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Abstract

In this thesis, research about software design for automensystems is presented. A
component-based operating system has been designed shatdmy special features which
support the rapid development of autonomous systems f@usapplications.

These special features are:
e a new scheduler for simple control tasks that optimizes ¢gelar execution over wide
timespans,
e drivers for various common sensors and actuators,

¢ an efficient implementation of general-purpose operatiyggesn services that respects
the limited hardware resources on autonomous systems,

e and support for high-level components for various commatblems, e.g. a component
to control differentially-driven mobile robots.

This operating system, CubeOS has been implemented froatckcfor the so-called
RoboCube, a newly-designed embedded control computed lzas¢he Motorola MC68332
MCU.

CubeOS and the RoboCube have been successfully used inyapplications ranging from
teaching and various research applications to an indusbjgd.
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“I think that the most exciting computer research now is partly in robotics, and
partly in applications to biochemistry.” Donald Knuth






Introduction

As with most other open-source projects, the initial reagsmtart CubeOS was frustration over
the available software. It occurred after completing tr&gfephase of the RoboCube[BKW98]
hardware architecture which is a modular embedded coeatrigit autonomous systems. There
was no adequate operating system that could make use of itpgeumodularity of the new
hardware. Moreover, there was a wide field of possible agiatios for the new architecture,
ranging from teaching over industrial applications[BKD1t experiments about multi-robot
cooperation[McF94, Ste94] and the emergence of languag8B]. A stable operating system
is a requirement for all these applications. Unfortunatabither available open-source nor
commercial implementation would perfectly fit.

The drawback of the commercial operating systems are tleay eleveloper needs a separate
development license which is quite expensive. Althoughietheere special reductions for
academic use, these academic licenses could not be usesldaritext of an industry project.
Another drawback was the focus on traditional embedded ealtime applications in which
a system is once designed from specifications and is thenpnadaced. This contradicts the
approach found in the academic environment, where an apgatstem is used as the basis for
multiple software environments such as nPDL[BKS00] on tbvbich different application
programs are implemented.

From the available open-source operating systems, mosteof tid only support widely-
available hardware such as PCs. Even systems that did suppaiware similar to the
RoboCube were lacking all the special functions such as thautarity that were needed for
our applications. Moreover, many open-source operatistesy projects suffer from poor de-
sign, poor documentation and “featurism”. There were sortemions, e.g. RTEMS[RTE]
and eCos[eCo] but unfortunately, RTEMS was too much foaclsse classic realtime ap-
proaches and eCos does not support the CPU architecture BiothoCube.

From this, it was decided to design and implement a new dpgraystem for autonomous
systems.

Designing an operating system for autonomous systems ledrt@ unique challenges that
were not adressed in existing systems. One of them was dofgedepetitive executions.
Conventional schedulers for general-purpose operatistess rely on the fact that most of

XV



the time, the system is i/o bound, i.e. the system is eithatingafor user interaction or for
an i/o operation to complete. By sorting the tasks accordling fixed or dynamic priority
value and running the highest-priority non-blocking taiese systems can acchieve good
overall system performance. However, the way autonomasiess are designed leads to the
situation that there is not such a high amount of idle timeighér priority tasks, therefore,
lower priority tasks would hardly be run.

To overcome this situation, a novel type of scheduler has designed that guarantees execu-
tion frequency ratios between tasks of different priority.

The unique modularity and the huge ammount of different Wward devices involved in the
physical design of autonomous systems make the designgzrofen autonomous system a
complex task. Therefore, the operating system should stifpouser and add as few complex-
ity to the design task as possible. As a consequence Cubesifeba designed as a component
system in which the designer of an autonomous system catrgonan operating system that
exactly fits the autonomous system that it is constructed@oty the components needed are
included, others are left out automatically and the desigaa implement additional compo-
nents if necessary.



Chapter 1

Autonomous Systems

In this chapter, the general design considerations for thieeOS operating system are pre-
sented that result from the application domain of auton@reystems. From this, a list of
necessary operating system services is compiled and pedserdetail.

According to [Bir01], an autonomous system is a combinatibn

e a computational core

network connections

sensing and effecting subsystems

a finite resources store

a guiding control

What are the requirements for an operating system for amamtous system?

First of all, an autonomous system has to act more or lesutitexternal supervision for
extended periods of time. So the operating system shoutdratpuire as few maintenance
as possible. Moreover, it should be higldablesince it cannot rely on a human operator as
last resort. In the event of a failure, the system shoulceeitbcover from it (failure-tolerant,
“self-healing”) or bring everything to a safe state so thafurther damage results.

The resources of an autonomous system are constrained.x@mele is electrical power, an-
other one is size and weight. As a result, the on-board caenmitthe autonomous system

is constrained in computation power and memory. An opagaiystem for autonomous sys-
tem should therefore be &fficientas possible to leave as many resources as possible to the
application program.
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Another important aspect is that the guiding control of aftbaomous system has to deal with
complex situations. Therefore, the design goal for the @m@nter of such a system is to make
it able to work under these complex circumstances, usuadlylting in a rather complex system
design. The operating system should reduce the compleiihysatask. For that, the operating

system should bsimpleand should work in &ransparentway.

Many parts of the system are only used for specific applinatie.g. driver software is only
used if the corresponding hardware is present in the sysi¢rarefore, the operating system
should be designed inmodularway and the implementer should be ablectstomizet, so
that it provides the functions necessary for the applicabiot nothing more.

One field where this customization is very important is thendm of sensorsand actuators
The operating system should contain functions to accessugkinds of these devices with
the option to add more that are specific to the application.

An important task of an autonomous system is the reactiohgaviorld around it in a timely
manner. Therefore, the operating system has to providdifunadity to deal withreal time
events andiming constraints

In the following sections, these requirements are inspecteetail and various approaches of
their implementation are discussed.

