMSL statement executed and adding
the total external operator time, using values based on the KLM recom-
mended in Kieras [1996]. This gives a predicted execution time of 16.38
seconds, which is comparable to the predictions of the other two models
(14.38 seconds for both the KLM and CMN-GOMS models).

2.3.3 Comparison with KLM and CMN-GOMS. The primary difference
between execution time predictions for NGOMSL, KLM, and CMN-GOMS
is how time is assigned to cognitive and perceptual operators. There are
some stylistic differences in how many large mental operators are assumed;
for example, the NGOMSL example follows the recommendations [Kieras
1988; 1996] for the number and placement of DETERMINE-POSITION and
VERIFY operators and so has more M-like operators than the CMN-GOMS
and KLM models. These stylistic differences could be resolved with further
research.
A more important difference is in the nature of the unobservable opera-

tors. The KLM has a single crude M operator that precedes each cognitive
unit of action. NGOMSL, because it is based on CCT, uniformly requires
some cognitive execution time for every step, manipulating goals and
working memory, and for entering and leaving methods. In contrast,
CMN-GOMS assigns no time to such cognitive overhead. But all three
models include M-like operators for substantial time-consuming mental
actions such as locating information on the screen and verifying entries.
Thus, these methods assign roughly the same time to unobservable percep-
tual and cognitive activities, but do so at different places in the trace.

2.4 Cognitive-Perceptual-Motor GOMS (CPM-GOMS)

CPM-GOMS, like the other GOMS models, predicts execution time based
on an analysis of component activities. However, CPM-GOMS requires a
specific level of analysis where the primitive operators are simple percep-
tual, cognitive, and motor acts. Unlike the other extant GOMS techniques,
CPM-GOMS does not make the assumption that operators are performed
serially; rather, perceptual, cognitive, and motor operators can be per-
formed in parallel as the task demands. CPM-GOMS uses as schedule chart
(or PERT chart, familiar to project managers; see Stires and Murphy
[1962]) to represent the operators and dependencies between operators.
The acronym CPM stands for both the Cognitive-Perceptual-Motor level of

The GOMS Family of User Interface Analysis Techniques • 337

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

analysis and the Critical-Path Method, since the critical path in a schedule
chart provides the prediction of total task time.

2.4.1 Architectural Basis and Constraints. CPM-GOMS is based di-
rectly on the Model Human Processor (MHP) (see Card et al. [1983, Ch. 2]),
which is a basic human information-processing architecture similar to
those appearing in the human cognitive and performance literature for the
last few decades. The human is modeled by a set of processors and storage
systems in which sensory information is first acquired, recognized, and
deposited in working memory by perceptual processors, and then a cogni-
tive processor acts upon the information and commands motor processors to
make physical actions. Each processor operates serially internally, with a
characteristic cycle time, but processors run in parallel with each other.
The unique contribution of CMN was to present this standard picture of
human information processing in the form of an engineering model, which
by careful simplifications and approximations is able to quantitatively
account for many basic phenomena relevant to human-computer interac-
tion (see Card et al. [1983, Ch. 2]). The CPM-GOMS technique directly
applies the MHP to a task analysis by identifying the operators that must
be performed by each processor and the sequential dependencies between
them.
The MHP architecture allows parallelism between CPM-GOMS opera-

tors, which is necessary for analyzing some tasks, but it also forces the
primitive operators to be at the level of the cycle-times of the MHP’s
processors. Thus, CPM-GOMS models are much more detailed than previ-
ous GOMS variants. As the following example will make clear, CPM-GOMS
models are too detailed for tasks that can be usefully approximated by
serial operators.
CPM-GOMS models also make an assumption of extreme expertise in the

user. That is, they typically model performance that has been optimized to
proceed as fast as the MHP and information-flow dependencies will allow.
We will discuss the implications of this assumption in the context of the
text-editing example, below.

