Chapter 1

OpenGL and computer graphics

Slide OpenGL:
“OpenGL is the premier environment for developing portabigeractive 2D and 3D graphics applications. Since itouhiction

in 1992, OpenGL has become the industry’s most widely usedsapported 2D and 3D graphics application programming in-
terface (API), bringing thousands of applications to a widgety of computer platforms. OpenGL fosters innovatiod apeeds
application development by incorporating a broad set ofleeing, texture mapping, special effects, and other pawerfual-
ization functions. Developers can leverage the power offGiheacross all popular desktop and workstation platformsugng
wide application deployment.”

www. opengl . org

Slide OpenGL: What can it do?:

e Imaging part: works on pixels, bitmaps
e Geometry part: works on vertices, polygons

e uses a rendering pipeline that starts from data and endsavditsplay device.

Slide OpenGL rendering pipeline:

IMAGING PATH

m Unpack Pixels — Piesl Operations ——* Ing@lasr.enurmn

Display Livts o Tasturs Momory |- = (IR L+ 10 erame sureen .

GEOMETRY PATH
" ¥

W Unpack Vertices —» Verte Operations b= Geomatric Rasterization

Slide OpenGL: More info:

e Application Program Interface based on C-style functidisca
e industry standard: one of several (Java3D, DirectX arersjhe

e stable, reliable and portable

e scalable: low-end PC to supercomputer

¢ well documented and easy to use

Slide OpenGL on Windows and Unix:

| |
| xib | | 6ux | openGL || sou | [woL | opencL |

——-—-
—-—-—-

|
|
|
I
I

e GLU: OpenGL-Extension for complex polygons, curves etc.

Slide The structure of an OpenGL application:

int main(int argc, char** argv)
{
glutlnit(&rgc, argv);
glutlnitD spl ayMde(GLUT_SI NGLE | GLUT_RGB);
gl utlni t WndowSi ze(640, 480) ;
gl ut I ni t WndowPosi ti on(100, 150);
gl ut CreateW ndow("ny_first_attenpt");
gl ut Di spl ayFunc(nyDi spl ay) ;
nmylnit();
gl ut Mai nLoop() ;
return O;

Slide Other Callback Functions:

gl ut Di spl ayFunc(nyDi spl ay) ;
gl ut ReshapeFunc(nyReshape) ;

gl ut MouseFunc(nyMouse) ;

gl ut Keyboar dFunc(myKeyboar d) ;

Slide Draw three points:

voi d nyDi spl ay(voi d)

{
gl d ear (G._COLOR BUFFER BI T);
gl Begi n(G._PQO NTS) ;

gl Vertex2i (100, 50);
gl Vertex2i (100, 130);
gl Vert ex2i (150, 130);
gl End() ;
gl Fl ush();

Slide OpenGL Functions:
gl Vertex2i ()

e gl isthe prefix of all OpenGL function names
e Vert ex is afunction name

e 2i describes the arguments: two integers

Slide OpenGL Datatypes:

GLenum,GLboolean,GLbitfield unsigned datatypes
GLvoid pseudo datatype for pointers and return values
GLbyte,GLshort,GLint 1,2,4-byte signed
GLubyte,GLushort,GLuint 1,2,4-byte unsigned
GLsizei 4-byte signed size datatype

Slide OpenGL Datatypes:

GLfloat single precision float
GLclampf single precision float in [0,1]
GLdouble double precision float

GLclampd double precision float in [0,1]

Slide Drawing Dots:

gl Begi n(GL_PQA NTS) ;
gl Vertex2i (100, 50);
gl Vertex2i (100, 130);
gl Vertex2i (150, 130);
gl End() ;

Slide Drawing a line:

gl Begi n(GL_LI NES) ;
gl Vertex2i (100, 50);
gl Vert ex2i (100, 130);
gl End() ;

Slide Drawing two lines:

gl Begi n(GL_LI NES) ;
gl Vertex2i (10, 20);
gl Vert ex2i (40, 20);
gl Vertex2i (20, 10);
gl Vert ex2i (20, 40);
gl End() ;

Slide Drawing a polyline:

gl Begi n(G_LI NE_STRI P) ;
gl Vertex2i (10, 20);
gl Vert ex2i (40, 20);
gl Vertex2i (20, 10);
gl Vert ex2i (20, 40);
gl End() ;

Slide Drawing a polygon:

gl Begi n(GL_LI NE_LOOP) ;
gl Vertex2i (10, 20);
gl Ver t ex2i (40, 20);
gl Vertex2i (20, 10);
gl Vert ex2i (20, 40);
gl End() ;

Slide Drawing an aligned rectangle:

[gl Recti (x1,y1,x2,y2);

Slide What are those numbers?:

e There is no predefined way of interpreting the coordinates

e OpenGL can work with different coordinate systems

e For OpenGL, we have to define a coordinate system to be used

Slide Colors and a Coordinate System:

void nylnit(void)
{
glCearColor(1.0,1.0,1.0,0.0);
gl Col or 3f (0. Of, 0.0f, 0.0f);
gl Poi nt Si ze(4.0);
gl Matri xMbde(GL_PRQIECTI ON) ;
gl Loadl dentity();
gl uOrtho2D(0.0, 640.0, 0.0, 480.0);

Slide Algorithmic Drawing:

voi d Si erpinski (void){
GLintPoint T[3]= {{10, 10}, {300, 30}, {200, 300}};
int index = random(3);
GLi nt Poi nt point = T[index];
dr awDot (poi nt. x, point.y);
for(int i = 0; i < 4000; i++) {
i ndex = randon(3);
point.x = (point.x + T[index].x) / 2;
point.y = (point.y + T[index].y) / 2;
dr awDot (poi nt. x, poi nt.y);

}
gl Flush();

Chapter 2

CG Basics

Slide Lecture 4:

Coordinate Systems, Viewports, World Windows

Clipping

Relative Drawing

Parameterized Curves

Double Buffering for Animation

Slide Coordinate System:

For now, we have used a simple coordinate system:
x:0...ScreenWidth- 1,y = 0... ScreenHeight- 1

e Incase ScreenWidth or ScreenHeight change, glut can infievia thegl ut ReshapeFunc(nyReshape) ;

We can manually apply eoordinate transformation in order to display arbitrary coordinate
systems.

Or we can have OpenGL do this for us

Slide Some terms:

The space in which objects are described wea$d coordinates.
e The part of this space that we want to display is called d window.
e The window that we see on the screen is dewport.

In order to know where to draw something, we needwbd d-to-viewport transformation
Note that these terms can be used both for 2D and for 3D.

