LEARNING FROM
18 OBSER/ATIONS

In which we describeagentsthat can improve their behaviorthrough diligent
studyof their ownexperiences.

The ideabehindlearningis that perceptsshould be usednot only for acting, but also for

improving the agents ability to actin the future. Learningtakes placeasa resultof the
interactionbetweenthe agentandthe world, andfrom obseration by the agentof its own

decision-makingrocesseslearningcanrangefrom trivial memorizationof experienceas
exhibited by the wumpusagentin Chapterl0, to the creationof entire scientifictheories,
asexhibited by Albert Einstein. Chapter2 explainedthe basicstructureof a learningagent;
this chapterdescribesnductive learning from obserations,whichis the basictool usedby

learningagentsin particular we describenow to learnsimpletheoriesn propositionalogic.

We alsogive atheoreticalnalysishatexplainswhy inductive learningworks.

18.1 FORMS OF LEARNING

In Chapter2, we sav thatalearningagentcanbethoughtof ascontainingaperformanceele-
ment thatdecidesvhatactionsto take andalearning elementthatmodifiesthe performance
elementso that it makes betterdecisions(seeFigure 2.15). Machinelearningresearchers
have comeup with alarge variety of learningelements.To understandhem, it will helpto
seehow their designis affectedby the contet in which they will operate.The designof the
learningelements affectedby threemajorissues:

¢ Which componentsf the performanceslementareto belearned.
¢ Whatfeedbak is availableto learnthesecomponents.
¢ Whatrepresentatioris usedfor the components.
We now analyzeeachof theseissuedn turn.
We have seenthatthereare mary waysto build the performanceslementof anagent.

Chapter2 describedseveralagentdesigngFigures2.9,2.11,2.13,and2.14. Thecomponents
of theseagentdncludethefollowing:

1. A directmappingfrom conditionson the currentstateto actions.
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2. A meando infer relevantpropertiesof theworld from the perceptsequence.

3. Informationaboutthe way the world evolvesandaboutthe resultsof possibleactions
theagentcantake.

4. Utility informationindicatingthedesirabilityof world states.

5. Action-valueinformationindicatingthedesirabilityof actionsactionsin particularstates.

6. Goalsthatdescribeclasse®f statesvhoseachiszementmaximizeshe agents utility.

Eachof thecomponentganbelearned giventhe appropriatdeedback Considerfor exam-
ple, an agenttraining to becomea taxi driver. Every time the instructorshouts‘Brake!!!”,
the agentcanlearna condition—actiorrule for whento brake (1). By seeingmary camera
imagesthatit is told containbuses;t canlearnto recognizethem(2). By trying actionsand
observingheresults—forexample, brakinghardon awetroad—itcanlearntheeffectsof its
actions(3). Then,whenit recevesnotip from passengenmsho have beenthoroughlyshalen
up duringthetrip, it canlearnausefulcomponenbf its overall utility function(4).

Let usnow considerthe type of feedbackavailable for learning. The first threecases
in the precedingparagrapttanbe seenaslearninga function given examplesof the inputs
andoutputsof the function. The condition—actiorrule for brakingis a function from states
to a Booleanoutput(whetheror not to brake); the busrecognitionprocesss afunctionfrom
imagesto a Booleanoutput (whetheror not the image containsa bus); and the theory of
brakingis a function from statesand brakingactionsto, say stoppingdistances.Theseare
all instance®f supervisedlearning; this s the simplestform of learning,andit will bethe
subjectof this chapter Noticethatin thefirst two casesateacheprovidedthe correctoutput
valueof the examples;in the third, the outputvaluewasavailable directly from the agents
percepts. For fully obsenable ervironments,it will always be the casethat an agentcan
obsere the effectsof its actionsandhencecanusesupervisedearningmethodsto learnto
predictthem. For partially obsenable environments the problemis moredifficult because
theimmediateeffectsmaybeinvisible.

Ultimately, an agentmustlearnwhatto do. If thereis no teacherto tell the agentthe
correctactionat every momentthentheagentmustlearnwhatto do from moresubtlekinds
of feedbackFor example thelack of atip atthe endof thejourney (or thehefty bill for rear
endingthecarin front) is calledais calledareinforcement! Learningwhatdo do basedon
suchinformationis calledreinforcementlearning. The subjectis coveredin Chapter20.

Learningwhenthereis no hint at all aboutthe correctoutputsis calledunsuperised
learning. An unsupervisedearnercanalwayslearnrelationshipsamongits perceptausing
supervisedearningmethods—thais, it canlearnto predictits future perceptgivenits pre-
viousperceptslt cannotlearnwhatto do unlessit alreadyhasa utility function.

Therepresentatioof thelearnednformationplaysaveryimportantrolein determining
how thelearningalgorithmmustwork. Any of thecomponentef anagentcanberepresented
usingary of the representatioschemesn this book. We have seenseveral examples:lin-
earweightedpolynomialsfor utility functionsin game-playingorogramspropositionaland
first-orderlogical sentencegor all of the componentsn a logical agent;and probabilistic
descriptionsuchasBayesiametworksinferentialcomponent®f adecision-theoretiagent.

1 Thetermreward asusedin Chapterl7 is a synorym for reinforcement
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PRIOR KNOWLEDGE

Effective learningalgorithmshave beendevisedfor all of these.Thischaptemwill cover meth-
odsfor propositionalogic; Chapter21 describesnethoddor first-orderogic; andChapterl9
coversmethodsfor Bayesiametworks andfor neuralnetworks (which includelinear poly-
nomialsasa specialcase).

Oneotherissuethat cutsacrossall forms of learningis the questionof prior knowl-
edge Themajority of learningresearctin Al, computerscienceandpsychologyhasstudied
the casein which the agentbegins with no knowledgeat all aboutwhatit is trying to learn.
It hasacces®nly to the examplespresentedy its experience Althoughthis is animportant
specialcasejt is by no meanghe generakcase Most humanlearningtakesplacein the con-
text of a gooddeal of backgrouncknowledge. Somepsychologistsandlinguists claim that
evennanvbornbabiesexhibit knowledgeof the world. Whatever the truth of this claim, there
is no doubtthat prior knowledgecanhelp enormouslyin learning. A physicistexamininga
stackof bubble-chambephotographsnay be ableto inducea theorypositingthe existence
of a new particle of a certainmassand chage; but an art critic examining the samestack
might learnnothingmorethanthat the “artist” mustbe somesort of abstractexpressionist.
Chapter21 shaws several waysin which learningis helpedby the useof existing knowl-
edge;it alsoshavs how knowvledgecanbe compiledin orderto speedup decisionmaking.
Chapterl9 shawvs how prior knowledgehelpsin thelearningof probabilistictheories.

18.2 INDUCTIVE LEARNING

EXAMPLE

PURE INDUCTIVE
INFERENCE
HYPOTHESIS

GENERALIZATION

PROBLEM OF
INDUCTION

HYPOTHESIS SPACE

CONSISTENT

&

An algorithmfor deterministicsupervisedearningis given asinput the correctvalue of the
unknawvn function for particularinputs, and musttry to recover the unknavn function or
somethingcloseto it. More formally, we say an exampleis a pair (z, f(z)), wherez is
the input and f (z) is the outputof the function appliedto z. Thetaskof pure inductive
inference(or induction) is this:

Givenacollectionof examplesof f, returnafunctionh thatapproximates.

Thefunctionh is calleda hypothesis Thereasorthatlearningis difficult, from a conceptual
pointof view, is thatthefunction f is notgivensoit is noteasyto tell whetherary particular
h is agoodapproximatiorof f. A hypothesidhatis a goodapproximatiorof f will gener
alize well—thatis, will predictunseerexamplescorrectly Thisis the fundamentaproblem
of induction. The problemhasbeenstudiedfor centuries;Section18.5 provides a partial
solution.

Figure 18.1 shaws a familiar example: fitting a function of a single variableto some
datapoints. The examplesare(z, f(z)) pairswherebothz and f (z) arerealnumbers.We
choosethe hypothesisspaceH—the setof hypothesesve will considerto be the setof
polynomialsof degreeat mostk, suchas3z? + 2, z'7 — 423, andso on. Figure 18.1(a)
shavs somedatawith an exactfit by a straightline (a polynomialof degreel). Theline is
called a consistenthypothesisbecausét agreeswith all the data. Figure 18.1(b)shavs a
high-degyree polynomialthatis also consistenwith the samedata. This illustratesthe first
fundamentaissuein inductive learning: how do we chooseamongmultiple consistenty-
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pothesesneansweris Ockham’s razor>—preferthe simplesthypothesisonsistentvith

the data. Intuitively, this makessensepecausdypotheseshatareno simplerthanthe data
themselesarefailing to extractary patternfrom the data. Of course definingsimplicity is

not a simple problem,but it seemgeasonabldo saythata degree—1polynomialis simpler
thana degree—12polynomial.

Figure18.1(c)shavs a seconddataset. Thereis no consistenstraightline for this data
set;in fact, it requiresa degree—6polynomial(with 7 parametersor anexactfit. Thereare
just 7 datapoints,sothe polynomialhasasmary parametersstherearedatapoints;thus,it
doesnotseemto befinding ary patternin thedataandwe do not expectit to generalizevell.
It mightbebetterto fit a simplestraightline thatis not exactly consistenbut may make rea-
sonablepredictions.Thisamountgo acceptinghatthetruefunctionmaynotbedeterministic
(or, roughly equivalently thatthe true inputsare not fully obsered). For nondeterministic
functions,ther is an inevitable tradeof betweerhypothesisompleity and degree of fit to
thedata. Chapterl9 explainshow to male this tradeof usingprobabilitytheory

f(x) f(x) f(x) f(x)
/

(@ (b) (c) (d)

Figure18.1 (a)Example(z, f(x)) pairsandaconsistentlinearhypothesis(b) A consis-
tent, high-degree,polynomialhypothesidor the samedataset. (c) A differentdatasetthat
admitsan exacthigh-degreepolynomialfit or anapproximatdinearfit. (d) A simple,exact
sinusoidalit to the samedataset.