2.4.2 Example CPM-GOMS Model. To build a CPM-GOMS model, the
analyst begins with a CMN-GOMS model of a task (thereby inheriting all
the qualitative information obtained from doing a CMN-GOMS model). The
CMN-GOMS model can start at any level but must stop with operators at
the activity level, primarily high-level perceptual (READ-SCREEN) or
motor (ENTER-COMMAND) actions. The analyst continues by dropping to
a lower level where these operators are then expressed as goals, which is
accomplished by methods containing MHP-level operators. John and Gray
[1995] have provided templates (assemblies of cognitive, perceptual, and
motor operators and their dependencies) for different activities under
different task conditions. For instance, Figure 5 contains the template for
the READ-SCREEN goal when an eye movement is required, and Figure 6
contains the template for when the user is already looking at the right spot
on the display. Each operator in the templates has a duration estimate, or a

338 • Bonnie E. John and David E. Kieras

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

set of estimates, that depends on task conditions. For instance, visually
perceiving and comprehending a six-character word takes 290ms, whereas
visually perceiving and comprehending that a symbol is merely present or
absent (e.g., the presence of highlighting) takes 100ms (Figures 5 and 6).
These templates are first joined together serially and then interleaved to

take advantage of the parallelism of the underlying cognitive architecture.
The operators, their estimates of duration, and the pattern of dependencies
between them combine to produce a detailed model of which actions will
occur in the performance of the task and when they will happen. The
sequence of operators which produces the longest path through this chart is
called the critical path; the sum of the durations of operators on the critical
path estimates the total duration of the task. If empirical data about actual
performance of observable motor operators are available from a current
system that is similar to the system being designed, it is desirable to verify
the model against these data. Then the verified models are modified to

Fig. 5. Example of a template for building CPM-GOMS models adapted from John and Gray
[1995]. This template accomplished the goal READ-SCREEN, when an eye movement is
required in the task.

Fig. 6. Example of a template for building CPM-GOMS models adapted from John and Gray
[1995]. This template accomplished the goal READ-SCREEN, when an eye movement is not
required in the task.

The GOMS Family of User Interface Analysis Techniques • 339

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

F
ig
.
7.

C
P
M
-G
O
M
S
m
od
el
of
a
M
O
V
E
-T
E
X
T
m
et
h
od

fo
r
th
e
te
xt
-e
di
ti
n
g
ta
sk

in
F
ig
u
re

1.

340 • Bonnie E. John and David E. Kieras

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

F
ig
.
7.
C
on
ti
n
u
ed

The GOMS Family of User Interface Analysis Techniques • 341

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

represent the proposed design, and quantitative predictions of performance
time can be determined from the critical path of the CPM-GOMS model.
Qualitative analyses of what aspects of a design lead to changes in the
performance time are quite easy once the models are built, as are subtask
profiling, sensitivity and parametric analyses, and playing “what-if ” with
suggested design features [Chuah et al. 1994; Gray et al. 1993].
In the example of the MOVE-TEXT goal, Figure 7 shows a CPM-GOMS

model of this task. For brevity, the model covers only the portion of the
procedure involved with highlighting the text to be moved. Each box in the
chart represents an operator, and each horizontal line of boxes represents
the sequence of operators executed by a perceptual, cognitive, or motor
processor. The lines connecting the boxes indicate sequential dependencies
between the operators, and the highlighted lines correspond to the critical
path.
Before discussing this example model in detail, it is important to note

that text editing is not a good application of the CPM-GOMS technique, and
we present it here only to compare it to the other GOMS techniques. Text
editing is usefully approximated by serial processes, which is why the KLM,
CMN-GOMS, and NGOMSL have been so successful at predicting perfor-
mance on text editors. CPM-GOMS is overly detailed for such primarily
serial tasks and can underestimate the execution time. For examples of
tasks for which a parallel-processing model is essential, and where the
power of CPM-GOMS is evident, see the telephone operator task in Gray et
al. [1993] and transcription typing [John 1996; John and Newell 1989].

Execution Time Predictions. In Figure 7, the times for the operators
shown on the boxes in the schedule chart are based on the durations
estimated by John and Gray [1995]. The highlighted lines and boxes
comprise the critical path. Reading the total duration on the final item of
the critical path gives a total execution time through this subsequence of
the task equal to 2.21 seconds.
The ability of CPM-GOMS to represent parallel processing is illustrated

in the set of operators that accomplish the MOVE-TO-BEGINNING-OF-
PHRASE goal. These operators are not performed strictly serially; that is,
the eye movement and perception of information occur in parallel with the
cursor being moved to the new location. The information-flow dependency
lines between the operators ensure that the eyes must get there first,
before the new position of the cursor can be verified to be at the right
location; however, the movement of the mouse takes longer than the eye
movement and perception, so it defines the critical path.
Multiple active goals can be represented in CPM-GOMS models and are

illustrated in Figure 7 in the sets of operators that accomplish the MOVE-
TO-END-OF-PHRASE goal and the SHIFT-CLICK-MOUSE-BUTTON goal.
Because the shift key is hit with the left hand (in this model of a
right-handed person), and the mouse is moved with the right hand,
pressing the shift-key can occur while the mouse is still being moved to the
end of the phrase. Thus, the operators that accomplish the SHIFT-CLICK-

342 • Bonnie E. John and David E. Kieras

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

MOUSE-BUTTON goal are interleaved with the operators that accomplish
the MOVE-TO-END-OF-PHRASE goal. This interleaving represents a very
high level of skill on the part of the user.