Slide A simple example:

st = Ax+C
sy = DBy+D
Var—=Vli
4 W — Wi
C = Vi-AWlI
Vi—Vb
B Wit —W.b
D = Vb-—bWb

Slide In OpenGL:

voi d set Wndow(float left, float right,
float bottom float top)

{
gl Mat ri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();
gl uOtho2D(l eft, right, bottomtop);
}

void setViewport(int left, int right,
int bottom int top)
{

}

gl Vi ewport(left,bottomright-left,top-botton;

Slide Clipping:

e What happens to parts of the “world” that are outside of thddwwvindow?
Answer: They are not drawn.

How to identify the parts of the world that are to be drawn?
Clipping Lines: identifying the segment of a line to be drawn

Input: the endpoints of a line and a world window
e Output: the new endpoints of the line (if anything is to bendra

Slide Clipping:

e First step: Testing for trivial accept or reject
e Cohen Sutherland Clipping Algorithm
e For each point do four tests, compute 4 bit word:
1. Is P to the left of the world window?
2. Is P above the top of the world window?
3. Is P to the right of the world window?
4. Is P below the bottom of the world window?

Slide Cohen Sutherland:

e Compute tests for both points of the line

e Trivial Accept: all tests false, all bits 0

o Trivial Reject: the words for both points have 1s in the sastjon
e Deal with the rest: neither trivial accept nor reject

Slide The rest:

e |dentify which point is outside and to which side of the windo

e Find the point where the line touches the world window border
e Move the outer point to the border of the window

e repeat all until trivial accept or reject

Slide CLIPSEGMENT(p1, p2, W):

1 while (TRUE) do

20 i (trivial accept)then
3 RETURN 1

4 endif
5:
6
7
8

if (trivial reject)then

RETURNO
end if
. if (plis outside}hen

9: if (plistothe leftthen
10: chop against the left edge of W
11: else
12: if (p is to the rightthen
13: chop against the right edge of W
14: else
15: it (...)then
16: S
17: end if
18: end if
19: end if
20: endit
21: end while

Slide Relative drawing:

e Itis often convenient to draw figures relative to a current pesition

Idea: maintain the current position (CP) a static globaialzde
use two functionsmovVEREL andLINEREL to move/draw relative to CP

implementation is obvious. (or can be found in the book oredE@p)

Slide Application of relative drawing:

e Turtle graphics: originally from the logo programming laage

— logo has been invented at MIT to teach children how to progragngoogle for more
info

e Simple primitives: TURNTO (absolute angle)JrUrN (relative angle)FORWARD (distance,
isVisible)

e Implementation obvious: maintain additional current diien (CD) in a static global variable,
use simple (sin, cos) trigonometry functions FRIKRWARD.

Slide Application of relative drawing: n-gons:

e The vertices of an n-gon lie on a circle
e divide the circle into n equal parts

connect the endpoints of the parts on the circle with lines

using relative drawing, this is very easy to implement
e by connecting every endpoint to every other endpoint, att@san be drawn

Slide relative hexagon:

for (i=0;i<6;i++)
{
forward(L, 1);
turn(60);
}

Slide Circles and Arcs:

e Circles can be approximated with n-gons (with a high
e Arcs are partially drawn circles, instead of dividing thecks, divide the arc

Slide Representing curves:

e Two principle ways of describing a curve: implicitly and paretrically

e Implicitly: Give a functionF' so thatF'(x, y) = 0 for all points of the curve
o Example:F(z,y) = (y — Ay)(Bs — Az) — (z — Az)(By — Ay) (aline)
e Example:F(z,y) = 2% + 3> — R? (acircle)

Slide Implicit form of curves:

e The implicit form is good for testing if a point is on a curve.

e For some cases, we can use the implicit form to define an ‘&@fisidd an “outside” of a curve:
F(z,y) < 0 — inside,F(z,y) > 0 — outside

e some curves argnglevalued inx: F(z,y) =y — g(z) oriny:F(z,y) = = — h(y)
e some curves are neiter, e.g. the circle needs two functieas/R? — 2 andy = —v R? — 2

Slide Parametric form of curves:

e The parametric form of a curve suggests the movement of a fioivugh time.
o Example:z(t) = Az + (Be — A2)ty(t) = Ay + (By — Ay)tt € [0,1]

e Example:z(t) = W cos(t), y(¢t) = H sin(t),t € [0, 27]
e In order to find an implicit form from a parametric form, we case the twar(t) andy(t)
equations to eliminateand find a relationship that holds true for all

o Forthe Ellipse:(&)° + (4)° =1

Slide Drawing parametric curves:

e In order to draw a parametric curve, we have to approximate it
e In order to do that, we chose some valueg ahd sample the functionsandy att;.

e One option is to approximate the function in between witke Begments.

gl Begi n(G._LI NES) ;
for (i=0;i<n;i++)

gl Vertex2f (x(t[i]),y(t[i]));
gl End() ;

Slide Superellipses:

A superellipse is defined by the implicit forn{%)" + (£)" =1

A supercircle is a superellipse withl” = H.
z(t) = W cos(t)| cos(t)?/ 71|
y(t) = H sin(t)| sin(t)*/ "]

Slide Polar coordinate shapes:

e Polar coordinates can be used to draw parametric curves.

e The curve is represented by a distance to the center paintl an anglé.
o z(t) = r(t) cos(0(t)),y(t) = r(t)sin(6(¢)) (general form)

e z(0) = f(0)cos(0),y(t) = f(0)sin(0) (simple form)

e Cardioidf(0) = K(1 + cos(6))

e Rose Curved(6) = K cos(nf)

e Archimedian Spiralf (§) = K6

e Conic sections (0) = 155y

o Logarithmic Spiralf () = Ke*?

Slide 3D parametric curves:

e We can also specify 3d curves using three functiefts, y(t), z(t)

10

Helix: z(¢) = cos(t),y(t) = sin(t), z(t) = bt

Toroidal spiral:

— z(t) = (asin(ct) + b) cos(t)
— y(t) = (asin(ct) + b) sin(t)
— z(t) = acos(ct)

Slide Animation w. double buffering:

When we do a fast animation, the image starts to flicker.
This results from the time it takes to draw the lines.

We can avoid this via double-buffering

in OpenGL, double buffering is simple:

gl ut | ni t Di spl ayMbde(GLUT_DOUBLE| GLUT_RGB) ;
gl ut SwapBuffers();

Slide Lecture 5:

Vectors

Lines and Planes in 3D space

affine representation

the dot product and the cross product
homogenous representations

intersection and clipping

Slide Vectors:

We all remember what vectors are, right?