Oneshouldkeepin mind thatthe possibility or impossibility of finding a simple,con-
sistenthypothesigdependsstrongly on the hypothesisspacechosen. Figure 18.1(d)shavs
thatthedatain (c) canbefit exactly by a simplefunctionof theform az + b + c¢sinz. This
exampleshaws the importanceof the choiceof hypothesispace.A hypothesispacecon-
sistingof polynomialsof finite degreecannotrepresensinusoidalfunctionsaccuratelysoa
learnerusingthis hypothesispacewill notbeableto learnfrom sinusoidadata.We saythat
alearningproblemis realizableif thehypothesispacecontainghetruefunction;otherwise,
it is unrealizable Unfortunately we cannotalwaystell if a givenlearningproblemis real-
izable, becausdhe true functionis not known. Oneway to getaroundthis is to useprior
knowledg to derive a hypothesispacean which we know thetrue functionmustlie—this is
coveredin Chapter21.

Anotherapproachs to usethe largestpossiblehypothesisspace. For example,why
not let H be the classof all Turing machines?After all, every computablgunction canbe

2 Sometimesnisspelled'Occam’ perhapsrom the Frenchrendering,‘Guillaumed'Occam’.
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representethy someTuring machine andthis is the bestwe cando. The problemwith this
Hé: ideais thatit doesnot take into accountthe computationalcompleity of learning. Thee
is a tradeof betweerthe expressivenessf a hypothesispaceand the compleity of finding
simple consistenthypothesesvithin that space For example,fitting straightlinesto data
is very easy;fitting high-degreepolynomialsis harder;fitting Turing machiness very hard
indeedbecaus@eterminingvhethera given Turing machinds consistentvith thedatais not
evendecidablein general. A secondreasonto prefersimplelanguagess thatthe resulting
hypothesesnay be simplerto use—thais, inferencemaybe muchlessexpensve.

For thesereasonsmostwork on learninghasfocusedon relatively simplerepresenta-
tions. In thischapterwe concentrat®n propositionalogic andrelatedanguagesChapter21
looksatlearningtheoriesin first-orderlogic. We will seethatthe expressieness/compidty
tradeof is not a simpleasit first seemsit is oftenthe case aswe sawv in Chapter8, thatan
expressie languageanalkesit possiblefor a simpletheoryto fit the data,whereagestricting
the expressienessof the languageneanghatary consistentheorymustbe very comple.
For example therulesof chesscanbewrittenin apageor two of first-orderlogic, but require
thousand®f pageswhenwritten in propositionallogic. In suchcasesit shouldbe possible
to learnmuchfasterusingthe moreexpressie language.

18.3 LEARNING DECISION TREES

Decisiontree induction is one of the simplestand yet most successfuforms of learning
algorithm. It senesasa goodintroductionto the areaof inductive learning,andis easyto
implement.We first describethe performanceslementandthenshov how to learnit. Along
theway, we will introduceideasthatappeain all areasof inductive learning.

Decisiontr eesasperformanceelements

DECISION TREE A decisiontreetakes asinput an object or situationdescribedby a setof attrib utes and
ATTRIBUTES returnsa “decision”—thepredictedoutputvaluefor theinput. Theinput attributesmay be

discreteor continuous.For the mostpartwe will assumadiscreteinputs. The outputvalue
CLASSIFICATION canalsobediscreteor continuousjearningadiscrete-aluedfunctionis calledclassification
REGRESSION learning;the continuouscase which we deferto Chapterl9, is calledregression We will
POSITIVE concentraten Booleanclassificationwhereeachexampleis classifiedastrue (positive) or
NEGATIVE false(negative).

A decisiontreereachests decisionby performinga sequencef tests. Eachinternal
nodein the tree correspondso a testof the value of oneof the propertiesandthe branches
from the nodeare labelledwith the possiblevaluesof the test. Eachleaf nodein the tree
specifiesthe value to be returnedif that leaf is reached. The decisiontree representation
seemdo be very naturalfor humans;jndeed,mary “How To” manualsge.g.,for carrepait
arewritten entirelyasa singledecisiontreestretchingover hundredsf pages.

A somevhatsimplerexampleis provided by the problemof whetherto wait for atable

GOAL PREDICATE at arestaurant.The aim hereis to learna definition for the goal predicate WillW ait.® In
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settingthis up asa learningproblem,we first have to decidewhatattributesareavailableto
describeexamplesin thedomain? Supposave decideon thefollowing list of attributes:

=

. Alternate whetherthereis a suitablealternatve restauranhearby

. Bar: whethertherestauranhasa comfortablebarareato wait in.

. Fri/Sat trueon FridaysandSaturdays.

. Hungry. whetherwe arehungry

. Patrons how mary peoplearein therestauranfvaluesare N one, Some, and F'ull).

. Price: therestaurans pricerange($, $$, $$%).

. Raining whetherit is rainingoutside.

. Reservationwhetherwe madea resenation.

. Type thekind of restauran{French |talian, Thai, or Burger).

. WaitEstimate thewait estimatedy the host(0—10minutes,10-30,30-60,>60).

The decisiontree usually usedby the first authorfor this domainis shavn in Figure 18.2.
Notice that the tree doesnot usethe Price and T'ype attributes, consideringtheseto be
irrelevant giventhe datait hasseen.Examplesare processedby the tree startingat the root
andfollowing the appropriateébranchuntil a leaf is reached.For instance an examplewith
Patrons= Full and WaitEstimate=0——10 will be classifiedas positve, i.e., yes, we will
wait for atable.

© 0 NO Ol & WD

=
o

Expressvenessof decisiontrees

Logically speakingary particulardecisiontreehypothesidor the WillW ait goalpredicate
canbeseenasanassertiorof theform

Vs WillWait(s) <& (Pi(s)V Pa(s)V---V Py(s))

whereeachcondition P;(s) is a conjunctionof testscorrespondingo a pathfrom theroot of
thetreeto aleaf with positive outcome.Althoughthis lookslike afirst-ordersentenceit is
in asensepropositionabecausédt containgust onevariableandall the predicatesareunary
predicatesThedecisiontreeis really describingarelationshipbetweerVillW ait andsome
logical combinationof attribute values. We cannotusedecisiontreesto representeststhat
referto two or moredifferentobjectsfor example,

Iry Nearby(ra,r) A Price(r,p) A Price(ra, p2) A Cheaper(ps, p)

(is therea cheaperestaurannearby). Obviously, we could add anotherBooleanattribute
with the nameCheaper Restaurant N earby, but it is intractableto addall suchattributes.
Chapterr1 will delve furtherinto the problemof learningin first-orderlogic proper
Decisiontreesare fully expressie within the classof propositionallanguagesthatis,
ary Booleanfunctioncanbe written asa decisiontree. This canbe donetrivially by having

3 Meanwhile the automatedaxi is learningwhetherto wait for the passengers casethey give up waiting for
atableandwantto go onto anotherestaurant.

4 Onemight askwhy thisisn’t the job of thelearningprogram.In fact, it is, but we will not be ableto explain
how it is doneuntil Chapter21.
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PARITY FUNCTION

MAJORITY FUNCTION

eachrow in the truth tablefor the function correspondo a pathin thetree. This would not
necessariljpe a goodway to representhe function, becausdhe truth tableis exponentially
large in the numberof attributes. Clearly, decisiontreescanrepresenmary functionswith
muchsmallertrees.

For somekinds of functions,however, this is areal problem. For example,if thefunc-
tion is the parity function, which returnsl if andonly if aneven numberof inputsare 1,
thenan exponentiallylarge decisiontreewill be needed.lt is alsodifficult to usea decision
treeto represenamajority function, whichreturnsl if morethanhalf of its inputsarel.

In otherwords,decisiontreesaregoodfor somekindsof functions,andbadfor others.
Is thereary kind of representatiothatis efficient for all kinds of functions?Unfortunately
the answeris no. We canshaw thisin a very generalway. Considerthe setof all Boolean
functionsonn attributes.How mary differentfunctionsarein thisset?Thisis justthenumber
of differenttruth tablesthatwe canwrite down, becausehe functionis definedby its truth
table. Thetruth tablehas2™ rows, becauseachinput caseis describedoy n attributes. We
canconsiderthe “answer” columnof the tableasa 2"-bit numberthat definesthe function.
No matterwhatrepresentatiowe usefor functions,someof thefunctions(almostall of them,
in fact)aregoingto requireatleastthis mary bitsto represent.

If it takes2™ bitsto definethefunction,this meanghatthereare22” differentfunctions
onn attributes. This is a scarynumber For example,with just six Booleanattributes,there
are2?’ = 18,446,744,073,709, 551, 616 differentfunctionsto choosefrom. We will need

Patrons?

None Some Full

[Yes| | waitEstimate? |

Alternate?
No Yes No Yes
Reservation? | Fri/Sat? | | Yes | | Alternate?
Yes /\
| Bar? | |Yes| No Yes |Yes| | Raining? |

No Yes No Yes
No No

Figure18.2 A decisiontreefor decidingwhetherto wait for atable.
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TRAINING SET

someingeniousalgorithmsto find consistenhypothese@ suchalarge space.