A example for an autonomous system is a mobile robot operatitependently in a unstruc-

tured environment. This will be the standard example of daremamous system throughout the
next chapters although many other classes of autonomotensysare possible. However, the
mobile robot is a good example since it includes all featafesn autonomous system and is
useful to present the common problems of autonomous systsigrd

A mobile robot has a finite resource store, i.e. limited omtdmatteries.
¢ It has a small onboard computer for control.

e Most mobile robots have some mean of communication, eitliram operator or other
mobile robots.

¢ It has onboard sensors, i.e. distance sensors or bump switch

¢ It has onboard actuators, at least to move the robot itskdfh @lso additional manipu-
lators.

Mobile robots of this type are often used in academic rebe&@ome applications are presented
in Chapter 4.
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1.1 Design of autonomous systems

To analyze the requirements for an operating system fomauntous systems, design tech-
niques for autonomous systems are reviewed and from tlesebessary features of the op-
erating system are derived. There are no design technitpaésate specific to autonomous
systems. However, the design of an autonomous system cafitferm design techniques in
various related fields.

1.1.1 Software-design techniques

There are various software design techniques that can hieéppautonomous systems, such
as object-oriented programming (as in [MurQQ]) or softweoenponent technology[Szy99].
For the system softwarspftware componentsave been selected as the main design paradigm.
Software components have a strong support for modularitigtwis one of the key require-
ments. Within the components, various other design teciesiand even different program-
ming languages can be applied such as object-orientednjesigple procedural or even func-
tional programming as long as there is a clearly-definedfaxte for these components. From
this results a minimal restriction for the implementer inxiftélity and extendibility of the sys-
tem. More on this topic will be presented in Chapter 2 where dliferent approaches to
operating system design are discussed.

Definition 1. [Szy99]: A software component is a unit of composition withtractually spec-
ified interfaces and explicit context dependencies onlypffvare component can be deployed
independently and is subject to composition by third partie

A Software Componethtas three characteristic properties:

e A component is a unit of independent deployment.
e A component is a unit of third-party composition.

e A component has npersistentstate.

Components are a well-established concept in other enimgedisciplines. In the following
section, the term component refers to a software compordass mentioned otherwise.To
be independently deployable, a component needs to be vweltated from its environment
and from other components through encapsulation of itsrimekings. For a component to
be composable by third parties, it needs to be sufficientfycemtained. Also, it needs to
come with clear specifications of what it requires and presidin other words, a component
needs to encapsulate its implementation and interact tgifmvironment through well-defined
interfaces. If a component does not have a persistent statkiple copies of it cannot be
distinguished when loaded (as it is possible, i.e., witleots)). Therefore, there is no need to



4 CHAPTER 1. AUTONOMOUS SYSTEMS

load multiple copies of a component. Although it makes séossk whether a component is
available, it is not meaningful to talk about the number dikable copies of that component
[Szy99]. In many current approaches, components are heagitvunits with exactly one
instance in a system, such as a database server. If thatadatabrver maintains only one
database, then itis easy to confuse the instance with tleeptrin this case the database server
is a component, but the module formed by the database andathbage server is not. The
situation becomes clearer if there are two databases seyvbat same database server. There
is no need to load a second instance of the server to make atthases available. As will be
shown later on, components can be used in a much-more ligifttwgay in the composition of
small embedded software systems. But the main concepttbiaypame: Although a software
component may service several instances of data (or ektigwiges) it is only present once in
a system.

A component system needs to define two main functions: Thecaayponents are composed,
i.e. linked into a system and the way the interfaces betwswercomponents are specified by
the designer and used by other components. By specifyingrgp@oent system, one has to
specify thecontractsbetween components. Such a contract is a more or less fopeeifisa-
tion of the interface(s) of a component and some aspects whjilementation. This specifica-
tion does not only include what e.g. a call to a function wil| dut also additional information
like execution time, resource usage and possible errorscagtarned. These contracts must
be specified as clearly as possible to simplify object coritiposby users. One possible way
to specify such a contract is by giving pre- and postconattiol he caller has to establish the
precondition before calling and the caller can rely on th&tgandition being met when the call
returns.

1.1.2 Realtime design techniques

When a computational system interacts with the physicalditbrough sensors and actuators,
the results of this process do not only depend of the restitteeaccomputation but also on the

time when sensors are evaluated or actuators are set. Degamdthe task that such a system
has to fulfill, various timing constraints can be derivedr Bsimple fire alarm system, such
a constraint might be that the fire alarm has to be triggereldteo than 5 seconds after a fire
has been detected by a smoke sensor. From this, the folladefigition describes a realtime

system:

Definition 2. [rea]: A realtime system is one in which the correctness efdcbmputations not
only depends upon the logical correctness of the computaliot also upon the time at which
the result is produced. If the timing constraints of the aysare not met, system failure is said
to have occurred.

Realtime system design tries to predict whether a computatithin a system is completed
at the right time.This requires usually a great deal of keolge about a computer system and
the software running on it. Realtime theory assumes thatioh a system, there are multiple
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software modules, callethsks These tasks are related to external events, they recgiwe in
and give output to the external world. Tasks can eithespgaadicor cyclic. Sporadic tasks
have to react to an external event, cyclic tasks haperad after which they are re-run. For
both types of tasks, timing constraints are given in the fofmdeadlineswhich are points
in time at which the result of the computation has to be prelsethe example with the fire
alarm, a sporadic task triggered by the smoke detector nmisake longer than 5 seconds to
trigger the alarm, even if interrupted by other tasks witegiloly higher priority. Alternatively,
a cyclic task checking the smoke detector that is run evesc8reds may not take longer than
2 seconds to do this. On the other hand, it is also necessdmyots a great deal about the
world surrounding the realtime system since it defines tméng constraints for the system
and therefore the deadlines for the various tasks. Deritiege realtime constraints from the
environment is a challenge on its own and it is often muchératthn in the fire alarm example.
But Realtime system design assumes that these constreenisaalily available.