The difference of two points is a vector

The sum of a point and a vector is a point

A linear combinatioruv' + bw is a vector

Let's writew = a191 + a2¥2 + - -+ + anUn

If a1 + a2 + -+ - + a, = 1 thisis called an affine combination

if additionallya; > 0fori = 1...n, thisis a convex combination

To find the length of a vector, we can use Pythagofas:= /w? + w3 +

s+ W2

Slide Vectors:

11

e When we know the length, we can normalize the vector, i.eddtito unit length:a = @/|a].
We can call such a unit vectordirection.

e The dot product of two vectors - b= >, Yuw; has the well-known properties

- @-b="5-ad(Symmetry)
@+ -b=a-b+¢-b(Linearity)

(@ - b) (Homogeneity)

e We can play the usual algebraic games with vectors (simalifin of equations)

Slide Angles between vectors:

e We can use the dot product to find the angle between two vectois= |d||b| cos(6). If the
dot product of two (non-zero-length) vectors is 0 then theyparpendicular or orthogonal or
normal to eachother.

e In 2D, we can find a perpendicular vector by exchanging the damponents and negate
one of them: Ifd = (az,ay) thenb = (—ay,a,) and we call this thesounterclockwise
perpendicluar vector ofd or shorta*

Slide The 2D “Perp” Vector:

e The “prep” vector is useful for projections (see book, page)1l
o The distance from a poir to the line throughd in direction@ is |7+ - (C' — A)|/|7].

e Projections are used to simulate reflections

Slide The cross product:

e Everybody remembei@ x b

e One trick to write the cross product; L&tj, k be the 3D standard unit vectors. Then the cross
product ofd x b can be written as thdeterminant of a matrix:

- ik
axb = az Gy @
by by b

e and we have the usual algebraic properties: antisymmaeatearity, homogeneity...

Slide Coordinate Systems and
Coordinate Frames:

e A coordinate system can be defined by three mutually perpetadiunit vectors.
o If we put these unit vectors into a specific paihtalled origin, we call this a coordinate frame.

e In a coordinate frame, a point can be representell aspia + p25+ p3C + V.

12

e This leads to a distinction between points and vectors bgguai fourth coefficient in the
so-called homogenous representation of points and vectors

Slide Homogenous Representation:

e A vector in a coordinate frame:

U1
V2
U3

Slide Homogenous Representation:

e A pointin a coordinate frame:

Py
P
Ps

Slide Homogenous coordinates:

e The difference of two points is a vector

e The sum of a point and a vector is a point

e Two vectors can be added

e A vector can be scaled

e Any linear combination of vectors is a vector

e An affine combination of two points is a point. (An affine comdiion is a linear combination
where the coefficients add up to 1.)

e Alinear interpolationP = (a(1 — t) + Bt is a point.

e This fact can be used to calculate a “tween” of two points.

Slide Representing lines and planes:

e Aline can be represented by its endpoitandC

e It can also be represented parametrically with a point aretéovL(t) = C + bt.
e Aline can also be representedgaint normal form# - (R — C)

e Foriiwe canusé® withb = B — C

e A plane can be represented by three points

e |t can also be represented parametrically by a point and tmparallel vectorsP(s,t) =
C+as+bt

13

e |t can also be represented in a point normal form with a poitité plane and a normal vector.
For any pointR in the planer - (R — B) = 0.

e A part of the plane restricted by the length of two vectorsaitet! aplanar patch.

Slide intersections:

e Every line segment hasparent line.
e We can first find the intersection of the parent lines
e and then see if the intersection point is in both line segment

e In order to intersect a plane with a line, we describe the fiaemetrically and the plane in
the point normal form. Solving this equation gives us a “mitd” ¢ that can be put into the
parametric representation of the line to identify thepoint.

Slide polygon intersections:

e In convex polygons, the problem is rather easy: we can teteabounding lines/surfaces.

e In order to know which side of a line/plane is “outside”, w@mesent them in a point normal
form.

e We have to find exactly two “hit time<f;,, andt ..
e The rightt;,, will be the maximal “hit time” before the ray enters the paigo
e The rightt,.: will be the minimal “hit time” after the ray exits the polgon.

e This approach can be used to clip against convex polygonss iJealled the Cyrus-Beck-
Clipping Algorithm.

Slide Lecture 6:

e Transformations
e in2D

e in3D

in OpenGL

Slide Transformations:

e Transformations are an easy way to reuse shapes
e Atransformation can also be used to present different vitise same object

e Transformations are used in animations.

Slide Transformations in OpenGL:

e When we're calling gyl Ver t ex() function, OpenGL automatically applies some transfor-
mations. One we already know is the world-window-to-vievtgransformation.

14

e There are two principle ways do see transformations:

— object transformations are applied to the coordinates of each point of an object, the
coordinate system is unchanged

— coordinate transformations defines a new coordinate system in terms of the old coordi-
nate system and represents all points of the object in thecnevdinate system.

e Atransformation is a function that mapps a pafhto a pointQ, Q is called the image aoP.

Slide 2d affine transformations:

e Asubset of transformations that uses transformation fansthat are linear in the coordinates
of the original point are the affine transformations.

e We can write them as a class of linear functions:

Qz mi11 Py + mi2 Py + mas
Qy = ma1 Py + ma2 Py 4+ mos3
1 1

Slide 2d affine transformations:

e Or we can just use matrix multiplication

Qz mi1 Mmiz M3 P,
Qy = M1 Ma22 M23 Py
1 0 0 1 1
e Or we can also transform vectors with the same matrix
W mi1 Mmiz Mi3 Ve
Wy = m21 M22 M23 Vy
0 0 0 1 0
Slide standard transformations:
e Translation
Qux 1 0 mas P,
Qy = 0 1 moas Py
1 0 0 1 1
e scaling (and reflection faf, ,; < 0)
We S 0 0 Ve
Wy = 0o S, O Vy
1 0 0 1 1

Slide standard transformations:

15

e Rotation (positived is CCW rotation)

Qz cos(f) —sin(f) O
Qy = sin(@) cos(d) O
1 0 0 1
e shearing
Qq 1 h O P,
Qy = g 1 0 Py
1 0 0 1 1
Slide Inverse transformations:
e inverse Rotation (positivé is CW rotation)
Qz cos(d) sin(f) O P,
Qy = —sin(0) cos(d) 0 P,
1 0 0 1 1
e inverse Scaling
Qa = 0 0 P,
Qy = 0 5 0 P,
1 0 0 1 1
Slide Inverse transformations:
e inverse shearing
Qa 1 —h 0 P,
Qy = -g 1 0 Py
1 0 0 1
e inverse translation
Qz 1 0 —mis3 Pz
Qy = 0 1 —1m23 Py
1 0 0 1 1
Slide Inverse transformations:
e In general (provided that/ is nonsingular)
P = M'Q

e ButasM is quite simple:

det M

M—l

miimezz — M12M21

1
det M

(

ma2
—ma21

—ma2
mi1

)

Slide composing affine transformations:

16

e As affine transformations are simple matrix multiplicaspmve can combine several opera-
tions to a single matrix.

e In a matrix multiplication of transformations, the sequemd translations can be read from
right to left.

e We can also take this combined matrix and reconstruct thebfasic operationd/ —=(translation)(shear)(scaling)(rotation)
(this is for 2D only)

Slide Some more facts:

e Affine transformations preserve affine combinations of f®in
o Affine transformations preserve lines and planes
e Affine transformations preserve parallelism of lines arahpk

e The column vectors of an affine transformation reveal thect#df the transformation on the
coordinate system.

i . . . i nt-_area after transformation
° ,|Acr11 afjf\|;|e transformation has an interesting effect on tha afan object.area before fransformation
et

Slide The same game in 3D...:

e The general form of an affine 3D transformation

Qx mi1 M1z M1z Mg P,
Qy _ m21 M22 M23 M24 Py
Q- ms31 M3z M33 M34 P,
1 0 0 0 1 1
Slide Translation...:
e As expected:
Qz 1 0 0 mas P,
Qy _ 0 1 0 ma P,
Qz N O 0 1 ma3s4 Pz
1 0 0 O 1 1
Slide Scaling in 3D...:
e Again:
Qz Se. 0 0 0 P,
Qy B 0 S, 0 0 P,
Q- - 0 0 S. 0 P,
1 0 0 0 1 1

17

Slide Shearing...:

e inone direction

Qz 1 0 0 O P,
Qy f 100 P,
Q- - 0 0 1 0 P.
1 0 0 0 1 1
Slide Rotations 3D...:
e x-roll, y-roll and z-roll
e x-roll:
Qa 1 0 0 O P,
Qy _ 0 ¢ —s O P,
Q- o 1 s ¢ 0 P.
1 0o 0 0 1 1
Slide Rotations 3D...:
e y-roll:
Qz C 0 s O P,
Q. _ 0 1 0 0 P,
Q- B —s 0 ¢ 0 P.
1 0 0 0 1 1
Slide Rotations 3D...:
e z-roll:
Qz c —s 0 0 P,
Qy _ s ¢ 0 0 Py,
Q- - 0 0 1 0 P.
1 0 0 0 1 1

Slide Some facts about Rotations 3D:

e 3D affine transformations can be composed as in 2D

e 3D rotation matrices do not commute (unlike 2D).

e Question: how to rotate around an arbitrary axis?

o Every 3D affine transformation can be decomposed into (@tios)(scaling)(rotation)(shegi(sheas).

A 3D affine transformation has an effect on the volume of aﬂmb‘g?lﬂ%ebaef}gﬁéQ?Qﬁg?gfrﬁgﬁgﬁ
|det M|

18

Slide point vs coordinate system transformations:

e |f we have an affine transformatiald, we can use it to transform a coordinate frameinto
a coordinate framé=.

e Apoint P = (P,, P,,1) represented i, can be represented i, asM P
o Iy =Mt Fy M2 FythenPin Fsis My M>Pin Fy.

e To apply the sequence of transformatidds, M2, Ms to a pointP, calculate)) = MsMa M P.
An additional transformation must fpeemultiplied.

e To apply the sequence of transformatidds, M, M3 to a coordinate system, calculdté =
My M>Ms. A point P in the transformed coordinate system has the coordinetésin the
original coordinate system. An additional transformatioust bepostmultiplied.

Slide And now in OpenGL...:

e Of course we can do everything by hand: build a point and vetztatype, implement matrix
multiplication, apply transformations and cgll Ver t ex in the end.

e In order to avoid this, OpenGL maintainscarrent transformation that is applied to every
gl Vert ex command. This is independent of the window-to-viewpontgtation that is hap-
pening as well.

e The current transformation is maintained in thedelview matrix.

Slide And now in OpenGL...:

e |tisinitialized by callinggl Loadl dentity
e The modelview matrix can be altered gy Scal ed() ,gl Rot at ed andgl Tr ansl at ed.

e These functions can alter any matrix that OpenGL is usingrdfore, we need to tell OpenGL
which matrix to modify:gl Mat r i x Mbde(G__MODELVI EW .

Slide The 2D transformations:

e Scalingin 2d:

gl Mat ri xMode(GL_MODELVI EW ;
gl Scal ed(sx, sy, 1. 0);

Translation in 2d:

gl Mat ri xMbde(GL_MODELVI EW ;
gl Transl at ed(dx, dy, 0);

e Rotation in 2d:

19

gl Mat ri xMbde(GL_MODELVI EW ;
gl Rot ated(angl e, 0.0,0.0,1.0);

Slide A stack of CTs:

e Often, we need to “go back” to a previous CT. Therefore, Ogem@intains a “stack” of CTs
(and of any matrix if we want to).

e We can push the current CT on the stack, saving it for later gs®ushMat ri x() . This
pushes the current CT matrix and makes a copy that we will fpodiwv

e We can get the top matrix bacgl PopMat ri x().

Slide 3D! (finally):

e For our 2D cases, we have been using a very simple paralliglgbian that basically ignores
the perspective effect of thecomponent.

e the view volume forms a rectangular parallelepiped thatiised by the border of the window
and thenear plane and thefar plane.

e everything in the view volume is parallel-projected to thiadow and displayed in the view-
port. Everything else is clipped off.

e We continue to use the parallel projection, but make use efttbomponent to display 3D
objects.

Slide 3D Pipeline:

e The 3d Pipeline uses three matrix transformations to dyspltgects
— The modelview matrix
— The projection matrix
— The viewport matrix

e The modelview matrix can be seen as a composition of two oeestria model matrix and a
view matrix.

Slide in OpenGL:

e Set up the projection matrix and the viewing volume:

gl Mat ri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();
gl Ortho(left,right,bottomtop, near,far);

e Aiming the camera. Put it at eye, look at look and upwards is up

20

gl Mat ri xMbde(GL_MODELVI EW ;
gl Loadl dentity();
gl uLookAt (eye_x, eye_y, eye_z,
| ook_x, | ook_y, l ook_z, up_x, up_y, up_z);

Slide Basic shapes in OpenGL:

o A wireframe cube:

[gl ut W r eCube(GLdoubl e si ze)

e A wireframe sphere:

gl ut WreSpher e(G.doubl e radi us,
GLint nSlices, Gint nStacks);

o A wireframe torus:

gl ut WreTorus(G.doubl e i nRad, G.doubl e out Rad,
GLint nSlices, Gint nStacks);

Slide And the most famous one...:

e The Teapot

[gl ut WreTeapot (G.doubl e si ze);

Slide The five Platonic solids:

e Tetrahedrongl ut W r eTet r ahedr on()
Octahedrongl ut W r eCct ahedr on()

Dodecahedrongl ut W r eDodecahedr on()

e |cosahedrongl ut W r el cosahedr on()

Missing one?