2.4.3 Comparison with KLM, CMN-GOMS, and NGOMSL. Although
text editing is not the best task to display the advantages of CPM-GOMS,
there are several interesting aspects of the model in Figure 7 compared to
the other example models. First, there is a direct mapping from the
CMN-GOMS model to the CPM-GOMS model, because all CPM-GOMS
models start with CMN-GOMS and because the particular model in Figure
7 was built with reference to the one in Figure 3. As with the KLM,
selection rules are not explicitly represented because CPM-GOMS models
are in sequence form, and the analyst chooses a particular method for each
task instance. For example, in Figure 7, the selection between HIGH-
LIGHT-ARBITRARY-PHRASE and HIGHLIGHT-WORD that is explicitly
represented in CMN-GOMS and NGOMSL is only implicit in the analyst’s
choice of the method for this particular model.
Although the qualitative process represented in this CPM-GOMS model

is reasonable, its quantitative prediction is much shorter than the esti-
mates from the other models. The CPM-GOMS model predicts the total
execution time to be 2.21 seconds; totaling the execution time over the
same steps in the other models gives 4.23 seconds for both the KLM and
CMN-GOMS and 6.18 seconds for the NGOMSL model. The primary source
of the discrepancy between the GOMS variants is the basic assumption in
the CPM-GOMS technique that the user is extremely experienced and
executes the task as rapidly as the MHP architecture permits.
One aspect of the extreme-expertise assumption is that the CPM-GOMS

model assumes that the user knows exactly where to look for the to-be-
moved phrase. This means that the model needs only one eye movement to
find the beginning and one to find the end of the target phrase and that the
mouse movements to these points can be initiated prior to the completion of
the eye movements. In some real-world situations, such as telephone
operators handling calls [Gray et al. 1993], the required information always
appears at fixed screen locations, and with experience, the user will learn
where to look. But in a typical text-editing task like our example, the
situation changes from one task instance to the next, so visual search
would be required to locate the target phrase. CPM-GOMS has been used to
model visual search processes [Chuah et al. 1994], but for brevity, we did
not include this complexity in our example.
A second aspect of the assumed extreme expertise is that the example

does not include any substantial cognitive activity associated with selection
of methods or complex decisions. Such cognitive activity is represented in
the other GOMS variants with M-like operators of about a second in
duration. In contrast, in Figure 7, the method selection is implicit in a
single cognitive operator (INITIATE-MOVE-TEXT-METHOD) which is the
minimum cognitive activity required by the MHP to recognize a situation
and note it in working memory. Likewise, VERIFY-POSITION operators

The GOMS Family of User Interface Analysis Techniques • 343

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

are included in the CPM-GOMS model, but they represent much more
elementary recognitions that the cursor is indeed in the location where the
model is already looking rather than complex verifications that a text
modification has been done correctly required in CMN-GOMS and
NGOMSL. Thus, Figure 7 represents a minimum of cognitive activity,
which is an unreasonable assumption for a normal text-editing task.
However, in an experiment by Card et al. [1983, pp. 279–286], the perfor-
mance time of an expert user on a novel editing task was well predicted by
the KLM, but after 1100 trials on the exact same task instance, the
performance time decreased by 35%, largely because the M operators
became much shorter. It is this type of extreme expertise that our example
CPM-GOMS model represents. A more elaborate CPM-GOMS model could
represent complex decisions as a series of MHP-level operators performing
minute cognitive steps serially, as in the earlier work on recalling computer
commands [John and Newell 1987]. However, the technique for modeling
complex decisions in CPM-GOMS is still a research issue, and so it should
be used only for tasks in which method selection is based on obvious cues in
the environment and in which decisions can be represented very simply.
A final contributor to the short predicted time is that the mouse move-

ments in CPM-GOMS are calculated specifically for the particular target
size and distance in this situation, yielding much shorter times than CMN’s
1.10 second estimate of average pointing time used in the other models
(further discussion appears in the next section).