Inducing decisiontr eesfrom examples

An exampleis describedy thevaluesof theattributesandthe valueof thegoalpredicate A
setof examplesXy, . .., X, for therestaurantiomainis shawvn in Figure18.3. The positive
examplesareoneswherethegoal WillW ait is true (X1, X3, . . .) andnegative examplesare
oneswhereit is false(X3, X5, . . .). Thecompletesetof exampless calledthetraining set

Attributes Goal
Example
Alt | Bar | Fri | Hun| Pat |Price|Rain| Res| Type Est WIIWait

X1 Yes| No| No| Yes| Some| $$$| No | Yes| French | 0-10 Yes
X5 Yes| No| No | Yes| Full $ No | No| Thai | 30-60 No
X3 No| Yes| No| No| Somel $ No | No | Burger | 0-10 Yes
X, Yes| No| Yes| Yes| Full $ Yes| No| Thai | 10-30 Yes
X5 Yes| No| Yes| No| Full | $$$| No | Yes| French| >60 No
Xe No| Yes| No| Yes| Some| $$ | Yes| Yes| ltalian | 0-10 Yes
X5 No| Yes| No| No| None| $ Yes | No | Burger| 0-10 No
Xs No| No| No| Yes| Somel $$ | Yes| Yes| Thai 0-10 Yes
Xy No | Yes| Yes| No | Full $ Yes | No | Burger| >60 No
X0 Yes| Yes| Yes| Yes| Full $$$%| No | Yes| Italian | 10-30 No
X1 No| No| No| No | None $ No | No Thai 0-10 No
Xia Yes| Yes| Yes| Yes| Full $ No | No | Burger | 30-60 Yes
Figure18.3 Exampledor therestaurantiomain.

The problemof finding a decisiontree that agreeswith the training set might seem
difficult, but in factthereis a trivial solution. We could simply constructa decisiontree
thathasone pathto aleaf for eachexample,wherethe pathtestseachattribute in turn and
follows the valuefor the example,andthe leaf hasthe classificationof the example. When
given the sameexampleagain® the decisiontreewill comeup with the right classification.
Unfortunatelyit will nothave muchto sayaboutary othercases!

The problemwith this trivial treeis thatit just memorizeghe obserations. It doesnot
extractary patternfrom the examplesand so we cannotexpectit to be ableto extrapolate
to examplesit hasnot seen. Applying Ockhams razor we shouldfind insteadthe smallest
decisiontreethatis consistenwith the examples. Unfortunately for ary reasonablelefi-
nition of “smallest; finding the smallesttreeis an intractableproblem. With somesimple
heuristics however, we cando a goodjob of finding a smallishone. The basicideabehind
the DECISION-TREE-LEARNING algorithmis to testthe mostimportantattribute first. By
“mostimportant; we meanthe onethatmakesthe mostdifferenceto the classificatiorof an
example. This way, we hopeto getto the correctclassificatiorwith a smallnumberof tests,
meaningthatall pathsin thetreewill beshortandthetreeasawholewill besmall.

5 The sameexampleor an examplewith the samedescription—this distinctionis very importantandwe will
returnto it in Chapter21.
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NOISE

French Burger None Some Full
4 8 3 12 1 3 6 8 4 12
9] 9]

18 e 2 1s e e R
BEHEHEMDM BEHEHEB®M

Patrons?

(@) (b)

Figure18.4 Splittingtheexampledy testingon attributes.(a) Splitting on Typebringsus
no nearetto distinguishingoetweerpositive andnegative examples.(b) Splitting on Patrons
doesa goodjob of separatingpositive and negative examples. After splitting on Patrons
Hungryis afairly goodsecondest.

Figure18.4shavs how the algorithmgetsstarted.We aregiven 12 training examples,

which we classifyinto positive andnegative sets. We thendecidewhich attribute to useas
the first testin thetree. Figure 18.4(a)shaws that Typeis a poor attribute, becauset leaves
uswith four possibleoutcomesgeachof which hasthe samenumberof positive andnegative

examples. On the otherhand, in Figure 18.4(b) we seethat Patrons s a fairly important
attribute, becausdf thevalueis Noneor Somethenwe areleft with examplesetsfor which

we cananswerdefinitively (No and Yes respectiely). If the valueis Full, we areleft with

amixed setof examples.In general afterthefirst attribute testsplits up the examples each
outcomds anew decisiontreelearningproblemin itself, with fewer examplesandonefewer
attribute. Therearefour casego consideffor theserecursive problems:

1.

If therearesomepositive andsomenegative examplesthenchoosehebestattribute to
split them. Figure 18.4(b)shavs Hungry beingusedto split theremainingexamples.

. If all the remainingexamplesare positive (or all negative), thenwe aredone: we can

answerYesor No. Figure18.4(c)shavs examplesof thisin the NoneandSomecases.

. If thereareno exampledetft, it meanghatno suchexamplehasbeenobsered, andwe

returna default valuecalculatedrom the majority classificatiorat the nodes parent.

. If thereareno attributesleft, but both positive andnegative exampleswe have a prob-

lem. It meansthat theseexampleshave exactly the samedescription,but different
classificationsThis happensvhensomeof the dataareincorrect;we saythereis noise
in thedata.lt alsohappensvhenthe attributesdo not give enoughinformationto fully

describethe situation,or whenthe domainis truly nondeterministic.One simpleway
out of the problemis to usea majority vote.

The DECISION-TREE-LEARNING algorithmis shovn in Figure 18.5. The details of the
methodfor CHOOSEATTRIBUTE aregivenin thenext subsection.
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function DECISION-TREE-L EARNING(examplesattributes defaul) returnsadecisiontree
inputs: examplessetof examples
attributes setof attributes
default default valuefor thegoalpredicate

if exampleds emptythen return default
elseif all exampleshave the sameclassificatiorthen return theclassification
elseif attributesis emptythen return MAJORITY-VALUE(example$
else
best— CHOOSE-ATTRIBUTE(attributes example$
tree« anew decisiontreewith roottestbest
for eachvaluey; of bestdo
examples + {elementof exampleswith best = v;}
subtiee< DECISION-TREE-LEARNING(examples, attributes— best
MAJORITY-VALUE(example)
addabranchto treewith labelv; andsubtreesubtiee
end
return tree

Figure18.5 Thedecisiontreelearningalgorithm.

Patrons?

None Some Full

|Yes| | Hungry? |

Fri/Sat?
No Yes

Figure18.6 Thedecisiontreeinducedfrom the 12-exampletraining set.

Thefinal tree producedby the algorithmappliedto the 12-exampledatasetis shavn
in Figure 18.6. Thetreeis distinctly differentfrom the original treeshovn in Figure 18.2,
despitethe fact that the datawere actually generatedrom an agentusingthe original tree.
Onemight concludethatthe learningalgorithmis not doing a very goodjob of learningthe
correctfunction. This would bethewrongconclusionto drav. Thelearningalgorithmlooks
at the examples not at the correctfunction, andin fact, its hypothesigseeFigure 18.6) not
only agreeswith all the examples,but is considerablysimplerthanthe original tree. The
learningalgorithmhasno reasorto includetestsfor Raining and Reservation, becauset
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INFORMATION

canclassifyall the exampleswithout them. It hasalsodetectedan interestingregularity in
thedata(namely thatthefirst authorwill wait for Thaifood on weelends)thatwasnoteven
suspected.

Of course,if we wereto gathermore examples,we might inducea tree moresimilar
to the original. The treein Figure 18.6is boundto make a mistale; for example, it has
never seena casewherethe wait is 0—10minutesbut therestaurants full. For a casewhere
Hungry is false thetreesaysnot to wait, but theauthorwould certainlywait. This raisesan
ohvious question:if the algorithminducesa consistenbut incorrecttreefrom the examples,
how incorrectwill thetreebe?Thenext sectionshavs how to analyzethis experimentally

Choosingattrib ute tests

Theschemausedin decisiontreelearningfor selectingattributesis designedo minimizethe
depthof the final tree. Theideais to pick the attribute that goesasfar as possibletoward
providing an exact classificationof the examples. A perfectattribute dividesthe examples
into setsthatareall positve or all negative. The Patrons attribute is not perfect,but it is
fairly good. A really uselessttribute suchasType leavesthe examplesetswith roughlythe
sameproportionof positive andnegyative examplesastheoriginal set.

All we need,then,is a formal measureof “fairly good” and “really useless’andwe
canimplementthe CHOOSE-ATTRIBUTE function of Figure18.5. The measureshouldhave
its maximumvaluewhenthe attribute is perfectandits minimum value whenthe attribute
is of no useat all. One suitablemeasurds the expectedamountof information provided
by the attribute, wherewe usethetermin the mathematicasensdfirst definedin (Shannon
and Weaver, 1949). To understandhe notion of information, think aboutit as providing
the answerto a question for example,whethera coin will comeup heads.The amountof
informationcontainedn the answerdepend®n ones prior knowledge. The lessyou know,
the moreinformationis provided. Informationtheorymeasuresnformationcontentin bits.
Onebit of informationis enoughto answera yes/noquestionaboutwhich onehasno idea,
suchastheflip of afair coin. In generaljf the possibleanswersy; have probabilitiesP (v;),
thentheinformationcontentl of theactualanswelis givenby

I(P(v1),..., P(va)) = ) _ —P(v;)logy P(v;)
i=1

To checkthis equationfor thetossingof afair coin we get
I(%,%) = —%logQ%— %logQ% =1 bit

If the coin is loadedto give 99% headswe get I (1/100,99/100) = 0.08 bits, andasthe
probability of headgyoesto 1, theinformationof the actualanswergoesto 0.

For decisiontreelearning,the questionthat needsanswerings: for a given example,
whatis the correctclassification?A correctdecisiontreewill answerthis question.An esti-
mateof the probabilitiesof the possibleanswerdeforeary of theattributeshave beentested
is givenby the proportionsof positive andnegative examplesn thetrainingset. Supposehe
training setcontainsp positve examplesandn negative examples. Thenan estimateof the
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informationcontainedn a correctansweris
(555 7#m) =~k loga 3 = ke oga gl

Therestaurantrainingsetin Figure18.3hasp = n = 6, sowe need1 bit of information.