Slide Moving things around:

e All objects are drawn at the origin.

e To move things around, use the following approach:

gl Mat ri xMbde(GL_MODELVI EW ;
gl PushMatri x();

gl Transl ated(0.5,0.5,0.5);
gl ut WreCube(1.0);

gl PopMatri x();

21

Slide Lecture 7:

e Wrapup of the lab session
e How was it again with those coordinates?
e representing hierarchic object structures

e perspective

Slide Again: And now in OpenGL...:

e Of course we can do everything by hand: build a point and vetztatype, implement matrix
multiplication, apply transformations and cgll Ver t ex in the end.

e In order to avoid this, OpenGL maintainscarrent transformation that is applied to every
gl Ver t ex command. This is independent of the window-to-viewpontstation that is hap-
pening as well.

e The current transformation is maintained in thedelview matrix.

Slide Again: And now in OpenGL...

e ltisinitialized by callinggl Loadl dentity
e The modelview matrix can be altered iy Scal ed() ,gl Rot at ed andgl Tr ansl at ed.

e These functions can alter any matrix that OpenGL is usingrdfore, we need to tell OpenGL
which matrix to modify:gl Mat ri x Mbde(G._MODELVI EW .

Slide Again: A stack of CTs:

e Often, we need to “go back” to a previous CT. Therefore, Ogem@intains a “stack” of CTs
(and of any matrix if we want to).

e We can push the current CT on the stack, saving it for later gs®ushMat ri x() . This
pushes the current CT matrix and makes a copy that we will fpodiwv

e We can get the top matrix bacgl PopMat ri x().

Slide Again: 3D:

e For our 2D cases, we have been using a very simple parallggtian that basically ignores
the perspective effect of thecomponent.

e the view volume forms a rectangular parallelepiped thatiised by the border of the window
and thenear plane and thefar plane.

22

e everything in the view volume is parallel-projected to thiadow and displayed in the view-
port. Everything else is clipped off.

e We continue to use the parallel projection, but make use ettbomponent to display 3D
objects.

Slide Again: 3D Pipeline:

e The 3d Pipeline uses three matrix transformations to dyspigects
— The modelview matrix
— The projection matrix

— The viewport matrix

e The modelview matrix can be seen as a composition of two oestria model matrix and a
view matrix.

Slide Again: in OpenGL:

e Set up the projection matrix and the viewing volume:

gl Mat ri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();
gl Otho(left,right,bottomtop, near,far);

Aiming the camera. Put it at eye, look at look and upwards is up

gl Mat ri xMbde(GL_MODELVI EW ;
gl Loadl dentity();
gl uLookAt (eye_x, eye_y, eye_z,
| ook_x, | ook_y, l ook_z, up_x, up_y, up_z);

Slide Basic shapes in OpenGL:

o A wireframe cube:

[gl ut W r eCube(GLdoubl e si ze)]

e A wireframe sphere:

gl ut WreSpher e(G.doubl e radi us,
GLint nSlices, Gint nStacks);

A wireframe torus:

gl ut WreTorus(G.doubl e i nRad, G.doubl e out Rad,
GLint nSlices, Gint nStacks);

Slide And the most famous one...:

23

e The Teapot

[gl ut WreTeapot (G.doubl e si ze);]

Slide The five Platonic solids:

e Tetrahedrongl ut W r eTet r ahedr on()
e Octahedrongl ut Wr eQct ahedr on()

Dodecahedrongl ut W r eDodecahedr on()

Icosahedrongl ut W r el cosahedr on()

Missing one?

Slide Moving things around:

e All objects are drawn at the origin.

e To move things around, use the following approach:

gl Matri xMbde(GL_MODELVI EW ;
gl PushMatri x();

gl Transl ated(0.5,0.5,0.5);
gl ut WreCube(1.0);

gl PopMatri x();

Slide Rotating things:

e To rotate things, use the following approach:

gl Mat ri xMbde(GL_MODELVI EW ;
gl PushMatri x();

gl Rot at ef (angl e, 0.0,1.0,0.0);
gl ut WreTeapot (1. 0);

gl PopMatri x();

Slide Hierarchical Modeling:

e |fwe try to model an everyday object (like a house), we do remitto move all its components
separately.

e Instead we want to make sure that if we move the house, theofdbé house move together
with the walls.

e The CT stack gives us a simple way to implement this.

24

Slide Global motion:

e The easiest case of hierarchical modeling is global motion.

e Toimplement it, we apply a number of transforms before we stawing objects.

gl Matri xMbde(GL_MODELVI EW ;

gl PushMatri x();

gl Transl ated(x,y, z);

gl Rotatef(turnit,0.0,1.0,0.0);
drawMyScene() ;

gl PopMatri x();

Slide Local motion:

e To implement local motion, apply an extra transformatiofokethe object is drawn

dr awmyt eapot () {
gl Mat ri xMode(GL_MODELVI EW ;

gl PushMatri x();

gl Rot atef (spinit,0.0,0.0,1.0);
gl ut WreTeapot (1.0);

gl PopMatri x();

Slide Perspective:

e Our current parallel projection is quite poor in giving usredl” view of things.

e Thatis because it is “ignoring” the z component which leadarbiguities.

Slide Perspective:

25

from http://www.leinroden.de/

Slide Perspective in OpenGL:

e Set up the projection matrix and the viewing volume:

gl Mat ri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();
gl uPer spective(vi ewAngl e, aspectRatio, N, F);

Aiming the camera. Put it at eye, look at look and upwards iSnp change here)

gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();
gl uLookAt (eye_x, eye_y, eye_z,
I ook_x, | ook_y, | ook_z, up_x, up_y, up_z);

Slide Perspective:

e The point perspective in OpenGL resolves some ambiguities

e but it cannot solve all ambiguities

Slide Perspective:

from http://www.worldofescher.com

Slide Lecture 8:

e Solid Modeling
e Polygonal Meshes

e Shading

26

Slide

Solid Modeling:

We can model a solid object as a collection of polygonal faces

Each face can be specified as a number of vertices and a noectal {to define the inside

and the outside)

For clipping and shading, it is useful to associate a norreatar with every vertex. Multiple
vertices can be associated with the same normal vector aedex\can be associated with

multiple normal vectors.

To represent and object, we could store all vertices for alygons together with a normal

vector for every vertex. That would be highly redundant.