3. SUMMARY AND COMPARISON OF THE GOMS TECHNIQUES

We have modeled the same goal, MOVE-TEXT, with four different GOMS
task analysis techniques. For purposes of comparison, we included a
CPM-GOMS model for the same text-editing task, although the technique
is not recommended for modeling such sequential tasks, and for brevity, it
was shown only for the text-highlighting submethod.

3.1 Summary Comparison of Predictions

The KLM, CMN-GOMS, and NGOMSL models all produce the same se-
quence of observable operators, as does the CPM-GOMS model (although at
a more detailed level). Table I summarizes the quantitative predictions
from the above presentation, both for the overall example task and the
subtask consisting just of highlighting the to-be-moved text.
NGOMSL is the only one of the four techniques that makes learning time

predictions, and these are limited to the effects of the amount of procedural
knowledge and related LTM information to be learned and to learning
situations for which the coefficients have been empirically determined.
KLM, CMN-GOMS, and NGOMSL produce execution time predictions that
are roughly the same for both the overall task and the subtask, although
they make different assumptions about unobservable cognitive and percep-
tual operators and so distribute the time in different ways (see below). An
important difference is that the NGOMSL technique currently entails more

344 • Bonnie E. John and David E. Kieras

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

M-like operators than the other techniques, as well as some cognitive
overhead due to method step execution. Thus, NGOMSL will typically
predict execution times that are longer than KLM or CMN-GOMS predic-
tions.
As shown in the execution time predictions for the text-highlighting

submethod, the CPM-GOMS model predicts a substantially shorter execu-
tion time than the other models. As discussed above, this is due to the
assumption of extreme expertise, which produces maximum operator over-
lapping, finer-grain time estimates for the individual operators, and the
minimum of cognitive activity allowed by the MHP. An interesting similar-
ity between NGOMSL and CPM-GOMS is the roughly similar cognitive
overhead time in the example submethod; in NGOMSL this value is
the statement execution time at 0.1 seconds/statement; in CPM-GOMS it is
the total time for which the cognitive processor is on the critical path in
Figure 7.

3.2 Summary Comparison of Operator Times

Table II lists the operator times assumed in the different techniques and
used in the MOVE-TEXT example. There are basically two types of opera-
tors: those that are directly observable when looking at human perfor-
mance (the motor operators) and those that are not or usually not observ-
able (perceptual and cognitive operators, eye movements). 6 The values for
directly observable operators are quite similar across the GOMS tech-
niques, while the assumptions about unobservable operators vary more
widely.

Mouse Button Operations. The times for mouse button operators and
using the shift-key in KLM, CMN-GOMS, and NGOMSL are based on

6Although eye movements are observable with an eye tracker, eye-tracking research in HCI is
sparse, and we will treat them as unobservable in this task.

Table I. Predicted Time Measures (in Seconds) for Each Technique for the MOVE-TEXT
Example

KLM CMN-GOMS NGOMSL CPM-GOMS

Overall Measures
Procedure Learning
(both highlighting
methods)

— — 784.00 —

Total Example Task
Execution Time

14.38 14.38 16.38 not shown in
this example

Text Highlighting Submethod
Highlighting
Submethod
Execution Time

4.23 4.23 6.18 2.21

Total Cognitive
Overhead

— — 0.90 1.10

The GOMS Family of User Interface Analysis Techniques • 345

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

values from Card et al. [1983]. The slightly different value for CLICK-
MOUSE-BUTTON in the CPM-GOMS technique can be read from the
example in Figure 7. That is, clicking the mouse button requires a 50ms
cognitive operator and two motor operators at 100ms each.
The SHIFT-CLICK operation is assumed to be the sequence of hitting the

shift-key (280msec from CMN) and then the mouse button (200msec) in the
first three techniques. However, in CPM-GOMS, the shift-key operator can
overlap with earlier processing in the MOVE-TEXT task, so that it is not on
the critical path. Thus, the entire SHIFT-CLICK operation adds only
250msec to the critical path (the same as CLICK-MOUSE-BUTTON).