Now ateston a single attribute A will not usuallytell us this muchinformation, but
it will give us someof it. We can measureexactly how much by looking at how much
informationwe still needaftertheattributetest. Any attribute A dividesthetrainingsetE into
subsets, ..., E, accordingo theirvaluesfor A4, where A canhave v distinctvalues.Each
subsetE; hasp; positve examplesandn,; negative examples soif we go alongthatbranch
we will needan additionalI (p;/(p; + ni),ni/(pi +n;)) bits of informationto answerthe
question. A randomexamplehasthesth valuefor theattributewith probability (p; +n;) /(p+
n), soon average aftertestingattribute A, we will need

v
; — Pitni Di i
Remainder(A) = 2 I (pi+ni’ mﬁ—ni)
1=
bits of informationto classifythe example. Theinformation gain from the attribute testis
thedifferencebetweerthe original informationrequiremenaindthe new requirement:
Gain(A) =1 <1%’ 1%) — Remainder(A)
andthe heuristicusedin the CHOOSE-ATTRIBUTE function is just to choosethe attribute
with thelargestgain.
Looking at the attributes Patrons andType andtheir classifyingpower, asshowvn in
Figurel18.4,we have

Gain(Patrons) =1 — [%I(O, 1)+ 5I(1,0) + 31 (%, %)] ~ 0.541 bits

Gain(Type) =1 [ZT (1, 1) + BT (3,3) + 51 (2.2) + 51 (2,2)] = 0bits
In fact, Patrons hasthe highestgain of ary of the attributesandwould be chosenby the
decision-tredearningalgorithmastheroot.

Assessinghe performance of the learning algorithm

A learningalgorithmis goodif it produceshypotheseshatdo a goodjob of predictingthe
classification®f unseerexamples.In Section18.5,we will seehow predictionquality can
be estimatedn adwance. For now, we will look at a methodologyfor assessingrediction
quality afterthefact.

Obviously, apredictionis goodif it turnsoutto betrue,sowe canassesthequality of a
hypothesidy checkingits predictionsagainsthe correctclassificatioroncewe know it. We
dothis on a setof examplesknown asthetest set If we train on all our availableexamples,
thenwe will have to go out andgetsomemoreto teston, sooftenit is more corvenientto
adoptthefollowing methodology:

1. Collectalarge setof examples.
2. Divideit into two disjoint sets:thetraining setandthetestset
3. Apply thelearningalgorithmto thetrainingset,generating hypothesish.
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LEARNING CURVE

PEEKING

4. Measurehe percentagef examplesin thetestsetthatarecorrectlyclassifiedby h.

5. Repeatstepsl to 4 for differentsizesof training setsanddifferentrandomlyselected
trainingsetsof eachsize.

Theresultof thisis a setof datathatcanbe processedo give the averagepredictionquality
asa function of the size of the training set. This canbe plotted on a graph,giving whatis
calledthelearning curve for the algorithmon the particulardomain. Thelearningcurwe for
DEecCISION-TREE-LEARNING with the restauranexamplesis shavn in Figure 18.7. Notice
thatasthetraining setgrows, the predictionquality increases(For this reasonsuchcurves
arealsocalledhappy graphs.) Thisis a goodsignthatthereis indeedsomepatternin the
dataandthelearningalgorithmis pickingit up.

09}

0.7 |

0.6

% correct on test set

0.5

0.4

0 20 40 60 80 100
Training set size

Figure18.7 A learningcurve for the decisiontreealgorithmon 100 randomlygenerated
examplesin therestaurantomain.The graphsummarize20 trials.

Obviously, the learningalgorithmmustnot be allowedto “see” the testdatabeforethe
learnedhypothesids testedon them. Unfortunately it is all too easyto fall into the trap
of peeking atthetestdata. Peekingtypically happenssfollows. A learningalgorithmmay
have various‘knobs” thatcanbetwiddledto tuneits behaior—for example variousdifferent
criteriafor choosingthe next attribute in decisiontreelearning. We generaténypothesesor
variousdifferentsettingsof the knobs,measuraheir performanceon the testset,andreport
the predictionperformancef the besthypothesisAlas, peekinghasoccurred!Thereasors
thatthe hypothesisvasselectedn the basisof its testsetperformancesoinformationabout
thetestsethaslealked into the learningalgorithm. The moral of this taleis thatary process
thatinvolves comparingthe performanceof hypothese®n a testsetmustusea new testset
to measurdhe performancef the hypothesighatis finally selected.In practice this is too
difficult, sopeoplecontinueto run experimentson taintedsetsof examples.
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Noiseand overfitting

We saw earlierthatif therearetwo or moreexampleswith the samedescriptiongin termsof
the attributes)but differentclassificationsthenthe DECISION-TREE-LEARNING algorithm
mustfail to find a decisiontreeconsistentvith all the examples.The solutionwe mentioned
beforeis to have eachleaf nodereporteitherthemajority classificatiorfor its setof examples
or reportthe estimatedprobabilitiesof eachclassificatiorusingtherelative frequenciesThe
formeris appropriatdor an agentthat requiresthe decisiontreeto represena strict logical
function,whereaghelattercanbe usedby a decision-theoretiagent.

Unfortunately this is far from the whole story It is quite possible,andin factlikely,
thateven whenvital informationis missing,the decisiontreelearningalgorithmwill find a
decisiontreethatis consistenwith all the examples.This is becausahe algorithmcanuse
theirrelevantattributes,if ary, to make spuriousdistinctionsamongthe examples.

Considerthe problemof trying to predictthe roll of a die. Supposéahat experiments
are carriedout during an extendedperiod of time with variousdice, andthat the attributes
describingeachtrainingexampleareasfollows:

1. Day. thedayonwhichthedie wasrolled (Mon, Tue,Wed, Thu).
2. Month themonthin whichthedie wasrolled (Janor Feb).
3. Color: thecolor of thedie (Redor Blue).

Aslongastherearenotwo exampleswith identicaldescriptionsDECISION-TREE-LEARNING
will find anexacthypothesisThe moreattributesthereare,themorelikely it is thatanexact
hypothesiswill befound. Any suchhypothesiswill betotally spurious.Whatwe would like
is that DECISION-TREE-LEARNING returna singleleaf nodewith probabilitiescloseto 1/6
for eachroll, onceit hasseenenoughexamples.

Wheneer thereis a large setof possiblehypothesespne hasto be carefulnot to use
the resultingfreedomto find meaninglessregularity” in the data. This problemis called
overfitting . It is avery generaphenomenomndoccursevenwhenthetargetfunctionis not
atall random.It afflicts every kind of learningalgorithm,notjust decisiontrees.

A completemathematicalreatmenbf overfittingis beyondthescopeof thisbook. Here
we presenta simpletechniquecalleddecisiontree pruning. Pruningworks by preventing
recursve splitting on attributesthatarenot clearlyrelevant,evenwhenthedataatthatnodein
thetreeis not uniformly classified.The questionis, how do we detectanirrelevantattribute?

Supposave split asetof exampleausinganirrelevantattribute. Generallyspeakingwe
would expecttheresultingsubsetgo have roughly the sameproportionsof eachclassasthe
original set. In this case theinformationgainwill be closeto zero® Thus,theinformation
gainis agoodclueto irrelevance.Now the questionis, how large againshouldwe requirein
orderto split on a particularattribute?

We cananswerthis usinga statisticalsignificancetest Suchatestbeginsby assuming
thatthereis no underlyingpattern(the so-callednull hypothesig. Thenthe actualdataare
analyzedo calculatethe extentto which it deviatesfrom a perfectabsencef pattern.If the
dagreeof deviation is statisticallyunlikely (usuallytakento meana 5% probability or less),

6 In fact,thegainbewill begreatethanzerounlessthe proportionsareall exactly thesame(seeExercisel8.9).
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X2 PRUNING

CROSS-VALIDATION

thenthatis consideredo be good evidencefor the presenceof a significantpatternin the
data. The probabilitiesare calculatedrom standardlistributions of the amountof deviation
onewould expectto seedueto randomsampling.

In this casethe null hypothesiss thattheattributeis irrelevant,andhencetheinforma-
tion gainfor aninfinitely large samplewould be zero. We needto calculatethe probability
that,underthe null hypothesisa sampleof sizev would exhibit the obsered deviation from
theexpecteddistribution of positve andnegative examples.We canmeasureéhedeviation by
comparingheactualnumberf positive andneggative examplesin eachsubsetp; andn;, to

theexpectedhumbergs; and7,; assumingrueirrelevance:
Di + 1y A pi + 1y
— n; =N X ———
p+n p+n

A cornvenientmeasuref thetotal deviationis given by

Pi=p X

D i (pi _Aﬁi)Z L (na - i)?

im1 bi T

Underthe null hypothesisthe value of D is distributed accordingto the x? (chi-squared)
distribution with v — 1 degreesof freedom. The probability that the attribute is really ir-
relevant can be calculatedwith the help of standardx2 tables,or with statisticalsoftware.
Exercisel8.10asksyou to make the appropriatechangeso DECISION-TREE-LEARNING to
implementthis form of pruning,whichis known asy? pruning.

With pruning,noisecanbetolerated—classificatioarrorsgive alinearincreasen pre-
diction error, whereaserrorsin the descriptionsof exampleshave an asymptoticeffect that
getsworseasthe tree shrinksdown to smallersets. Treesconstructedwith pruning per
form significantlybetterthantreesconstructedvithout pruningwhenthedatacontainalarge
amountof noise.The prunedtreesareoftenmuchsmallerandhenceeasierto understand.

Cross-alidation is anotherttechniguethatreducesverfitting. It canbe appliedto any
learningalgorithm,notjusttrees.Thebasicideais to estimatehow well eachhypothesiwill
predictunseerdata.This is doneby settingasidesomefractionof theknown data,andusing
it to testthe predictionperformancef a hypothesisnducedfrom theremainingdata. K -fold
cross-alidationmeanghatyou run k experimentsgeachtime settingasidea different1 /& of
the data,andaveragethe results. Popularvaluesfor k£ are5 and10. Theextremeis k = n,
alsoknown asleave-one-outcross-alidation. Cross-alidation canbe usedin conjunction
with ary tree-constructiormethod(including pruning)in orderto selecta tree with good
predictionperformance.To avoid peeking,we mustthen measurehis performancewith a
new testset.