For realtime systems, there are various approaches knatvrcdim decide a priori whether a
system can meet all its deadlines. [LL73] [ABRW91] Most oésk approaches deal either
with sporadic or cyclic tasks. But fortunately in a cycliskasystem, a sporadic task can be
modeled as a cyclic task checking whether its external dvenbccurred and its period has to
be less than the deadline of the sporadic event minus theititakes to compute the result.

Therefore, it is sufficient to analyze periodic tasks. If #ystem can meet all deadlines, a
static schedule can be constructed that will meet all tincimgstraints, e.g. by rate-monotonic
analysis[LL73].

The drawback of all these approaches is that they assumienaibtconstraints to be known
a priori and to be stable over the runtime of the system, wfiserthe deadlines cannot be
specified. Another frequent drawback of static scheduléiseis inefficiency since they have
to provide enough computational resources for the worg.d@s the other hand, if the worst
case happens (and if it exceeds the one that was foreseea de#dline specification) static
schedules react inflexible to failures and overloads[BP#. To overcome the first problem,
mode-based scheduling was introduced. It assumes thattensys operating in different
kinds of environments, such as a car driving on dry or on watiso For each of these modes, a
different static schedule can be computed. For the camdyiwn a wet road, the anti-lock brake
task deadline may be reduced and therefore, the deadlinbdair conditioner temperature
controller may be enlarged. This leads to better servicditmsathrough better resource usage
in all modes.

To be able to react better to overloads or failures, dynaeattime scheduling based galues
was introduced[JLT86]. Here, the system can dynamicalighredule. Its decisions are based
uponvalue functionghat model the currentitility of a task being executed now. In the event of
an overload, the tasks with the lowest value can be droppprbtade additional resources for
other tasks. However, the value function is just a heurfsti¢he utility of a task. Computing

a dynamic schedule (with the computation of the schedulentétkto account) at runtime is a
NP-hard problem [CM96].
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1.1.3 Robot design

The most common implementation of an autonomous system abdemobot. In this section,
an overview is given over various approaches for designingila robots. Most robots used
in research today are using a mixture of these design agpeeamnd since one design goal for
the system software is flexibility, they should all be supeoBut first, a criterion to compare
the different approaches is necessary.

According to [Ark98], robotic architecture is the discipdi devoted to the design of highly
specific and individual robots from a collection of commoftware building blocks. Note that
in the context of robotic control, the robotic architectordy refers to the software architecture
of the robot, not hardware architecture.Robotic archites are often evaluated on the basis
of the following criteria for a good architecture[Ark98]:

e Modularity: Can the architecture be decomposed into madihiat can be implemented
and tested individually, are inter-module interfaces propdefined, is the architecture
based on sound software engineering principles?

e Targetability: Can the architecture be adopted to the dadrtarget problem?

¢ Portability: Can the architecture be re-used on differebotic hardwares and in differ-
ent operating environments?

e Robustness: Is the system vulnerable to failures? Whathase tvulnerabilities? Can
they be avoided or reduced in practice?

Special-purpose hardware

Historically, one of the first occurrences of a technicalatdbdesign problem was in the con-
text of cybernetics. One of the first theoretical designs thas‘Machina Speculatrix by W.

Grey Walter [Wal50] which was implemented in hardware imiasf Walter’s tortoise. It was

a mobile robot with one directed light sensor and two motong controlling the direction of

the movement and of the light sensor, the other moving thetraoward.

The tortoise exhibited the following behaviors:

e Seeking light: The tortoises sensor rotates until a wedk Bgurce is detected.

e Head towards a weak light: As long as the weak light sourcetsaied, move towards
it.

e Back off from a bright light: Back away if the light is too btig

e Turn and Push: To avoid obstacles, this behavior override$ight-related behaviors
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e Recharge battery: This behavior was an intended side affettie implementation.
When the on-board battery power is low, a strong light soisqeerceived to be weak.
The charging station was marked by a bright light. When théaard battery power is
low, the tortoise perceives this light as low and move towar,ddocking into the charg-
ing station. After the battery is charged again, the ligteigain perceived as strong and
the tortoise backs off.

Although the tortoise does not employ any software (andesihis no robotic architecture in
the specific sense) it is an interesting example of the featflike restricted resources, sensors
and actuators) and for the problems that occur while desggaimobile robot.

This example illustrates several important features obticharchitectures. First of all, the
system is decomposed into several sub-systems. Thesefimeddadependently of each other
first. Then, the relationship between them is defined, i.e “Thurn and Push” sub-system
“pblocks” the “Seeking light”, “Head towards a weak light” @riBack off from bright light”
subsystems. And last, there are sub-systems that onlyasxésside effect of other sub-systems
and the implementation environment. Although they aregnem the system and are planned,
they do not have an implementation of their own.

Applying the criteria for robotic architectures, the taswviolates some of them. It is a mono-
lithic hardware system whose operating parameters ardydeeybedded and not easily mod-
ified. Although the hardware system as a whole can be usedhér atchitectures, it's hardly
portable to other tasks. But still, the tortoise is a verycedfit implementation that fulfills its
task with minimal hardware resources.

Hierarchical architectures

Another approach for robotic architecture are hierardracehitectures, mostly based on clas-
sical Al techniques such as symbolic representation of kedge [Alb91]. The knowledge is
stored in a global memory that is accessible to all layerdefhierarchy. Each layer of the
hierarchy is separated into sensory processing, world himggéask decomposition and value
judgment. This architecture was standardized in the fortn@®MNASA/NIST(NBS) standard
reference model for Telerobot Control System Architec{iiV&SREM)[AL87] in 1987. This
standard is used for example to implement a teleroboticiceeffer maintenance and simple
assembly of the NASA Space Station.