Cursor Movement. The 1.10 seconds used in KLM, CMN-GOMS, and
NGOMSL is the average value suggested by CMN for large-screen text-
editing tasks. But, Gong [1993] found that many of the mouse movements
involved in using a Macintosh interface, such as making menu selections
and activating windows, were much faster than 1.10 seconds, and that
Fitts’ Law estimates (see Card et al. [1983, p. 55] were more accurate.
Thus, Fitts’ Law values based on the actual or typical locations and sizes of
screen objects should probably be used whenever possible in all of the
techniques. For CPM-GOMS, moving the cursor to point to an object is a
combination of cognitive operators, motor operators, and perceptual opera-
tors (see Figure 7), and only some of them occur on the critical path in any
particular task situation. The duration of the mouse movement motor
operator itself was calculated using Fitts’ Law (480ms for both move-
ments). In this example, moving to the beginning of the phrase put 680ms
on the critical path (2 cognitive, 1 motor, and 1 perceptual in Figure 7) and,
coincidentally, moving to the end of the phrase also put 680ms on the
critical path (also 2 cognitive, 1 motor, and 1 perceptual).

Unobservable Operations. All of the GOMS variants make assumptions
about unobservable operations. The KLM makes the simplest assumption,
putting all such operations (perceiving information, eye movements, com-
parisons, decisions, mental calculations, etc.) into one operator, M, 1.35

Table II. Operator Times (in Seconds) Used in Each Technique for the MOVE-TEXT
Example

KLM
CMN-
GOMS NGOMSL

CPM-GOMS
critical path

Directly Observable Motor Operators:
Click-mouse-button 0.20 0.20 0.20 0.250
Shift-click-mouse-
button

0.48 0.48 0.48 0.250

Cursor movement 1.10 1.10 1.10
or Fitts’ Law

0.680
by Fitts’ Law

Unobservable Perceptual or Cognitive Operators
Mental Preparation 1.35 not used not used 0.100
Determine Position not used not used 1.20 0.100
Edit Verification not used 1.35 1.20 not used

346 • Bonnie E. John and David E. Kieras

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

seconds in length. This operator is always put at the beginning of a
cognitive unit. CMN-GOMS and NGOMSL break this catch-all M into more
specific unobservable operators. CMN-GOMS uses unobservable operators
to verify the editing actions (VERIFY-HIGHLIGHT and VERIFY-POSI-
TION), also assigned the estimate of 1.35 seconds; NGOMSL uses DETER-
MINE-POSITION and VERIFY, both 1.20 seconds. For the KLM, CMN-
GOMS, and NGOMSL models, the estimates for the unobservable operators
shown are those currently recommended for each technique as average
values to be used in the absence of more specific measurements. They are
all roughly the same at about a second duration, but are slightly different
because they were determined empirically with different data sets at
different historical points in the development of GOMS techniques. None of
these techniques have a theoretical commitment to any particular value.
Any available empirically determined values for the operators involved in a
particular analysis should be used instead of these average estimates.
There are also differences in the distribution of mental time. The KLM

tends to place mental time in the preparation for action, while CMN-GOMS
mental time tends to come at the end of actions in VERIFY operators, and
NGOMSL has mental time in both places. These stylistic differences could
probably be resolved with further research.
In addition to the M-like operators, NGOMSL also takes time for the

unobservable activity associated with the production-rule cycling assumed
in the underlying architecture and represented with the 0.1-second/state-
ment “cognitive overhead.” In considerably more detail, CPM-GOMS also
represents the underlying unobserved operations in terms of the cycle
times of the MHP processors, such as the cognitive cycle time (estimated at
70ms by CMN, but refined by subsequent work to be 50ms [John and
Newell 1989; Nelson et al. 1994; Wiesmeyer 1992], perceptual cycle time
(which depends on the complexity of the signal being perceived; see Figures
5 and 6), and eye movement time (estimated to be 30msec) [Card et al.
1983, p. 25]. Both the duration and dependencies of these unobservable
operators are specified in the templates used to construct the model.
However, the other operators needed to accomplish a task and their
dependencies make every critical path different, and no one estimate of
“mental time” is meaningful in CPM-GOMS. For example, in the MOVE-
TEXT task in Figure 7, the entry in Table II for Mental Preparation is the
sum of the durations of the two cognitive operators on the critical path that
set up the MOVE-TEXT task and HIGHLIGHT-PHRASE subtask. The
entry for Determine Position is the sum of the durations of those operators
that locate the beginning of the phrase on the screen that occur on the
critical (3 cognitive operators, 1 eye movement motor operator, and 1
perceptual operator). All of these operators depend on each other and have
to occur in order; thus, if this were the only activity taking place in a task,
they would all be on the critical path and take 420ms. However, since
looking for the beginning of the phrase is just one part of the MOVE-TEXT
task, other activities can occur in parallel (e.g., moving the mouse, dis-
cussed in the last section), and their operators are interleaved with these,

The GOMS Family of User Interface Analysis Techniques • 347

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

making the critical path more complicated, so that only the first two
cognitive operators appear on the critical path for this task.