Slide

Storing polygonal meshes:

Instead, we can use three lists:

— the vertex list

It contains all distinct vertices

— the normal list

It contains all distinct normal vectors

— the face list

It only contains lists of indices of the two other lists

Slide

The basic barn:

[vertex

[x Ty [z]

©ONDUA®WN R O

normal | na

ny

-0.707
0.707

DR WN RO

coor

0.707
0.707

copo

LPooooo|s
n

RPrRrRrRrooOOO||N

PR RPOOREROO

cCoOrRrROOORRO

Slide

The basic barn:

[[face

vertices | normals]

DU WN RO

0,5,9,4 0,0,0,0
3,498 1,111
2,387 22,22

1,2,7,6 3333
0,1,6,5 4,444
5,6,7,8,9 5555,5
04321 6,6,6,6,6

Slide

Finding the normal vectors:

We can compute the normal of a face using three vectors ancrdlss productn = (V1 —

V2) x (V3 — V2) and normalize it to unit length.

Two problems arrise:

— What if (V1 — V) and(V3 — V2) are almost parallel?

— What to do with faces that are defined through more than tregees?

Instead, we can use Newell's method:

- My = Zii?)l(yl - ynezt(i))(zi + Znecct(i))

27

- my = Zf\[:?)l(zz — Zneat(i))(Ti + Tnewt(s))

- Mz = Zi\[:;)l(xl - xnezt(z))(yl + ynezt(z))

Slide Properties of polygonal meshes:

e Solidity (if the faces enclose a positive and finite amourgpzce)

e Connectedness (if there is a path between every two vegloeg the polygon edges)

e Simplicity (if the object is solid and has no “holes”)

e Planarity (if every face is planar, i.e. every vertex of aygoin lies in a plane)

e Convexity (if a line connecting any two points in the objaeslcompletely within the object)

e A Polyhedron is a connected mesh of simple planar polygasiseticloses a finite amount of
space

Slide Properties of polyhedrons:

Every edge is shared by exactly two faces

at least three edges meet at each vertex

faces do not interpenetrate: they either touch at a commge ednot at all.

Euler’s formula for simple polyhedron$/ + F' — E = 2 (E:Edges, F: Faces, V: Vertices)

For non-simple polyhedrons” + F — E = 2 + H — 2G (G: holes in the polyhedron, H:
holes in faces)

Slide Lecture 9:

e Shading

— Toy physics and shading models
— diffuse reflection

— specular reflections

— and everything in OpenGL

Slide Shading:

e Displaying Wireframe models is easy from a computationawgoint
e But it creates lots of ambiguities that even perspectivgeptmn cannot remove

e |f we model objects as solids, we would like them to look “naifn One way to produce
such a normal view is to simulate the physical processesrfiaénce their appearance (Ray
Tracing). This is computationally very expensive.

28

e We need a cheaper way that gives us some realism but is easpnfute. This is shading.

Slide Types of shading:

e Remove hidden lines in wireframe models
e Flat Shading
e Smooth Shading

Adding specular light

Adding shadows

Adding texture

Slide Toy-Physics for CG:

e There are two types of light sources: ambient light and pajht sources.

e If all incident light is absorbed by a body, it only radiateghwthe so-called blackbody ra-
diation that is only dependent of its temperature. We'relidgawith cold bodys here, so
blackbody radiation is ignored.

o Diffiluse Scattering occurs if light penetrates the surfata dody and is then re-radiated
uniformily in all directions. Scattered lights interactasigly with the surface, so it is usually
colored.

e Specular reflections occur in metal- or plastic-like susfacThese are mirrorlike and highly
directional.

e Atypical surface displays a combination of both effects.

Slide Important vector tools for shading:

The normal vectorr: to the surfaceP.

The vectord from P to the viewer's eye.

The vectors from P to the light source.

e The cosine of two vectors is the normalized dot-product.

ab
b

|al

Slide Calculating the diffuse componently:

Diffuse scattering is uniform, so forget(unless we do not see the surface,m < 0)
e |tdepends o vs. m.

e Lambert’s Law: A surface receives the illumination fromghli source that is proportional to
the cosine of the angle between the normal of the surfacehanditection to the light source.

29

5-m

o Iy=Isparari=

[81]m
e [, is the intensity of the light source, is the diffuse reflection coefficient.

e We do not want negative intensities, so we set negative salfithe cosine term to zero.

Slide Specular reflection:

The specular reflection component/is
specular reflection is not uniform, so it should depend’@n andd.

Several models have been developed for modeling spectilectien, the one OpenGL uses
is the model by Phong (1975, Communications of the ACM 18&iniihation for Computer
Generated Images)

Phong: The light reflected in the direct mirror direction lig tstrongest. Light reflected in
other directions is proportional to thjeth power of the cosine to the mirror direction.

Slide Specular reflection (2):

The mirror directionr can be found like this:

7= =5+ 200

N
I.sp - -Isp.s (% . %)
Again, I, is the intensity of the light source, is the specular reflection coefficienf. is
determined experimentally and lies betwdeand200.

Finding7 is computationally expensive.

Slide Avoid finding 7

Instead of finding the correét compute thénalfway vector betweens anda: i = 5 + .
h gives the direction in which the brightest light is to be exted if all vectors are in the same
plane.
= NS

— h m
L = Lo (5 78)
The falloff of the cosine function is now a different one. Bhis can be compensated by
chosing a differenf.

Of course all these models are not very realistic, but easgigpute.

Slide Ambient Light:

o Ambient light is a uniform background light that exists guehere in the scene. It models the

light that is usually reflected from surfaces.

e Its source has an intensity,. Every surface has an ambient reflection coefficijentoften

equal top,).

30

o All light contributions combinedi = I,pa + Iapa x lambert+ I,ps x phond

Slide Color Light:

e It's easy to extend this model to colored light: Simply treag three color components sepa-
rately:

o I = Iorpar + Larpar x lambert+ Ip.psr x phond
Iy = Iagpag + Lagpay % lambertd Is,gps, x phond
Iy = Luppab + Lavpay x lambert+ Ippq x phond

Slide In OpenGL:

e Creating a light source:

GLfl oat myLightPosition[]={3.0,6.0,5.0,1.0};
gl Li ght fv(GL_LI GHTO, GL_POSI TI ON,
nyLi ght Posi ti on);
gl Enabl e(GL_LI GHTI NG ;
gl Enabl e(GL_LI GHTO) ;

e OpenGL handles up to 8 light sourdesGHTO to L1 GHT7.

e Giving a vector instead of a position creates a light soufdefmite distance. This type of
light source is callediirectional instead ofpositional.

Slide Colored Light:

e Creating a light source:

G.fl oat anb0O[]={0.2,0.4,0.6, 1.0};
G.float diff0o[]={0.8,0.9,0.5,1.0};

GLfl oat specO[]={1.0,0.8,1.0,1. 0};

gl Li ght f v(GL_LI GHTO, GL_AMBI ENT, anb0) ;
gl Li ght fv(GL_LI GHTO, GL_DI FFUSE, di f f 0) ;
gl Li ght fv(G _LI GHTO, GL_SPECULAR, specO);

e Colors are specified in the RGBA model. A standsdiha. For the moment, we set alpha to
1.0.