NASREM defines six hierarchical levels which each captuneesi§ic functionality.

1. Servo: provides servo control for the robot’s actuatioes,position and force control
2. Primitive: motion primitives, smooth trajectories

3. Elemental move: path-planing of robot movements, dofiiavoidance
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4. Task: Converts a desired action into sequences of elammayves to accomplish the
action.

5. Service bay: converts actions on groups of objects tor&tn the individual members
of the group and schedules these tasks.

6. Service mission: Decomposes the overall mission plansetvice bay commands.

Each of the levels consists of a sensory processing companamrid model component and
a task decomposition component that all have access to algi@mory. Each layer’s sensory
processing component takes input from the correspondingoaent of the layer underneath,
the lowest layer is directly connected to the sensors. Téledacomposition components are
connected in a similar way where the output of each compoisefied into the input of the
corresponding component on the layer underneath and thestdayer task decomposition
component is connected to the actuators.

According to the evaluation criteria, this architectureesidetter. It is clearly structured, it
can easily be adopted to many targets, by exchanging suldesod can be ported to other
applications and hardwares.

Hierarchical robotic architectures are well suited foustured and highly predictable environ-
ments, e.g. factory automation systems. However, if theesysas to operate in a unstructured,
unpredictable environment, hierarchical architectufesndail because of the so-called closed
world assumption, stating that every aspect of the worlddeas stored in the knowledge base
of the system. But a different architecture approach carsbd instead[Bro91].

Reactive systems

The class of robotic architectures that is especially weatesl to deal with unstructured envi-
ronments are the so-called reactive systems. Accordingrk®B], reactive control is a tech-
nique for tightly coupling perception and action, typigah the context of motor behaviors, to
produce timely robotic response in dynamic and unstrudturerlds.

In the context of reactive systems, a number of terms is afteal.
¢ An individual behavioris a stimulus/response pair for a given environmentalrggttiat
is modulated by attention and determined by intention.

e Attentionprioritizes tasks, focuses sensory resources and is degxirby the current
environmental setting

¢ Intentiondetermines which set of behaviors should be active basdukeaobotic agent's
internal goals and objectives.
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e Emergent behaviois the global behavior of the robotic agent as a consequehtte o
interaction of the active individual behaviors.

o Reflexiveor purely reactivebehavior is generated by hardwired individual behaviots wi
tight couplings between sensors and actuators, wherergeingarmation is not persis-
tent and no world models are used whatsoever.

The subsumption architecture[Bro86] by Rodney Brooks isyample of a reactive architec-
ture which only relies on purely reactive behaviors. Otleese.g. motor schemas[Ark87] by
R.C. Arkin.

1.2 Implementation of autonomous systems

The actual implementation of an autonomous system inchuaiésus sub-problems, from me-
chanical manufacturing problems of housings and actuatocentrol software implementa-

tion. Although this thesis focuses on software, variousetspof the underlying mechanisms
have to be taken into account, among others the computahiandware and the programming
language chosen for the implementation. For the onboarcutan the choices are limited

through the size- and energy restrictions of the systemrefbee, system software of the on-
board computer plays a critical role in the overall perfanggsince it has to work with limited

resources.

A general purpose operating system, i.e. for a PC or a seag&tdoffer multiple general-
purpose services such as a user interface, storage manggemudi-tasking and others. On
a computer running such an operating system, multiple egajin programs can be executed,
from word-processing software to database servers, aftparallel. The designer of the op-
erating system and the hardware manufacturer often do rav khe application for which
a computer is intended. Over the lifetime of a computer, dpiglication may change, vari-
ous hardware components are replaced, i.e. hard disksprieimterfaces etc., either because
they fail or because they become obsolete, new applicatitiware is installed and old soft-
ware is removed. Although these replacements often requi@mplete re-initialization and
re-configuration of the operating system, it is often the¢hat these re-configurations happen
automatically without any need for a new operating-systastailation. These features are
bought at the cost of a high amount of external storage.

In contrast to this, an autonomous system is a special-parpardware-software co-design.
This means that the implementor has a certain task in mindllesautonomous system has
to fulfill. The autonomous system is designed to exactly etesthis task. It is equipped with
the appropriate computational and other hardware (serecixgators, energy storage, housing
etc.) and application- and system software. Over the apgraine of the autonomous system,
neither hard- nor software is supposed to change, howevbrare constantly monitored for
failures and the autonomous system should be able to refrovethis.
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From this, the choice of a general-purpose operating sykiesquipping an autonomous sys-
tem seems inappropriate. This thesis is going to show hosytsiem software for autonomous
systems can be designed and demonstrate this with the aoplamentation of CubeOS.

1.2.1 Computational hardware

To be able to specify system software, the computationak@mwent has to be defined for
which the system software is intended. This is first done iralastract way. Later on, an
explicit example, the so-called Cube System is used for¢hehimplementation.

An autonomous system has limited hardware resources thriinggrestriction of energy and
space. Therefore, a restricted computational core is ynfusihd:

e one CPU

e simple CPU architecture (often no cache, limited pipelines
e often no secondary storage

e restricted communication bandwidth

e restricted CPU clock-speed

e restricted main memory

Unlike standard computers, the computational core mayagoaiditional features:

e multiple hardware interfaces for sensors, actuators amdramication
e multiple bus adapters for parallel and serial busses
e special-purpose co-processors

e monitoring components to enhance reliability

Examples for such an architecture range from simple 8-bl-®Rsed system to various PC-
104 based embedded computers. The Cube System that isbeesicridetail in section 3.1 is
such an architecture.