3.3 Summary Comparison of Architectural Assumptions

The assumed cognitive architectures range from the trivial, in the case of
the KLM, to slightly more complicated for CMN-GOMS, to an elaborated
sequential architecture with a working memory and specified procedure
knowledge representation in NGOMSL, to a powerful but relatively unspec-
ified multiple parallel processor architecture in CPM-GOMS. The strengths
and weaknesses of the techniques correspond quite directly to these archi-
tectural differences. The KLM is easy to apply, but predicts only execution
time, and only from analyst-supplied methods. At the other extreme,
CPM-GOMS predicts execution time for subtle, overlapping patterns of
activities, but also requires analyst-supplied methods. CMN-GOMS, once
its program methods have been worked out, can predict execution time for
all subsumed task instances, and NGOMSL, with the additional invest-
ment in its explicit representation of procedural knowledge, can then also
predict some aspects of learning time. Thus, rather than being radically
different, the GOMS techniques occupy various points in a space of possible
techniques defined by different architectural assumptions and the form of
the methods supplied by the analyst (see John and Kieras [1994] for more
discussion). Some important possibilities for research lie in the gaps in this
space; for example, the extant set of ready-to-use GOMS techniques lack a
program form approach to analyzing overlapping cognitive, perceptual, and
motor activities.

4. CONCLUSIONS

The four specific GOMS modeling techniques discussed here are all related
to a general task-analysis approach. This general approach emphasizes the
importance of the procedures for accomplishing goals that a user must
learn and follow in order to perform well with the system. By using
descriptions of user procedures, the techniques can provide quantitative
predictions of procedure learning and execution time and qualitative in-
sights into the implications of design features. While other aspects of
system design are undoubtedly important, the ability of GOMS models to
address this critical aspect makes them not only a key part of the scientific
theory of human-computer interaction, but also useful tools for practical
design [John and Kieras 1996].
The current GOMS models are quite effective because they capture

procedural speed and complexity. But other aspects of human performance
with an interface are not addressed by the simple cognitive architectures
underlying the current GOMS variants. Current research in cognitive
architectures assumes both more detail and more variety of human mecha-
nisms, and so can potentially account for a wider and deeper range of
design issues. Representative examples of such work use architectures that
represent perceptual-cognitive-motor interactions [Kieras and Meyer 1996;

348 • Bonnie E. John and David E. Kieras

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

Kieras et al. 1995; Nelson et al. 1994], comprehension processes [Doane et
al. 1992; Kitajima and Polson 1992], and problem-solving and learning
mechanisms [Altmann et al. 1995; Anderson 1993; Bauer and John 1995;
Howes 1994; Polson and Lewis, 1990; Rieman et al. 1994].7 Because these
research efforts are rigorous and make use of computational models, they
should eventually lead to engineering-style design tools for additional
aspects of interface design and usability. Thus while the current generation
of GOMS models are ready for application, we can expect to see future
models of human-computer interaction that are even more comprehensive,
accurate, and useful.

ACKNOWLEDGMENTS

The authors contributed equally to this article; the order of their names
reflects alphabetical order and not seniority of authorship. We thank
Wayne Gray and Judy Olson for their comments on drafts of this article.

REFERENCES

ALTMANN, E. M., LARKIN, J. H., AND JOHN, B. E. 1994. Display navigation by an expert
programmer: A preliminary model of memory. In Human Factors in Computing Systems
(CHI’ 1995). ACM, New York, 3–10.

ANDERSON, J. R. 1993. Rules of the Mind. Lawrence Erlbaum, Hillsdale, N.J.
BAUER, M. I. AND JOHN, B. E. 1994. Modeling time-constrained learning in a highly-
interactive task. In Human Factors in Computing Systems (CHI ’1995). ACM, New York,
19–26.

BEARD, D. V., SMITH, D. K., AND DENELSBECK, K. M. 1996. Quick and dirty GOMS: A case
study of computed tomography interpretation. Hum. Comput. Interact. 11. To be published.