Slide Spot Lights:

e By default, OpenGL uses point light sources.

31

e Creating a spot light source:

gl Li ght f (GL_LI GHTO, GL_SPOT_CUTCFF, 45. 0) ;

gl Li ght f v(GL_LI GHTO, GL_SPOT_EXPONENT, 4. 0) ;
G.float dir[]={2.0,1.0,-4.0};

gl Li ghtfv(G._LI GHTO, GL_SPOT_DI RECTI ON, di r);

Slide Other light properties:

e Light attenuation:

gl Li ghtf (GL_LI GHTO,
GL_CONSTANT_ATTENUATI ON 2. 0) ;
gl Li ghtf (GL_LI GHTO,
GL_LI NEAR_ATTENUATI ON 0. 2) ;
gl Li ght f (GL_LI GHTO,
GL_QUADRATI C_ATTENUATI ON 0. 1) ;

e Ambient Light:

GLfloat anb[]={0.2,0.3,0.1,1.0};
gl Li ght Model f v(
GL_LI GHT_MODEL_AMBI ENT, anb);

Slide Other light properties:

e Recomputey for every point

gl Li ght Model i (
GL_LI GHT_MODEL_LOCAL_VI EVER
GL_TRUE);

Faces are two-sided:

gl Li ght Model i (
GL_LI GHT_MODEL_TWO Sl DE,
G._TRUE) ;

Slide Material properties:

e Set the diffuse component for a surface:

GLfl oat nyDiffuse[]={0.8,0.2,0.0,1.0};
gl Materi al fv(G._FRONT, G._DI FFUSE, nyDi f f use) ;

32

e The first parameter choses the faGk: FRONT, GL_BACK, GL_FRONT_AND_BACK
e The second parameter choses the coefficights AMBI ENT, GL_DI FFUSE, GL_SPECULAR, GL_AMBI ENT_AND DI FFUSE

Slide Lab Session tomorrow:

e Setup ascene
e Define some materials
e Set up some lights

e Play around

Slide Lecture 10:

e Smooth objects

— Representation
— Generic Shapes

e Flat vs. Smooth Shading

e Perspective and (pseudo) Depth

Slide Smooth Objects:

e Remember the n-gon?

for (i=0;i<N;i++)
{
forward(L, 1);
turn(360/N);
}

Slide Mesh approximations:

e Smooth objects can be approximated with fine meshes.

e For shading, we want to preserve the information that thdgects are actually
smooth so that we can shade them “round”.

e The basic approach: Use a parametric representation otjleetand “polygonal-
ize" it. (also called “tesselation”)

33

Slide Representing Surfaces:

e Lecture 4: Representing Curves

— Two principle ways of describing a curve: implicitly and paretrically
— Implicitly: Give a functionF" so thatF'(z,y) = 0 for all points of the curve

— The parametric form of a curve suggests the movement of 4 ghoisugh time.

e Lecture 5: Representing a planar patéh(s,t) = C + ds + bt, st € [0,1]

Slide Representing surfaces:

e Parametric formP(u,v) = (X (u,v), Y (u,v), Z(u,v))
Keepingv fixed and letu vary: v-contour

Keepingu fixed and letu vary: u-contour

Implicit form: F(z,y,z) = 0)

e F is also called thénside-outside-function: F < 0:inside, ' = 0 on the surfaceF’ > 0
outside.

Slide Normal vectors of parametric surfaces:

e p(u,v) is the vector from the origin of the surface R{u, v).
e 7i(uo,v0) is the normal vector in surface poift(uo, vo).

R op Op
fi(uo,v0) = (3_ZX§_S)

u=ug,v=vQ

Slide Normal vectors of parametric surfaces:

o Asp(u,v) = X (u,v)i+ Y (u,)] + Z(u,v)k:

op(u,v) 0X (u,v) 90Y (u,v) 9Z(u,v)
ou B ou ' Ou Ou

Slide Normal vectors of implicit surfaces:

e We can use the gradieRtF’ of the surface as the normal vector:

V E|o=0,y=y0,2=20
_(9F OF oF
- Ox’ 9y’ Oz

(20, Yo, 20)

T=T0,Y=Y0,2=20

34

Slide Affine Transformations:

¢ We can apply affine transformation to the homogenous formefepresentations: #(u, v) =
(X (u,v),Y (u,v), Z(u,v),1)T, thenM P(u, v)) is the parametric representation under the
transformation\/.

o We can apply a transformation to the implicit fod(P): F'(P) = F(M~'P)
e The normal vector of the transformed surfacéds *7i(u, v)

Slide Some generic shapes:

e Sphere:

- F(z,y,2) =2 +9°+ 22— 1

— P(u,v) = (cos(v) cos(u), cos(v) sin(u), sin(v))

— u-contours are calleaheridians, v-contours are calleparallels
e Tapered Cylinder:

- Fz,y,2) =2 +3y> —(1+(s—1)2)?for0< z < 1

— P(u,v) = ((1 4 (s — 1)v) cos(u), (1 4+ (s — 1)v) sin(u), v)

— s = 1: Cylinder,s = 0: Cone

Slide Shading:

Flat shading: Compute the color for each face, fill the erfitioe with the color

Flat shading is OK if light sources are far away

Flat shading espechially looks bad on approximated smdujtcts.
in OpenGLgl ShadeModel (GL_FLAT);

Slide Smooth Shading:

e Gouraud Shading: Compute a different color for every pixel.

e For each scanline at. computecolor;.; by linear interpolation between the color of the top
and bottom of the left edge.

e Computecolorrigrn: the same way.
e Then fill the scanline by linear interpolation betweetior;.r. andcolorright.
e in OpenGLgl ShadeModel (G._SMOOTH) ;

Slide Better Smooth Shading:

35

e Phong Shading: Compute a different normal vector for evewlp
e Instead of interpolating the colors, interpolate the ndveators
e in OpenGL: not implemented

Slide Removing hidden surfaces:

Depth Buffer: Stores a value for every pixel
During shading: For each pixel compute a pseudodepth.

Only draw the pixel if its pseudodepth is lower, and update fiekeudodepth if the pixel is
drawn.

Again, compute the correct pseudodepth for the endpoirtteeafcanline and use interpolation
in between.