One specific constraint for the hardware of an autonomoursyi that it should perform
its task as long as possible without direct human intergantiThis type of autonomy can be
achieved through various operating system functions, fuosupervised start (and restart) to
automatic data logging and system diagnose. Moreovery#tera has to recover from various
failures automatically, including those of the operatiggtem itself, or at least bring the system
to a safe state. This usually involves specialized additibardware such as watchdog devices
(See 3.4.7).
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1.2.2 Programming language for system software implement@an

To implement an operating system and application softwara microcomputer system, some
amount of hardware-dependent startup code is necessach Was to be coded in assembler
language.But almost all other software is written in a higrel programming language.

For the operating system (and system software in generddg € programming
language[KR88] is a good choice for the implementationt bas been explicitly designed for
system software implementation[Ker81]. However, somespafr an operating system apart
from the startup code are highly machine dependent and ereftine also coded in assembler
instructions. Most of the programming examples througlioistdocument and in the reference
manual are written in C.

The C Programming Language has a long tradition in the imptdation of operating sys-
tems, starting with UNIX in 1979[RT74, Tho78]. It has sevemnstructs that facilitate direct
hardware access, e.g. pointers and structures and has aetédmn between the high-level
program and the machine instructions that are producedéygdampiler, including a facility
that allows mixed programs in C and assembler code.

By this, the C language forms a sound and extensible bastbéamplementation of an op-
erating system. But C also has its drawbacks, e.g. the laokjett orientation. However, as
will be shown, this is not a limitation on the operating systievel and user level programs
can still be implemented in C++[Str91a, Str91b] since C and Code can easily coexist in
the same program.

The C language has another advantage: Many other inteddegtguages have a C-binding so
that programs written in this language can call C-Functidvisreover, their interpreters and
virtual machines are often implemented in C or C++. By usirgs@nplementation language,
all these other languages (e.g. LISP, Java, PERL, Pytho)eased for application programs
by compiling their interpreters. But even compiler langemgan easily be used in a C-based
system by making use of converters such as f2c[F2C] (fotb&) and p2c[Gil] (Pascal to C).
However, the drawback of these converters is that they giteduce inefficient code.

Throughout this document, the C language (ANSI C)[KR88]deduas a formalism for ex-
plaining algorithms. The code presented is mostly derivethfthe operating system code or
application programs. Whenever the use of the C languagéhvibeuto complex to illustrate a
concept, a less formal pseudo-code language is used.

1.3 Operating system services for autonomous systems

To describe an operating system, one has to deal with a nushlenms:

e According to [Tan87], the function of an operating systemvwed from the application
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programmers perspective is to define a set of “extendeducigins” that are known as
system calls

e The set of system calls that an application program can usertomunicate with the
operating system is called #&pplication Programming InterfaceshortAPI.

e A processis a program in execution. Each process has@dress spacéhat is a list
of memory locations the process can read and write. The ssldigace contains pro-
gram text (the instructions), program data (global vagaptables etc.) and (sometimes
several) stack segments that are used to pass data to eall@bhs and allocate local
variables.

e A threadis one concurrently executing program function. A process ltave multiple
threads who share the address space of the process but lcavthein own stack seg-
ment. The execution within the program is switched from dedd to another either
automatically preemptive multithreading or upon requestcpoperative multithread-

ing).

e aCPU contexis the state of a CPU including status register, stack poartd data and
address registers. A CPU context can either be active csto@e CPU or inactive, stored
in memory.

Operating systems can be analyzed from a number of viewgolfriom the perspective of a
end user of a computer system, the operating system is alnwisible. Therefore, the term
operating system is often extended. One aspect of the esdaret view are system programs
that deal with specific aspects of the operating system, asiche Unix Shell program or the
Microsoft Windows Desktop. Another aspect are object cdldeadies. Although they are
mostly hidden from the user’s view, they implement commoacép of user prograrhsand
lead to a common "look and feel” of application programs.

As already stated in the introduction of this chapter, tlee2numerous requirements that an
operating system for an autonomous system should suppwerad of which are contradictory.
For example efficiency often contradicts configurabilithefefore, it is necessary to judge the
requirements of the application to find an optimal trade-off

For the use on autonomous systems, the operating systertd stupport the following core
services:

e concurrent thread execution
e inter-thread communication and synchronization

e interface code for sensor- and actuator devices

The common control library comctl32.dll in Microsoft Winds is one of the libraries that implement graphical
dialogs e.g. for opening files.
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¢ time measurement and realtime clock service
e communication service between multiple systems

e initialization services

Why these services are essential for the implementatiom autonomous system and how
they are used will be shown in the following sections.

1.3.1 Multithreading

A multithreading service consists of three parts. One ida staucture which contains the CPU
state for each thread not currently running, together withesadditional information about the
thread. This data structure is commonly calfedcess table The next part is a routine which
computes the next thread to be run. This routine is caledchedulerThe third part which is
highly machine dependent is thentext switch This routine saves the current CPU state in one
location of the process table and restores the state froitin@nlmcation of the process table
into the CPU. By this, one thread is stopped and its statevexisato the process table and the
other thread for which the state has been restored from tieeeps table can be executed.

There are multiple ways for the scheduler to decide whickatirto execute next. The way in
which the next thread is chosen can be based on global measigle as an equal distribution
of CPU time over a number of threads or on local measuresyhieh thread currently has the
highest priority.