Broadeningthe applicability of decisiontrees

In orderto extenddecisiontreeinductionto a wider variety of problemsa numberof issues
mustbeaddressedWe will briefly mentioneach suggestinghata full understandings best
obtainedby doingthe associatedxercises:

{ Missing data: In mary domains,not all the attribute valueswill be known for every
example. The valuesmay not have beenrecorded,or they may be too expensve to

(© 2002 by Russell and Norvig. DRAFT---DO NOT DI STRI BUTE



Sectionl18.4.

Ensembldearning 667

GAIN RATIO

SPLIT POINT

REGRESSION TREE

obtain. This givesrise to two problems. First, given a completedecisiontree, how
shouldone classify an objectthat is missingone of the testattributes? Secondhow
shouldone modify the informationgain formulawhensomeexampleshave unknavn
valuesfor theattribute? Thesequestionsareaddresseth Exercisel8.11.

Multi valued attrib utesWhenan attribute hasa large numberof possiblevalues,the
informationgainmeasurayivesaninappropriaténdicationof theattribute's usefulness.
Considethe extremecasewhereevery examplehasa differentvaluefor theattribute—
for instancejf we wereto useanattribute Restaurant N ame in therestaurantiomain.
In sucha case gachsubsebf exampleds a singletonandthereforehasa uniqueclassi-
fication,sotheinformationgainmeasuravould have its highestvaluefor this attribute.
However, the attribute may beirrelevant or uselessOnepossiblesolutionis to usethe
gainratio, asdescribedn Exercisel8.12.

Continuous and integer-valued input attrib utes Continuousor integervalued at-
tributessuchas Height and Weight have an infinite setof possiblevalues. Rather
thangeneratenfinitely mary branchesgecision-tredearningalgorithmstypically find
the split point thatgivesthe highestinformationgain. For example,at a givennodein
thetree,it may bethe casethattestingon Weight > 160 givesthe mostinformation.
Efficientdynamicprogrammingmethodsexist for finding goodsplit points,but it is still
by far the mostexpensve partof real-world decisiontreelearningapplications.
Continuous-valued output attrib utes If we aretrying to predicta numericalvalue,
suchasthe price of an artwork, ratherthan a discreteclassification thenwe needa
regressiontree Sucha tree hasat eachleaf a linear function of somesubsetof nu-
mericalattributes,ratherthana singlevalue. For example,the branchfor hand-colored
engraings might endwith a linear function of area,age,andnumberof colors. The
learningalgorithmmustdecidewhento stopsplitting andapplylinearregressiorusing
theremainingattributes(or somesubsethereof).

A decision-tredearning systemfor real-world applicationsmust be able to handleall of
theseproblems.Handlingcontinuous-aluedvariablesis especiallyimportant,becausdoth
physicalandfinancialprocesseprovide numericaldata. Several commercialpackagehave
beenbuilt thatmeetthesecriteria,andthey have beenusedto developsereralhundredielded
systemsln mary areasof industryandcommercegdecisiontreesareusuallythefirst method
tried whena classificatiormethodis to be extractedfrom a dataset. Oneimportantproperty
of decisiontreesis thatit is possiblefor a humanto understandhe outputof the learning
algorithm. (Indeed thisis alegal requiementfor financialdecisionghataresubjectto anti-
discriminationlaws.) Thisis a propertynot sharedy neuralnetworks,which arealsowidely
used(seeChapterl9).

18.4 ENSEMBLE LEARNING

ENSEMBLE
LEARNING

So far we have looked at learning methodsin which a single hypothesis,chosenfrom a
hypothesispacejs usedto make predictions.Theideaof ensemblelearning methodss to
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Figure18.8 lllustrationof theincreaseaxpressve power obtainecby ensembldearning.
We take threelinear thresholdhypotheseseachof which classifiespositively on the non-
shadedside, and classify as positive ary example classifiedpositively by all three. The
resultingtriangularregionis a hypothesisiot expressibldan the original hypothesispace.

selectawholecollection,or ensemble of hypothesefrom thehypothesispaceandcombine
their predictions.For example ,we mightgenerate hundreddifferentdecisiontreesfrom the
sametraining setandhave themvote on the bestclassificatiorfor a new example.

The motivation for ensembldearningis simple. Consideran ensembleof M =5 hy-
pothesesandsupposéhatwe combinetheir predictionsusingsimplemajority voting. For the
ensembldéo misclassifya nev example,at leastthreeof thefive hypothesekhaveto misclas-
sifyit. Thehopeis thatthisis muchlesslik ely thana misclassificatiorby asinglehypothesis.
Supposeave assumehat eachhypothesish; in the ensembléhasan error of p—thatis, the
probabilitythata randomlychoserexampleis misclassifiedy h; is p. Furthermoresuppose
we assumehattheerrorsmadeby eachhypothesisareindependentin thatcasejf p is small
thenthe probability of a large numberof misclassification®ccurringis minuscule.For ex-
ample,asimplecalculation(Exercisel8.13)shavs thatusinganensemblef five hypotheses
reducesanerrorrateof onein tendown to anerrorrateof lessthanonein a hundred.Now,
ohviously the assumptiorof independences unreasonabldyecausédnypothesesgrelikely to
be misledin the sameway by ary misleadingaspectof the training data. In the extreme
casewhereall thehypothesem theensembleareidentical,nothingis gained.If we canfind
a way to make the hypothesest leasta little bit different,therebyreducingthe correlation
betweertheir errors,thenensembldearningshouldstill be very useful.

Anotherway to think aboutthe ensemblddeais asa genericway of enlaging the
hypothesispace Thatis, think of theensemblétself asa hypothesisandthenew hypothesis
spaceasthesetof all possibleensemblesonstructibldrom hypothese theoriginal space.
Figure18.8 shawvs how this canresultin a moreexpressie hypothesispace.lf theoriginal
hypothesisspaceallows for a simple and efficient learning algorithm, then the ensemble
methodprovidesawayto learnamuchmoreexpressie classof hypotheseswithoutincurring
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muchadditionalcomputationabr algorithmiccompleity.

Themostwidely usedensembleénethods calledboosting To understandhow it works,
we needfirst to explain the idea of a weighted training set In sucha training set, each
examplehasanassociatedveightw; > 0, suchthatthe sumof the weightsis 1. Th higher
theweightof anexample thehighertheimportanceattachedo it whenlearninga hypothesis.
It is straightforvard to modify the learningalgorithmswe have seenso far to operatewith
weightedtraining sets’

Boostingstartswith w; = 1 for all the examples,i.e., a normaltraining set. Fromthis
set, it generateshe first hypothesish;. This hypothesiswill classifysomeof the training
examplescorrectlyandsomeincorrectly We would like the next hypothesigo do betteron
the misclassifiedexamplessowe increaseheir weightswhile decreasinghe weightsof the
correctlyclassifiedexamples.From this new, weightedtraining set,we generateéhypothesis
hs. The processontinuesin this way until we have generatedf hypotheseswhere M is
an input to the boostingalgorithm. The final ensembléhypothesiss a weighted-majority
combinationof all the M hypothesesyhereeachis weightedaccordingto how well it per
formedon thetraining set. Figure 18.9shavs how the algorithmworks conceptually There
are mary variantsof the basicboostingidea with differentways of adjustingthe weights
andcombiningthe hypothesesOnespecificalgorithm,called ADABOOST, is shawvn in Fig-
ure18.10.While thedetailsof theweightadjustmentgarenotsoimportant, ADABOOST does
have a very importantproperty: provided theinput learningalgorithmL is a weak learning
algorithm—whichmeanghatL alwaysreturnsa hypothesisvith weightederrorgreatetthan
1/2—ApaBoosT will returnahypothesighatclassifieghetraining dataperfectlyfor large
enoughM . Thus,thealgorithmboostshe accurag of theoriginal learningalgorithmonthe
trainingdata. This resultholdsno matterhow inexpressie the original hypothesispaceand
no matterhow complex thefunctionbeinglearned.

Letusseehow well boostingdoesontherestaurantlata.We will chooseasour original
hypothesispacehe classof decisionstumps, which aredecisiontreeswith just onetestat
theroot. Thelowercurwein Figurel8.11(a)havsthatdecisionstumpsarenotvery effective
for this dataset, reachinga peakpredictionperformanceof only 72%. When boostingis
appliedwith M = 100, the performancés muchbetter reaching®0%afteronly 58 examples.