BENNETT, J. L., LORCH, D. J., KIERAS, D. E., AND POLSON, P. G. 1987. Developing a user
interface technology for use in industry. In Proceedings of the 2nd IFIP Conference on
Human-Computer Interaction (INTERACT ’87), H. J. Bullinger and B. Shackel, Eds.
Elsevier Science Publishers B. V., North-Holland, Amsterdam, 21–26.

BOVAIR, S., KIERAS, D. E., AND POLSON, P. G. 1988. The acquisition and performance of
text-editing skill: A production-system analysis. Tech. Rep. No. 28. Technical Communica-
tion Program, Univ. of Michigan, Ann Arbor, Mich.

BOVAIR, S., KIERAS, D. E., AND POLSON, P. G. 1990. The acquisition and performance of text
editing skill: A cognitive complexity analysis. Hum. Comput. Interact. 5, 1–48.

BUTLER, K. A., BENNETT, J., POLSON, P., AND KARAT, J. 1989. Report on the workshop on
analytical models: Predicting the complexity of human-computer interaction. SIGCHI Bull.
20, 4, 63–79.

CARD, S. K., MORAN, T. P., AND NEWELL, A. 1980a. The keystroke-level model for user
performance time with interactive systems. Commun. ACM 23, 7 (July), 396–410.

CARD, S. K., MORAN, T. P., AND NEWELL, A. 1980b. Computer text-editing: An information-
processing analysis of a routine cognitive skill. Cog. Psychol. 12, 32–74.

CARD, S. K., MORAN, T. P., AND NEWELL, A. 1983. The Psychology of Human-Computer
Interaction. Lawrence Erlbaum, Hillsdale, N.J.

CHUAH, M. C., JOHN, B. E., AND PANE, J. 1994. Analyzing graphic and textual layouts with
GOMS: Results of a preliminary analysis. In Human Factors in Computing Systems (CHI
’1994). ACM, New York, 323–324.

7A special issue on cognitive architectures for HCI is scheduled to appear in Human-Computer
Interaction, 1997).

The GOMS Family of User Interface Analysis Techniques • 349

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

DOANE, S. M., MANNES, S. M., KINTSCH, W., AND POLSON, P. G. 1992. Modeling user action
planning: A comprehension based approach. User Model. User-Adapted Interact. 2, 249–285.

GONG, R. 1993. Validating and refining the GOMS model methodology for software user
interface design and evaluation. Ph.D. dissertation, Univ. of Michigan, Ann Arbor, Mich.

GRAY, W. D., JOHN, B. E., AND ATWOOD, M. E. 1993. Project Ernestine: A validation of
GOMS for prediction and explanation of real-world task performance. Hum. Comput.
Interact. 8, 3, 237–209.

HAUNOLD, P. AND KUHN, W. 1994. A keystroke level analysis of a graphics application:
Manual map digitizing. In Human Factors in Computing Systems (CHI ’1994). ACM, New
York, 337–343.

HOWES, A. 1994. A model of the acquisition of menu knowledge by exploration. In Human
Factors in Computing Systems (CHI ’1994). ACM, New York, 445–451.

JOHN, B. E. 1996. TYPIST: A theory of performance in skilled typing. Hum. Comput.
Interact. 11. To be published.

JOHN, B. E. AND GRAY, W. D. 1995. CPM-GOMS: An analysis method for tasks with parallel
activities. In Human Factors in Computing Systems (CHI ’1995). ACM, New York, 393–394.

JOHN, B. E. AND KIERAS, D. E. 1994. The GOMS family of analysis techniques: Tools for
design and evaluation. Tech. Rep. CMU-CS-94-181, School of Computer Science, Carnegie-
Mellon Univ., Pittsburgh, Pa.

JOHN, B. E. AND KIERAS, D. E. 1996. Using GOMS for user interface design and evaluation:
Which technique? ACM Trans. Comput. Hum. Interact. 3, 4 (Dec.), 287–319. This issue.

JOHN, B. E. AND NEWELL, A. 1987. Predicting the time to recall computer command
abbreviations. In Human Factors in Computing Systems (CHI ’1987). ACM, New York,
33–40.

JOHN, B. E. AND NEWELL, A. 1989. Cumulating the science of HCI: From S-R compatibility
to transcription typing. In Human Factors in Computing Systems (CHI ’1989). ACM, New
York, 109–114.