The simplest form of a scheduler is a round-robin schediWMnenever called, the scheduler
switches immediately to the next thread in a circular listavidg run all threads once, the
scheduler switches back to the first thread. By using somigechdditional data in the process
table, the behavior of the scheduler can be changed. One onlynsed addition is auspend
flag. Whenever the flag is set, the thread will be skipped bysteduler without running it.
Setting the flag is usually called suspendhe thread, clearing the flag is calledwake up
the thread. Another commonplace extensiontisraad priority. Thread priority represents an
ordering on the threads. Depending on the scheduler impitatien, thread priority can have
different semantics, e.g. lower priority threads are r@s lgften than higher priority threads or
the thread with the highest priority gets all the CPU timdlunis suspended.

There are two principal ways to implement concurrent threeetution on a single CPdo-
operativeandpreemptivemulti-threading. In cooperative multi-threading, theremtly active
thread has to explicitly give up the CPU by calling the schedin preemptive multi-threading,
the scheduler is called by a hardware function in fixed irgtlstvBoth scheduling schemes have
their advantages.
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Cooperative multi-threading

Cooperative multi-threading’s main advantage is that ltinead can control in which state of
its computation the scheduler is called. Consider for exaraprocess doing data acquisition
and communication.

Listing 1.1: data acquisition thread

#defi ne BUFSIZE=1024
voi d data_acquisition_thread(){
i nt ad[4];
int i
char DataBuffer[BUFSIZE];
whi | e(1)
{
/* gather sonme data... */
for (i=0;i<4;i++)
ad[i]=12C_ReadAnalogIn(1,i);
/* Form a data packet */
sprintf(DataBuffer,"----DATA _PACKET----\n"
"AD1: _%d\n"
"AD2: _%d\n"
"AD3: _%d\n"
"AD4: _%d\n",ad[0],ad[1],ad[2],ad[3]);
/* send the data packet away */
RSM_send_frame(DataBuffer);
/* call the scheduler */
KERN_schedule();

}

By calling the scheduler after sending the data packet,éassired that a minimal time passes
between the data acquisition and the data transmissioa smother thread can interfere with
the thread.

Depending on the number of other threads in the system, thalaate of the readouts is un-
determined. This rate may be important in several respBotst. of all, the measurements may
require it in order to be able to evaluate not only the actahlerof the a/d conversion but also
its changes over time, i.e. its first and second order derasat Another important reason for
a predetermined readout rate is the communication bandwidhe output channel. Reading
more data than the output channel can transmit (in our casepesframe-oriented commu-

nication network) will lead to increasing data queues andat@ loss in case of nonblocking
communication or to a undetermined temporal behavior ofréfaelouts in case of blocking

communication.

One solution to this problem could look like this:

Listing 1.2: fixed interval data acquisition
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#define BUFSIZE=1024
#defi ne READ_TIMEOUT=1000/* milliseconds */
voi d data_acquisition_thread(){
i nt ad[4];
int i
char DataBuffer[BUFSIZE];
i nt lasttime,lastticks;
i nt nowtime,nowticks;
lasttime=0;
lastticks=0;
whi | e(1)
{
/* gather sonme data... */
read_clock(&lasttime,&lastticks);
for (i=0;i<4;i++)
ad[i]=12C_ReadAnalogIn(1,i);
/* Form a data packet */
sprintf(DataBuffer,"----DATA _PACKET----\n"
"AD1: _ %d\n"
"AD2: _%d\n"
"AD3: _%d\n"
"AD4: _%d\n",ad[0],ad[1],ad[2],ad[3]);
/* send the data packet away */
RSM_send_frame(DataBuffer);
/[* call the scheduler until READ TIMEQUT is over */
do {
KERN_schedule();
read_clock(&nowtime,&nowticks);
} while (
deltatime(nowtime,nowticks, lasttime,lastticks)
<READ_TIMEOUT);

This thread guarantees that no more than 1 packet is traedmier second, by guaranteeing a
minimal interval of 1000 milliseconds between two packétdoes not guarantee any maximal
interval between two packets.

However, this program may still contain other calls to thieestuler that are not obvious since
they can be hidden in some of the called API functions. Fongte, in the RoboCube, some
A/D converters are connected to the CPU with th@ $erial bus system. Compared to the CPU
bus, the ¥C bus is slow. The internaPC driver of CubeOS therefore uses a queuing scheme
that allows multiple transfer requests to be queued. Fledontroller hardware processes
these requests one by one and acknowledges this to the CRilg. WhCPU waits for such a
transaction to end, the thread starting the transaction peustopped since it can only continue
with the result from that transaction.
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While processing the A/D read request, th€ Hriver can simply waste CPU cycles by polling
constantly if the request is already processed. Anotherreitive is to suspend the thread and
run other threads in the meantime. Of course, fi@driver has to wakeup the thread as soon
as the request is processed. As long as there is just onel thneaing, this does not change
the way that the program is executed.

If a second thread is added that reads lots of data fast,rem. d digital camera, the situation
changes. The code of such a thread might look like the fumsimwn in the following listing:

Listing 1.3: image acquisition thread

#defi ne IMAGESIZE=640*480
voi d image_processing_thread(){
int i
char * ImageBuffer;

i f I(ImageBuffer=malloc(IMAGESIZE))
return (-1);

init_camera();
whi | e(1)
{
/* read image fromcanera... */
whi | e (ICamReady());
for (i=0;i<IMAGESIZE;i++)
{
ImageBuffer[il=ReadCamByte();
}
Processimage(ImageBuffer);
KERN_schedule();

}

A quick analysis of this new thread shows the following pmtips:

e One run of the thread will probably take a long time, the sizéhe image data suggests
this. However, the readout of one pixel is fast, so the threidldhot give up the CPU for
this.

e The thread is polling for the camera hardware to become re&@dyhout additional
knowledge of the camera hardware, it cannot be determinedldry this step might
take.

e One part of the thread is completely hidden, itis unclear loog theProcessimage()
function takes to run, whether its runtime is constant omubat all.

e Only after all three steps are executed, the thread callsdweduler.
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Figure 1.1: The AD readout thread (Thread 1) and the imagésitiqu thread (Thread 2),
scheduled with cooperative multi-threading

Figure 1.1 shows the execution flow for a system running th&esethreads. The image pro-
cessing thread takes a long time for processing the imagéantl/D readout thread can only
work for a short while until it gives up the CPU again. This i®lpably not the way it was
intended by the programmer of the first thread.