An interestingthing happensasthe ensemblesize M increaseskFigure18.11(b)shavs
thetrainingseterror (on 60 examples)asa functionof M. Noticethatthe errorreachezero
(astheboostingtheorentells us)whenM is 27; thatis, a weighted-majorit}combinationof
27 decisionstumpssuficesto fit the 60 examplesexactly. As morestumpsareaddedto the
ensemblethe errorremainsat zero. The graphalsoshavs thatthetestseterror continuego
deceasdongafterthetraining seterror hasreadedzen. Thisfinding, whichis quiterobust
acrossdatasetsand hypothesisspacescameas quite a surprisewhenit wasfirst noticed.
Ockhams razortells us not to make hypothesesnorecomplex thannecessarybut the graph
tells usthatthe predictionsimprove asthe ensembldiypothesiggetsmorecomple! Various
explanationshave beenproposedor this; oneview is thatboostingapproximate8ayesian

7 For learningalgorithmswherethis is not possible onecaninsteadcreatea replicatedtraining setwherethe
ith exampleappearsy; times,usingrandomizatiorto handlefractionalweights.
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Figure 18.9 How the boostingalgorithmworks. Eachshadedrectanglecorrespondso
an example;the heightof the rectanglecorrespondso the weight. The ticks and crosses
indicatewhetherthe examplewasclassifiedcorrectlyby the currenthypothesis The size of
thedecisiontreeindicateghe weightof thathypothesisn thefinal ensemble.

function AbABooOsT(examplesl., M) returns aweighted-majorityhypothesis
inputs: examplessetof N labelledexamples(z1,y1), ..., (N, yN)
L, alearningalgorithm
M, the numberof hypothese# theensemble
local variables: w, avectorof N exampleweights,initially 1/N
h, avectorof M hypotheses
z, avectorof M hypothesiaveights

for m=1to M do
h[m] < L(examplesw)
error <0
forj=1toNdo
if h[m[(z;) # y; thenerror <—error + wij]
forj=1toNdo
if h[m|(z;) = y; then w[j] < w[j] - error/(1 — error)
W <~ NORMALIZE(W)
z[m] « log (1 — error)/error
return WEIGHTED-MAJORITY (h, 2)

Figure18.10 TheADABOOST variantof theboostingmethodfor ensembldearning.The
function WEIGHTED-MAJORITY generates hypothesighat returnsthe outputvalue with
the highestvote from the hypothese# h, with votesweightedby z.
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(@) (b)

Figure18.11 (a)Graphshavingtheperformancef boostedlecisionstumpgvs.decision
stumps)ntherestaurantata.(b) Thetrainingseterrorandtestseterrorasafunctionof M,
thenumberof hypothesei theensemble.

learning (seeChapterl9), which canbe shavn to be anoptimallearningalgorithm,andthe
approximationmprovesasmorehypotheseareadded.

18.5 WHY LEARNING WORKS: COMPUTATIONAL LEARNING THEORY

COMPUTATIONAL
LEARNING THEORY

&

PROBABLY
APPROXIMATELY
CORRECT

PAC-LEARNING

STATIONARITY

The mainunansweredjuestionposedin Section18.2wasthis: how canonepossiblyknow
thatones learningalgorithmhasproduceda theorythatwill correctlypredictthefuture?In
termsof the definition of inductive learning,how do we know thatthe hypothesish is close
to thetamgetfunction f if we don't know what f is? Thesequestionshave beenponderedor
severalcenturiesput unlesswe find someanswersmachindearningwill, atbest,bepuzzled
by its own success.

Theapproachakenin this sectionis basedon computational learning theory, afield
attheintersectiorof Al, statisticsandtheoreticacomputeiscience Theunderlyingprinciple
is thefollowing: any hypothesighatis seriouslywrongwill almostcertainly be “found out”
with high probability aftera smallnumberof examplespecausét will male anincorrectpre-
diction. Thus,any hypothesighatis consistentvith a suficiently large setof training exam-
plesis unlikely to beseriouslywrong—thais, it mustbe probably approximately correct. An
algorithmthat returnsprobablyapproximatelycorrecthypothesess calleda PAC-learning
algorithm.

Thereare somesubtletiesin the precedingagument. The main questionis the con-
nectionbetweenthe training andthe testexamples—atfteall, we wantthe hypothesido be
approximatelycorrecton thetestset,not just on thetrainingset. The key assumptioris that
thetrainingandtestsetsaredravn randomlyfrom the samepopulationof examplesusingthe
sameprobability distribution. Thisis calledthestationarity assumptionWithoutthestation-
arity assumptionthetheorycanmale no claimsat all aboutthe future becauseherewould
beno necessargonnectiorbetweerfuture andpast. The stationarityassumptiommountgo
supposinghatthe procesghat selectsexamplesis not malevolent. Obviously, if the train-
ing setconsistednly of weird examples—tw-headediogs,for instance—thethelearning
algorithmcannothelp but make unsuccessfujeneralizationabouthow to recognizedogs.
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How many examplesare needed?

In orderto puttheseinsightsinto practice we will needsomenotation:

Let X bethesetof all possibleexamples.

Let D bethedistribution from which examplesaredravn.
Let H bethesetof possiblehypotheses.

Let N bethenumberof examplesin thetrainingset.

Initially, we will assumehatthe truefunction f is amemberof H. Now we candefinethe
error of a hypothesish with respectto the true function f given a distribution D over the
examplesasthe probabilitythath is differentfrom f onanexample:

error(h) = P(h(z) # f(z)|z dravn from D)

Thisis thesamequantitybeingmeasured@xperimentallyby thelearningcurvesshovn earlier

A hypothesig: is calledapproximately correctif erro(h) < €, wheree is asmallcon-
stant. The plan of attackis to shav that after seeinglV examples,with high probability all
consistenhypothesesvill beapproximatelycorrect.Onecanthink of anapproximatelycor
recthypothesisasbeing“close” to thetrue functionin hypothesispace—ities insidewhat
is calledthe e-ball aroundthetruefunction f. Figure 18.12shaws the setof all hypotheses
H, dividedinto thee-ball aroundf andtheremainderwhich we call Hpag.

H

Hpad

Figure 18.12 Schematiadiagramof hypothesisspace,shaving the “e-ball” aroundthe
truefunction f.

We can calculatethe probability that a “seriously wrong” hypothesish, € Hpaqg is
consistentwith the first N examplesasfollows. We know that error(h;) > €. Thus,the
probabilitythatit agreeswith ary givenexampleis < (1 — €¢). Theboundfor N examplesis

P(hy agreesvith N exampleg < (1 — €)™
The probability that H,54 coOntainsat leastone consistentiypothesiss boundedby the sum
of theindividual probabilities:

P(Hpag containsa consistenhypothesi$ < [Hpad (1 — €)Y < [H|(1 — ¢)V
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wherewe have usedthe factthat|Hpad < |H|. We would like to reducethe probability of
this eventbelov somesmallnumbers:

[H|(1 - 6)56
Giventhatl — ¢ < e™¢, we canachieve this if we allow the algorithmto see

N>1 (m% + 1n|H|) (18.1)
€

examples.Thus,if alearningalgorithmreturnsa hypothesighatis consistenwith this mary
examples,thenwith probability at leastl — 4, it haserrorat moste. In otherwords, it is
probablyapproximatelycorrect. The numberof requiredexamples asa functionof € andd,
is calledthe samplecomplexity of the hypothesispace.

It appearsthen,thatthe key questionis the size of the hypothesisspace.As we saw
earlier if H is the setof all Booleanfunctionson n attributes,then|H| = 22" Thus,the
samplecompl«ity of the spacegrows as2™. Becausdhe numberof possibleexamplesis
also2™, this saysthatary learningalgorithmfor thespaceof all Booleanfunctionswill dono
betterthanalookuptable,if it merelyreturnsa hypothesighatis consistenwith all knovn
examples.Anotherway to seethis is to obsere thatfor any unseerexample,the hypothesis
spacewill containasmary consistenhypothesegredictinga positive outcomeaspredicta
negative outcome.

Thedilemmaweface then,isthatunlessverestrictthespaceof functionsthealgorithm
canconsiderit will not be ableto learn;but if we do restrictthe spacewe may eliminate
the true function altogether Therearetwo waysto “escape”this dilemma. The first way is
to insistthatthe algorithmreturnsnot justary consistenthypothesisbut preferablya simple
one (asis donein decisiontree learning). The theoreticalanalysisof suchalgorithmsis
beyond the scopeof this book, but in caseswherefinding simple consistenthypothesess
tractable the samplecompl«ity resultsaregenerallybetterthanfor analysesasedonly on
consisteng. The secondescapewhich we pursuehere,is to focuson learnablesubsetof
the entire setof Booleanfunctions. The ideais thatin mostcasesve do not needthe full
expressie power of Booleanfunctions,andcanget by with morerestrictedanguagesWe
now examineonesuchrestrictedanguagén moredetail.

Learning decisionlists

A decisionlist is alogical expressiorof arestrictedform. It consistof aseriesof tests,each
of whichis aconjunctionof literals. If atestsucceedwrhenappliedto anexampledescription,
thedecisionlist specifieghe valueto bereturned.If thetestfails, processingontinueswith

the next testin thelist.8 Decisionlists resembledecisiontrees,but their overall structureis

simpler whereaghe individual testsare morecomple. Figure 18.13shavs a decisionlist

thatrepresentshefollowing hypothesis:

Vo WillWait(x) < Patrons(z,Some) V (Patrons(z, Full) A Fri/Sat(z))

If weallow testsof arbitrarysize,thendecisionlists canrepresenary Booleanfunction
(Exercisel8.14). On the otherhand,if we restrictthe size of eachtestto at mostk literals,

8 A decisionlist is thereforeidenticalin structureto a COND statemenin Lisp.
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k-DL
k-DT

No No
|Patrons(x,Somej—>| Patrons(x,Full) A Fri/Sat(x) I——W
Yes Ye

S

A
e ey
:\‘\iﬁ %&&

Figure18.13 A decisionlist for therestauranproblem.

thenit is possiblefor the learningalgorithmto generalizesuccessfullyfrom a smallnumber
of examples.We call thislanguagé:-pL. Theexamplein Figure18.13isin 2-DL. It is easyto
shav (Exercisel8.14)thatk-oL includesasasubsethelanguagée:-pT, the setof all decision
treesof depthat mostk. It is importantto remembethatthe particularlanguagereferredto
by k-oL dependon the attributesusedto describethe examples. We will usethe notation
k-oL(n) to denotea k-pL languageausingn Booleanattributes.