KARAT, J. AND BENNETT, J. 1991. Modeling the user interaction methods imposed by
designs. In Human Factors in Information Technology. Vol. 2, Mental Models and Human-
Computer Interaction, M. Tauber and D. Ackermann, Eds. North-Holland, Amsterdam.

KIERAS, D. E. 1988. Towards a practical GOMS model methodology for user interface
design. In The Handbook of Human-Computer Interaction. North-Holland, Amsterdam,
135–158.

KIERAS, D. E. 1996. A Guide to GOMS model usability evaluation using NGOMSL. In The
Handbook of Human-Computer Interaction. 2nd ed. North-Holland, Amsterdam. To be
published.

KIERAS, D. E. AND BOVAIR, S. 1986. The acquisition of procedures from text: A production-
system analysis of transfer of training. J. Mem. Lang. 25, 507–524.

KIERAS, D. E. AND MEYER, D. E. 1996. An overview of the EPIC architecture for cognition
and performance with application to human-computer interaction. Hum. Comput. Interact.
11. To be published.

KIERAS, D. E. AND POLSON, P. G. 1985. An approach to the formal analysis of user
complexity. Int. J. Man-Machine Stud. 22, 365–394.

KIERAS, D. E., WOOD, S. D., AND MEYER, D. E. 1995. Predictive engineering models using the
EPIC architecture for a high-performance task. In Human Factors in Computing Systems
(CHI ’1995). ACM, New York, 11–18.

KITAJIMA, M. AND POLSON, P. G. 1992. A computational model of skilled use of a graphical
user interface. In Human Factors in Computing Systems (CHI ’1992). ACM, New York,
241–249.

LANE, D. M., NAPIER, H. A., BATSELL, R. R., AND NAMAN, J. L. 1993. Predicting the skilled
use of hierarchical menus with the Keystroke-Level Model. Hum. Comput. Interact. 8, 2,
185–192.

LERCH, F. J., MANTEI, M. M., AND OLSON, J. R. 1989. Translating ideas into action: Cognitive
analysis of errors in spreadsheet formulas. In Human Factors in Computing Systems (CHI
’1989). ACM, New York, 121–126.

350 • Bonnie E. John and David E. Kieras

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

NELSON, G. H., LEHMAN, J. F., AND JOHN, B. E. 1994. Integrating cognitive capabilities in a
real-time task. In Proceedings of the 16th Annual Conference of the Cognitive Science
Society. Cognitive Science Society, Pittsburgh, Pa.

NEWELL, A. AND SIMON, H. A. 1972. Human Problem Solving. Prentice-Hall, Englewood
Cliffs, N.J.

OLSON, J. R. AND OLSON, G. M. 1990. The growth of cognitive modeling in human-computer
interaction since GOMS. Hum. Comput. Interact. 5, 221–265.

POLSON, P. G. 1988. Transfer and retention. In Cognitive Science and Its Application for
Human-Computer Interaction, R. Guindon, Ed. Lawrence Erlbaum, Hillsdale, N.J., 59–162.

POLSON, P. AND LEWIS, C. 1990. Theory-based design for easily learned interfaces. Hum.
Comput. Interact. 5, 191–220.

RIEMAN, J., LEWIS, C., YOUNG, R. M., AND POLSON, P. G. 1994. “Why is a Raven like a writing
desk?” Lessons in interface consistency and analogical reasoning from two cognitive archi-
tectures. In Human Factors in Computing Systems (CHI ’1994). ACM, New York, 438–444.

STIRES, D. M. AND MURPHY, M. M. 1962. PERT (Program Evaluation and Review Technique)
CPM (Critical Path Method). Materials Management Inst., Boston, Mass.

WIESMEYER, M. D. 1992. An operator-based model of human covert visual attention. Ph.D.
thesis, Univ. of Michigan, Ann Arbor, Mich.

VERA, A. H. AND ROSENBLATT, J. K. 1995. Developing user model-based intelligent agents. In
Proceedings of the 17th Annual Conference of the Cognitive Science Society, J. D. Moore and
J. F. Lehman, Eds. Lawrence Erlbaum, Hillsdale, N.J., 500–505.

ZIEGLER, J. E., HOPPE, H. U., AND FAHNRICH, K. P. 1986. Learning and transfer for text and
graphics editing with a direct manipulation interface. In Proceedings of CHI ’1986. ACM,
New York.

Received September 1994; revised October 1995 and June 1996; accepted June 1996

The GOMS Family of User Interface Analysis Techniques • 351

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 4, December 1996.