This problem could be “fixed” in several ways. One simplerali¢ive would be to change the
second thread in a way that it calls the scheduler more often.

Listing 1.4: “friendly” image acquisition

#def i ne IMAGESIZE=640*480
voi d image_processing_thread(){
int i
char * ImageBuffer;

i f !(ImageBuffer=malloc(IMAGESIZE))
return (-1);

init_camera();
whi | e(1)
{
/* read image fromcanera... */
whi | e (ICamReady()) KERN_schedule();
for (i=0;i<IMAGESIZE;i++)
{
ImageBuffer[i]l=ReadCamByte();
KERN_schedule();
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Processimage(ImageBuffer);
KERN_schedule();
}
}

However, the scheduler would waste a lot of CPU time beingdahat often. Moreover, the
changes would have to be made insideRhecessimage()  function too.

A tradeoff would be to call the scheduler only after someringtons, e.g. after every 100
processed pixels. But that would not be sufficient in all sas#ce the processing time for 100
pixels is not known and therefore, no timing could be assufoethe complete system.

Preemptive multi-threading

The clean solution to the problem is a preemptive scheduldike the cooperative scheduler,
it is called by a timer interrupt, without any direct intention of the thread. The runtime after
which the current thread is interrupted and control is giiethe scheduler is called thigne
quantum The scheduler then decides if control is passed back toutrert thread or to a
different thread. (Note that direct intervention by callile scheduler is still possible.)

The preemptive scheduler can interrupt the thread at ev@ng m its execution flow (unless
the thread takes explicit measures against it). Consiglehia last example, this resolves the
problem of the long runtime of the second thread. Howeversttheduler will also interrupt
the first thread, lengthening the time between the readothieofA/D converter and the data
transmission. One possibility to avoid this is to switchtb# scheduler during this time.

Listing 1.5: preemptive data acquisition

#defi ne BUFSIZE=1024
#def i ne READ_TIMEOUT=1000/* m | liseconds */
voi d data_acquisition_thread(){
i nt ad[4];
int i
char DataBuffer[BUFSIZE];
i nt lasttime,lastticks;
i nt nowtime,nowticks;
lasttime=0;
lastticks=0;
whi | e(1)
{
disable_preemption();
/* gather sone data... */
read_clock(&lasttime,&lastticks);
for (i=0;i<4;i++)
ad[i]=12C_ReadAnalogIn(1,i);
/* Form a data packet */
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sprintf(DataBuffer,"----DATA _PACKET----\n"
"AD1: , %d\n"
"AD2: _ %d\n"
"AD3: _%d\n"
"AD4: _%d\n",ad[0],ad[1],ad[2],ad[3]);
/* send the data packet away */
RSM_send_frame(DataBuffer);
enable_preemption();
/[* call the scheduler until READ TIMEQUT is over */
do {
KERN_schedule();
read_clock(&nowtime,&nowticks);
} while (
deltatime(nowtime,nowticks, lasttime,lastticks)
<READ_TIMEOUT);

Once again, this is not an optimal solution since in this cdmescheduler is disabled during the
readout of the A/D converter. As shown already, this can &kae time. With the scheduler
disabled, this time cannot be reused by another thread.

The alternative to this is to introduce priorities in the sdtler. By giving the data acquisition
thread a higher priority than the image processing threaw|lialways “win” over the image
processing. Only while reading the A/D converter, the othegad will be run.

The next problem that arises is the implementation of the tiglay. Since the data acquisition
thread has a higher priority and remains unsuspendedngadhie scheduler does not give up
the CPU. The only solution for the thread here would be to fatgeown priority while doing
the time wait so that the other thread can be started. Logetibelow the priority of the
other thread would lead to another problem since it woulah the impossible to regain the
CPU to increase the priority again after the timeout expidé®oth threads would have the
same priority, this would lead to the undesirable situatidrere only a part of the CPU time is
available to the image processing thread while the rest gtasizon polling the timeout.

A clean solution to this is to enhance the scheduler with altiadal function which disables
a thread for a certain time.

Listing 1.6: scheduler-controlledERNSsleep()

#defi ne BUFSIZE=1024
#defi ne READ_TIMEOUT=1000/* milliseconds */
voi d data_acquisition_thread(){

i nt ad[4];

int i

char DataBuffer[BUFSIZE];

i nt lasttime,lastticks;

i nt nowtime,nowticks;
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lasttime=0;
lastticks=0;
whi | e(1)
{
/* gather sonme data... */
for (i=0;i<4;i++)
ad[i]=12C_ReadAnalogIn(1,i);
/* Form a data packet */
sprintf(DataBuffer,"----DATA _PACKET----\n"
"AD1: _%d\n"
"AD2: _%d\n"
"AD3: _%d\n"
"AD4: _%d\n",ad[0],ad[1],ad[2],ad[3]);
/* send the data packet away */
RSM_send_frame(DataBuffer);
KERN_sleep_ms(READ_TIMEOUT);

}

In this case, the A/D thread keeps its higher priority butti$ suspended by the explicit
KERNsleep _ms() call.

1.3.2 Scheduling repetitive tasks
Repeated execution afimple control taskéSCT) play an important role in most autonomous
systems.

One typical example is motion control, which often makes assome form of controller,
e.g. PID-controllers[KD97]. Control theory assumes tltse controllers are implemented
continuously, i.e. with analog electronic components saglieedback amplifiers. However,
today they are mostly implemented digitally as a repetiigk on a micro-controller.