Thefirst taskis to shav that £-pL is learnable—thats, any functionin k-bL canbe
accuratelapproximatedfterseeingareasonablaumberof examples.To dothis,weneedo
calculatethe numberof hypothesei thelanguageLet the languageof tests—conjunctions
of atmostk literalsusingn attributes—beC'onj(n, k). Becausedecisionlist is constructed
of tests,andeachtestcanbeattachedo eitheraYes or a No outcomeor canbeabsenfrom
the decisionlist, thereareat most3/¢oni (k)| distinctsetsof componentests.Eachof these
setsof testscanbein ary ordef so

|k-L(n)| < 319K | Conj(n, k))!
Thenumberof conjunctionsof & literalsfrom n attributesis givenby

k

2n

|Conj(n, k)| = ( ) = O(n")

Hence aftersomework, we obtain
|k-oL(n)| = 9O(n* logy(n*))

We canplug this into Equation(18.1)to shawv thatthe numberof examplesneededor PAC-
learninga k-pL functionis polynomialin n:

m > E (ln% + O(nF logQ(nk))>
€

Thereforeary algorithmthatreturnsa consistentlecisionlist will PAC-learna k-pL function
in areasonablaumberof examplesfor smallk.

The next taskis to find an efficient algorithm that returnsa consistentdecisionlist.
We will usea greedyalgorithm called DECISION-LIST-LEARNING thatrepeatedlyfinds a
testthat agreesexactly with somesubsetof the training set. Onceit finds sucha test, it
addsit to the decisionlist underconstructionandremoresthe correspondingxamples. It
thenconstructdhe remainderof the decisionlist usingjust the remainingexamples.This is
repeatedintil thereareno exampledeft. Thealgorithmis shavn in Figure18.14.

This algorithm doesnot specify the methodfor selectingthe next testto addto the
decisionlist. Althoughtheformalresultsgivenearlierdonotdependntheselectiormethod,
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IDENTIFICATION IN
THE LIMIT

function DECISION-LIST-LEARNING(example} returnsadecisionlist, or failure

if exampleds emptythen return thetrivial decisionlist No
t + atestthatmatchesa nonemptysubseexampleg of examples
suchthatthe memberof exampleg areall positive or all negative
if thereis no sucht then return failure
if theexamplesin exampleg arepositve then o+ Yeselseo < No
return adecisionlist with initial testt andoutcomeo andremainingtestsgivenby
DECISION-LIST-LEARNING(examples— examplesg)

Figure18.14 An algorithmfor learningdecisionlists.

% correct on test set

0.4

0 20 40 60 80 100
Training set size

Figure18.15 Learningcurvefor DECISION-LIST-LEARNING algorithmontherestaurant
data.Thecurvefor DECISION-TREE-LEARNING is shavn for comparison.

it would seemreasonableo prefersmall teststhat matchlarge setsof uniformly classified
examplessothattheoveralldecisiorlist will beascompactispossible. Thesimpleststrategy
isto find thesmallestestt thatmatchesry uniformly classifiedsubsetregardlesf thesize
of thesubsetEventhis approactworks quitewell, asFigure18.15suggests.

Discussion

Computationalearningtheoryhasgenerate@new way of looking attheproblemof learning.
In the early 1960s,the theory of learningfocussedon the problemof identification in the

limit. An identificationalgorithm must return a hypothesisthat exactly matchesthe true
function. Oneway to do this is asfollows. First, orderall the hypothesesn H according
to somemeasuref simplicity. Then,choosethe simplesthypothesiconsistentvith all the
examplessofar. As new examplesarrive, this methodwill abandora simplerhypothesighat
is invalidatedand adopta more complex oneinstead. Onceit reacheghe true function, it

will never abandorit. Unfortunately in mary hypothesisspacesthe numberof examples
andthe computationtime requiredto reachthe true function are enormous.Computational
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learningtheorydoesnot insist that the learningagentfind the “one true law” governingits
environment,but insteadthatit find ahypothesisith a certaindegreeof predictive accurag.
It alsobringssharplyinto focusthe trade-of betweenthe expressienessof the hypothesis
languageandthe compleity of learning.

The PAC-learningresultswe have shavn areworst-caseomplity results,anddo not
necessarilyeflectthe average-caseamplecompl«ity as measuredy the learningcurves
we have shavn. An average-casanalysismustalsomake assumptionsisto thedistribution
of examplesandthe distribution of true functionsthat the algorithmwill have to learn. As
theseissueshecomebetterunderstoodcomputationalearningtheoryis providing valuable
guidanceto machinelearningresearchers/ho areinterestedn predictingor modifying the
learningability of their algorithms.Besidesdecisionlists, resultshave beenobtainedfor al-
mostall known subclassesf Booleanfunctions for neuralnetworks (seeChapterl9) andfor
setsof first-orderlogical sentenceéseeChapter21). Theresultsshawv thatthe pureinductive
learningproblem,wherethe agentbeginswith no prior knowvledgeaboutthetargetfunction,
is generallyvery hard. As we shav in Chapter21,theuseof prior knowledgeto guideinduc-
tive learningmalesit possibleto learnquitelarge setsof sentencefrom reasonabl@umbers
of examplesgvenin alanguageasexpressie asfirst-orderlogic.

18.6 SUMMARY

Thischaptetasconcentratedninductive learningof deterministidunctionsfrom examples.
Themainpointswereasfollows:

e Learningtakesmary forms, dependingon the natureof the performanceelementthe
componento beimproved,andthe availablefeedback.

¢ If the availablefeedbackgitherfrom ateacheror from the ervironment,providesthe
correctvalue for the examples,the learningproblemis called supervised learning.
The task, also called inductive learning, is thento learna function from examples
of its inputsandoutputs. Learninga discrete-aluedfunctionis called classification
learninga continuougfunctionis calledregression

¢ Inductive learninginvolves finding a consistenthypothesisthat agreeswith the ex-
amples. Ockham’s razor suggestchoosingthe simplestconsistenthypothesis.The
difficulty of thistaskdepend®nthechoserrepresentation.

¢ Decisiontreescanrepresentll Booleanfunctions. The information gain heuristic
providesan efficient methodfor finding a simple,consistentiecisiontree.

e Theperformanceof inductive learningalgorithmsis measuredy the learning curve,
which shaws the predictionaccurag on the test set as a function of the size of the
training set

¢ Computational learning theory analyzeshe samplecompleity and computational
compleity of inductive learning.Thereis atrade-of betweerthe expressienesof the
hypothesidanguageandthe easeof learning.
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

Chapterl outlinedthehistoryof philosophicainvestigationsnto inductive learning.William
of Ockham(c. 1285-1349)the mostinfluential philosopherof his centuryanda majorcon-
tributerto medieval epistemologylogic, andmetaphysicsis creditedwith a statementalled
“Ockhams Razor"—inLatin, Entia nonsuntmultiplicandapraeternecessitatepandin En-
glish, “Entities arenot to be multiplied without necessity Unfortunatelythislaudablepiece
of adviceis nowhereto befoundin hiswritingsin preciselythesewords.

EPAM, the “ElementaryPercever And Memorizer” (Feigenbaum1961), wasone of
the earliestsystemsto usedecisiontrees(or discrimination nets). EPAM was intended
asa cognitive-simulationmodel of humanconceptlearning. CLS (Hunt et al., 1966) used
a heuristiclookaheadmethodto constructdecisiontrees. ID3 (Quinlan, 1979) addedthe
crucialideaof usinginformationcontento provide theheuristicfunction. Informationtheory
itself wasdevelopedby ClaudeShannorto aid in the studyof communication(Shannorand
Weaver, 1949). (Shannoralsocontrituted oneof the earliestexamplesof machinelearning,
a mechanicaimousenamedTheseughat learnedto navigate througha mazeby trial and
error) The x? methodof treepruningwasdescribedy Quinlan(1986).C4.5,anindustrial-
strengthdecisiontree package canbe found in Quinlan (1993). An independentradition
of decisiontreelearningalsoexistsin the statisticalliterature.Classificationand Regression
Trees(Breimanetal., 1984),knowvn asthe“CART book; is theprincipalreference.

Marny other algorithmic approacheso learninghave beentried. The current-best-
hypothesisapproachmaintainsa single hypothesisspecializingit whenit provestoo broad
andgeneralizingt whenit provestoo narrawv. Thisis anold ideain philosophy(Mill, 1843).
Earlywork in cognitive psychologyalsosuggestethatthisis anaturalform of conceptearn-
ing in humangBruneretal., 1957). In Al, theapproachis mostcloselyassociatedvith the
work of Patrick Winston,whosePh.D.thesis(Winston,1970)addressethe problemof learn-
ing description®f complex objects.Theversion spacemethod(Mitchell, 1977,1982)takes
a differentapproachmaintainingthe setof all consistenhypothesesndeliminatingthose
foundto beinconsistentvith new examples.The approactwasusedin the Meta-DENDRAL
expert systemfor chemistry(Buchanarand Mitchell, 1978),andlaterin Mitchell's (1983)
Lex systemwhich learnsto solve calculusproblems.A third influential threadwasformed
by the work of Michalski andcolleaguesn the AQ seriesof algorithms,which learnedsets
of logical rules(Michalski, 1969;Michalskietal., 1986).

Ensembldearningis anincreasinglypopulartechnigueor improving the performance

BAGGING of learningalgorithms.Bagging (Breiman,1996),thefirst effective method worked by gen-
eratingmultiple bootstrap datasetsby subsamplinghe original dataset;thefinal hypothesis
is the majority vote of the hypothesesbtainedfrom the bootstrapdatasets. The boosting
methoddescribedn thechapteroriginatedwith theoreticalwork by Schapirg1999)shaving
thatthepredictionaccurag of aweaklearningalgorithmcouldbeboostedy generatinger-
eralhypothesefrom distinctdatasets.The ADABOOST algorithmwasdevelopedby Freund
and Schapire(1996)andanalyzedheoreticallyby Schapire(1999). Friedmanet al. (2000)
explain boostingfrom a statisticians viewpoint.
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KOLMOGOROV
COMPLEXITY

MINIMUM
DESCRIPTION
LENGTH

UNIFORM
CONVERGENCE
THEORY
VC DIMENSION

SUPPORT VECTOR
MACHINES

KERNEL METHODS

Theoreticahnalysisf learningalgorithmsbeganwith thework of Gold (1967)oniden-
tification in the limit . Thisapproactwasmotivatedin partby modelsof scientificdiscovery
from thephilosophyof sciencgPopper1962),but hasbheenappliedmainly to the problemof
learninggrammargrom examplesentencesOshersonStob,andWeinstein(1986)provide a
modernandrigoroustreatmenbf thefield.