Slide Lecture 11:

e Smooth objects demo
e Flatvs. Smooth Shading demo

e Perspective and (pseudo) Depth

Slide Insert Demos Here:

Slide Insert Demos Here:

36

Slide Insert Demos Here:

Slide Insert Demos Here:

37

Slide Removing hidden surfaces:

e Depth Buffer: Stores a value for every pixel
e During shading: For each pixel compute a pseudodepth.

e Only draw the pixel if its pseudodepth is lower, and update fikeudodepth if the pixel is
drawn.

e Again, compute the correct pseudodepth for the endpoirtteeafcanline and use interpolation
in between.

Slide What is pseudodepth?:

e A perspective projection projects a 3D point to a 2D point
e The parallel projection is the most simple one. It removeszttomponent.

e A better perspective projection is the following:
P, P,
* * — N x N Yy
(" y") < o —Pz>

N is the distance from the eye to the near plane.

Slide What is pseudodepth?:

e Pseudodepth should be lower if a point is in front of anotteentp

e Unfortunately, the projection removes this information.

e We could useP, directly.

e Butit's more convenient to set the pseudodepth to a fixedvatgi.e. —1...1.
e And it's convenient to use the same denominatdr..

Slide What is pseudodepth?:

e SO we can use:

* ok % _ Pcc Py aPz“’b
($7y72) - (N_PZ7N_PZ7 _Pz)

for the righta andb.

Slide Pseudodepth in a projection matrix:

38

e This projection matrix computes the pseudodepth and theppetive projection at the same
time:

* O O

N
0
0
0

cozo
o oo

Slide Lecture 12:

e Pixmaps
e Colors

e Texture

Slide Pixmaps:

e From Lecture 2: A Pixel is a point sample and a pixmap (or pimap or “bitmap”) is created
by sampling an original discrete points. In order to resarémage from pixels, we have to
apply areconstruction filter.

e Reconstruction filters are e.g. Box, Linear, Cubic, Gaussia

e OpenGL is another method to create these point samples:véoy @ixel in the viewport
window, OpenGL determines its color value.

Slide Pixmaps:

o Internally, OpenGL stores these pixmapdiffers.
e Thecalltogl ut | ni t Di spl ayMbde() allocates the basic draw buffer(s).

Slide CIE Cromaticity Diagram:

{1 R LS el D S wok o R z
; Appraximate Color regions on :
CIE Chromaticity Diagram

Slide Colors:

e Visible light is a contiuum, so there is no “natural” way tgresent color
e RGB color model

Inspired by human perception

three spectral components: red, green, blue
— binary representation of the component values, differemtdards
example: 16-bit RGB (565): one short, 5 bits for red and buigits for green.

Slide RGB in CIE Cromaticity Diagram:

CIE Chromaticity
Diagram This figure includes

all the colors perceivable
by the normal human
aye.

Slide Colors:

e Y/Cr/Cb

based on the CIE Cromaticity Diagram

used for TV applications: compatible with old B/W TV standsir

Y: greyscale component, Cr: red-green-component, Cb=-¢ptaen-component

possibility to reduce bandwith for color “signal”

Slide Colors:

e HSI model

— hue: color (i.e. dominant wavelength), saturation: ragoaeen white and color, inten-
sity: ratio between black and color

— good for computer vision applications

40

Slide Colors:

e CYM(K) model

subtractive color model: white light is filtered, spectrahgonents are removed.

C: cyan (removes red) Y: yellow (removes blue) M: magentm(nees green)

K: coal (i.e. black) removes everything.
— often used in print production

Slide Colors:

e Conversion between different color models (and outputasjioften leads to different colors.
In order to get the “right” color, the devices have to be calorrected. This is the task of a
color management system.

Slide Never The Same Color:

e In pixmaps, colors are represented using binary values [€hds to problems:
— quantization errors: when using few bits per pixel
— minimum and maximum values: clamping

e But other things go wrong too.

e Display devices react nonlinearily: A intensity value d812 less than half as bright than 255.

Slide Gamma correction:

e The intensity of the display devices is roughly a power fiorct

iN L’Y
b=\ 255

e ~is usually in the range of.7...2.5.

Slide Different gamma values:

41

Slide What'’s the gamma?:

(fromhtt p: / / ww. gr aphi cs. cornel | . edu/ westi n/ ganma/ gamma. ht

Slide What's the A in RGBA?:

e OpenGL represents pixmaps internally using 4 values pel,d®GB and A.
e The A stands fory, i.e. Alpha and indicates the transparent regions of a pixma
e «is a measure of opacityl — «) is transparency

a =1 Pixel is fully opaque

a =0 Pixel is fully transparent

0 < a <1 Pixelis semi transparent

Slide Compositing:

e The alpha values of a pixmap are called the alpha matte ofixinegp

42

e The process of merging two images with alpha mattes is caiethositing or alpha blending.
e Given two pixelsF (foreground) andB (background) and: for the foreground pixel.

Brew = (1 — @)Boia + oF

Brew = Boia + a(F — Boa)

e OpenGL uses this in its blending functions.

Slide Associated Color:

e Treating alpha and colors separately gives strange efféwts filtering or interpolating

Figure 8. Left: Artifacts of separate interpolation of colors and opacity. Right: Improved using opacity-weighted color interpolation.

e But storing the pixels already premultiplied with their ajiy removes the effect. This is
called associated color or opacity-weighted color.

Slide Associated Color Compositing:

e Associated colorf” = aF

o Compositing with associated coloBy,c., = (1 — a)Boia + F
e and computing the new alph&c. = (1 — @)Boia + @

e isthea of the background pixel.

Slide Gamma Correction ?:

e Do you gamma-correct alpha ? (Does alpha need a gamma ¢onf®ct
e Do you alpha-blend gamma? (Does an alpha blending changegan
e Alpha is never gamma-corrected. Gamma-correction onljiepm the “real” colors.

Slide Textures:

e Textures are pixmaps that are applied to faces.

e They can be “displayed” in all the different surface coeffits of the object, i.e. intensity or
reflection coefficients.

e Texture pixmaps can either be stored beforehand or cregtétebprogram (procedural tex-
tures).

43

Slide Textures:

e OpenGL needs to know which part of the texture belongs tolvpét of the face. Therefore,
the vertices of the object are both specified in 3D worldspackin texture coordinates. When
rendering, OpenGL uses interpolated texture coordinatéisd the “right” part of the texture.

Slide Object and Texture Space:

e Atexture is a pixmap. It has a simple 2d coordinate system.
e A surface of an object has coordinates in 3d space.

e Question: how to find the right 2d coordinates for a pixel inspace. (This is yet another
projection.)

Slide Object and Texture Space:

e OpenGL knows several texture generation modes:

— GL_OBJECT_LI NEAR: Texture coordinates are linear combinations of the vertex
ordinates.

— GL_EYE_LI NEAR: Texture coordinates are computed relative to the eye auates.
— GL_SPHERE_MAP

Slide A Sphere Map:

www.debevec.org

44