Whereagheidentification-in-the-linit approactconcentratesn eventualcorvemence,
the studyof Kolmogorov complexity or algorithmic complexity, developedindependently
by Solomonof (1964)andKolmogorw (1965),attemptdo provide aformaldefinitionfor the
notion of simplicity usedin Ockhams razor. To escapédhe problemthatsimplicity depends
onthewayin which informationis representedt is proposedhatsimplicity bemeasuredby
the lengthof the shortestprogramfor a universalTuring machinethat correctlyreproduces
the obsered data. Although thereare mary possibleuniversal Turing machinesandhence
mary possible'shortest’programstheseprogramdiffer in lengthby at mosta constanthat
is independenof theamountof data. This beautifulinsight,which essentiallyshavs thatany
initial representatiobiaswill eventuallybeovercomeby thedataitself, is marredonly by the
undecidabilityof computingthelengthof the shortesprogram.Approximatemeasuresuch
astheminimum description length or MDL (Rissanen1984)canbeusedinsteadandhave
producedexcellentresultsin practice. The text by Li andVitanyi (1993)is the bestsource
for Kolmogorao compleity.

Computationalearningtheoryin themodernsensethatis, thetheoryof PAC-learning,
wasinauguratedoy Leslie Valiant (1984). Valiant's work stressedhe importanceof com-
putationalaswell assamplecomplity. With Michael Kearns(1990), Valiant shoved that
several conceptclassesannotbe PAC-learnedractablyeven thoughsuficient information
is available in the examples. Somepositive resultshave beenobtainedfor classesuchas
decisionlists (Rivest,1987).

An independentraditionof samplecompleity analysishasexistedin statistics pegin-
ning with thework on uniform cornvergencetheory (VapnikandChenonenkis, 1971). The
so-calledvC dimensionpravidesameasureoughlyanalogouso, but moregenerathan,the
In |H| measurebtainedrom PAC analysis.TheVC dimensioncanbeappliedto continuous
function classesto which standardPAC analysisdoesnot apply PAC-learningtheoryand
VC theorywerefirst connectedy the“four Germans’{noneof whomareactuallyGerman):
Blumer, EhrenfeuchtHausslerandWarmuth(1989). Subsequendevelopmentsn VC the-
ory led to the invention of support vector machinesor SVMs (Cortesand Vapnik, 1995),
later subsumedinderthe headingof kernel methods This is an extremelyactive research
areaandhasprovided effective methodgor severallarge-scaleapplications.Cristianiniand
Shawve-Taylor (2000)andSchollopf andSmola(2002)provide thoroughintroductions.

A large numberof importantpaperson machinelearninghave beencollectedin Read-
ingsin Machine Learning(Shavlik andDietterich,1990). Thetwo volumesMachine Learn-
ing 1 (Michalski etal., 1983)andMachine Learning2 (Michalski et al., 1986)alsocontain
mary importantpapersaswell ashugebibliographies. Weissand Kulikowski (1991) pro-
vide a broadintroductionto function-learningnethodfrom machindearning statisticsand
neuralnetworks. The STATLOG project(Michie etal., 1994)is by far the mostexhaustve
investigationinto thecomparatre performancef learningalgorithms.Goodcurrentresearch
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in machindearningis publishedn theannualproceedingsf thelnternationalConferencen
MachinelLearningandthe Neural Information Processingsystemsconferencein Machine
Learning andthe Journal of Machine Learning Reseath, andin mainstreamAl journals.
Work in computationalearningtheoryalsoappearsn the annualACM Workshopon Com-
putationalLearning Theory (COLT), andis describedn the texts by Kearnsand Vazirani
(1994)andAnthory andBartlett(1999).

EXERCISES

CLASS PROBABILITY

18.1 Considertheproblemfacedby aninfantlearningto speakandunderstané language.
Explainhow this procesdits into the generalearningmodel,identifying eachof the compo-
nentsof the modelasappropriate.

18.2 RepeatExercisel8.1for the caseof learningto play tennis(or someothercompeti-
tive sportwith which you arefamiliar). Is this supervisedearningor reinforcementearn-
ing?

18.3 Draw adecisiontreefor the problemof decidingwhetheror notto move forwardat a
roadintersectiorgiventhatthelight hasjustturnedgreen.

18.4 Wenevertestthesamaattributetwicealongonepathin adecisiorntree. Why not?

18.5 Supposeave generate training setfrom a decisiontreeandthenapply decision-tree
learningto thattraining set. Is it the casethatthe learningalgorithmwill eventuallyreturn
the correcttreeasthetraining setsizegoesto infinity? Why, or why not?

18.6 A good“straw man” learningalgorithmis asfollows: createa table out of all the
training examples.Determinewhich outputoccursmostoftenamongthetraining examples;
callit d. Thenwhengivenaninputthatis notin thetable,justreturnd. For inputsthatare
in thetable,returnthe outputassociatedvith it (or the mostfrequentoutput,if thereis more
thanone).Implementthis algorithmandseehow well it doeson therestaurantomain.This
shouldgive you anideaof the baselinefor the domain—theminimal performancehatary
algorithmshouldbe ableto obtain.

18.7 Intherecursve constructiorof decisiontrees,it sometime®ccursthata mixed setof
positive andnegative examplesremainsat a leaf node,even afterall the attributeshave been
used.Supposghatwe have p positive examplesandn negative examples.

a. Shaw thatthesolutionusedby DECISION-TREE-LEARNING, which picksthe majority
classificationminimizesthe absolutesrrorover the setof examplesat the leaf.
b. Shaw thattheclassprobability p/(p + n) minimizesthe sumof squarederrors.

18.8 Supposehata learningalgorithmis trying to find a consistentypothesisvhenthe
classification®f examplesareactuallyrandom.Therearen Booleamattributes,andexamples
aredravn uniformly from thesetof 2" possibleexamples.Calculatehe numberof examples
requiredbeforethe probability of finding a contradictionin thedatareache®.5.
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18.9 Supposehatan attribute splits the setof examplesE into subsetst;, andthateach
subsetasp; positive examplesandn; negatve examples.Shav thatunlessheratiop; / (p; +
n;) is thesamefor all 4, theattribute hasstrictly positive informationgain.

18.10 Modify DECISION-TREE-LEARNING to include y2-pruning. You maywish to con-
sultQuinlan(1986)for details.

18.11 ThestandardDECISION-TREE-LEARNING algorithmdescribedn the chapterdoes
not handlecasesn which someexampleshave missingattribute values.

a. First,weneedo find awayto classifysuchexamplesgivenadecisiontreethatincludes
testson the attributesfor which valuesmay be missing. Supposean example X hasa
missingvalue for attribute A, andthatthe decisiontreetestsfor A at a nodethat X
reaches.Oneway to handlethis caseis to pretendthat the examplehasall possible
valuesfor the attribute, but to weight eachvalue accordingto its frequeng amongall
of the examplesthat reachthatnodein the decisiontree. The classificatioralgorithm
shouldfollow all branchestary nodefor which avalueis missing,andshouldmultiply
theweightsalongeachpath. Write amodifiedclassificatioralgorithmfor decisiorntrees
thathasthis behaior.

b. Now modify theinformationgaincalculationsothatin ary givencollectionof examples
C atagivennodein thetreeduringthe constructiorprocessthe exampleswith missing
valuesfor ary of the remainingattributes are given “as—if’ valuesaccordingto the
frequencie®f thosevaluesin thesetC.

18.12 In thechapterwe notedthatattributeswith mary differentpossiblevaluescancause
problemswith the gain measure Suchattributestendto split the examplesinto mary small
classer even singletonclassestherebyappearingo be highly relevant accordingto the
gainmeasureThegain ratio criterionselectsattributesaccordingto the ratio betweertheir
gainandtheir intrinsic information content,thatis, the amountof informationcontainedn
the answerto the question,“What is the value of this attribute?” The gain ratio criterion
thereforetries to measurehow efficiently an attribute provides information on the correct
classificatiorof anexample.Write a mathematicaéxpressiorfor the informationcontentof
anattribute,andimplementthe gainratio criterionin DECISION-TREE-LEARNING.

18.13 Consideran ensembldearningalgorithm that usessimple majority voting among
M learnedhypotheses.Supposehat eachhypothesishaserror e andthat the errorsmade
by eachhypothesisareindependenbf the others’. Calculatea formulafor the error of the
ensemblealgorithmin termsof M ande andevaluateit for the casesvhere M =5, 10, and
20ande =0.1, 0.2,and0.4. If theindependencassumptions removed,is it possiblefor the
ensemblesrrorto beworsethane?

18.14 This exerciseconcernghe expressienesof decisionlists (Sectionl18.5).

a. Shaw thatwith testsof unlimitedsize,decisionlists canrepresenary Booleanfunction.

b. Shaw thatif thetestscancontainatmostk literalseach thendecisionlists canrepresent
ary functionthatcanberepresentetly a decisiontreeof depthk.
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18.15 Suppose/ou arerunningalearningexperimenton a new algorithm.You have adata
set consistingof 25 examplesof eachof 2 classes. You plan to useleave-one-outcross-
validation.As abaselineyou runyour experimentaketupon a simplemajority classifier (A

majority classifieris given a setof training data,andthenalwaysoutputsthe classthatis in

themajority in thetrainingset,regardlesf theinput.) You expectthe majority classifierto

scoreabout50% on leave-one-outcross-alidation, but to your surprise it scoreszero. Can
you explainwhy?
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