Another example for these simple tasks can be the behavioeactive robotic architectures
(see 1.1.3) and the layers of hierarchic robotic architestsee 1.1.3).

What exactly is a SCT?

e A SCT has to be short in runtime. Usually, it has the structineading sensor values,
executing some simple computations on these values andgstbe result.

e A SCT does not block, i.e. it does not wait an unbounded pesfdime for external
events 2

e When executed, a SCT runs to completion and exits.

2For data acquisition,a SCT might wait, but this blockingalluis bounded to a very short time.
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When multiple SCTs are present in a system, they often areutee in very different time
intervals. One SCT monitoring ambient temperature may noeavery few minutes where
an SCT for motion control may run 1000 times a second.

Implementing SCTs within a system seems straightforwamt. ekample, by making use of
the preemptive scheduler, it is possible to schedule Mel§CTs in the following way. In this
example, the SCTs are hidden within tR€Txxx() functions.

Listing 1.7: repetitive threads

voi d thread_la(){
whi | e(1)
{
SCT_do_something();
KERN_sleep_ms(1000);

}

}
voi d thread_1b()}{
whi | e(1)
{
SCT_do_something_too();
KERN_sleep_ms(1000);

}

}
voi d thread 2({
whi | e(1)
{
SCT_do_something_else();
KERN_sleep_ms(500);

}

}

voi d thread_3({

whi | e(1)

{
SCT_do_something_fast();
KERN_sleep_ms(250);
}

}

The preemptive scheduler would execute these threads fallbing sequence, provided that
there would be no interruption through preemption:

3Since the SCTs are short in runtime, it can be assumed thinetezution is over before the time guantum for
the current thread expires.
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Time | —
Oms| Tla Tilb T2 T3
250 ms| T3
500ms| T2 T3
750 ms| T3
1000ms| Tla Tlb T2 T3

And this scheme would be repeated over and over again.

With the given example, the repetitive execution of thegaslkot exactly as intended since the
execution period is the sum of the execution time of the taskthe wait time. To overcome

this problem, two separate thread can be used to scheduid¢asks a control thread that does
the scheduling and a worker thread that does the actual execas shown in the next example.

Listing 1.8: control thread and worker thread

voi d thread_1a_control(){
whi | e(1)
{
KERN_wakeup(pid_of worker_thread);
KERN_sleep_ms(10);
}
}

voi d thread_1a worker(){
whi | e(1)
{
KERN_suspend(getpid()):
do_something();

}

As long as the CPU load is low, that means that the executinastiare small compared to
the wait times, this execution scheme is fine, but it can éontaes where a high number of
threads are to be executed where at other times, there arée@nlFor example, the previous
example contains a high number of threads that are to be &deatiO ms, and few at 250 and
750 ms.

However, if the delay times between two executions of a this®@ the only specification, a
scheme like the following would be more attractive:

Time | —

Oms| T3 Tla
250ms| T3 T2
500 ms| T3 Tlb
750ms| T3 T2
1000 ms| T3 Tla




1.3. OPERATING SYSTEM SERVICES FOR AUTONOMOUS SYSTEMS 23

Here, the time delays are the same, but the threads are memb elistributed. This means
that this schedule can still be executed 'on time’ even ifvilag times are significantly lower.
Moreover, implementing control and worker threads for @&CT is not very convenient and
it also uses many resources of the system, e.g. the the priatds of the preemptive scheduler.
Itis preferable to have an operating system service thatleaisCTs and computes a schedule
for their execution based on the specification of periods.

Parts of the following section have already been publishatié SAB 2000 proceedings sup-
plement book[BKS00], in the ICRA 2001 [BKO1a] proceedingsl én the SIRS 2000 [BK0O]
proceedings.

Here, a novel scheduling algorithm, the so-called B-schieglt is presented which handles
SCTs running on different time-scales represented threogtelled exponential effect priori-
ties. Instead of directly specifying delay times in a lineary, an exponential scheme is used to
specify them. Therefore, so-callestponential effect prioritieare introduced here. The idea
is that for each increase in a priority value by one, the etk@edrequency is halved.

In the remainder of this section the following naming coniers are used: the set of SCTs:
S= {so,...,8n-1}, the priority-value of a SC;: pvl[s;], the set of SCTs with priority:

or the k-th priority class: PCy, and the highest used priority-valueraxpv. The definition
of a priority-valuepu|s;] of SCT s; within exponential effect prioritiegs that between two
consecutive executions of any S@Te PC,, , every SCTs inPC),_; is executed exactly
twice.

For solving the task of finding a suitable order of executibnhe SCTs, acyclic executive
schedulingapproach[BW97] is used. This means there is a so-caflapbr cycle which is
constantly repeated. The major cycle consists of sevenabr cycles Each minor cycle is a
set of SCTs which are executed in a fixed order when the mintde ¢y executed. Every SCT
can be executed at most once per minor cycle, so the minoe cgel be a set. However, it is
still assumed that the SCTs in a minor cycle are executed ¢éwee in a fixed sequence.

To illustrate the problems involved in scheduling, Figur2 dhows a simple algorithm, which
schedules behaviors based on their priorities. The exashues the execution of one major
cycle, the repetitive execution of the major cycles is oaaittThe outer loop counts the minor
cycles inround. The SCTs of priority-clas$C), are executed ifound is a multiple of2*,
This scheduler produces a similar result as the repetitheduling which makes use of the
preemptive scheduler in Listing 1.7.

This scheduler is correct since it produces a valid expaalegffect schedule. The outer loop
counts the minor cycles. The execution of the SCTs of a psockesspv in roundsi is deter-
mined by the expressionmodulo2P” becoming zero. This expression actually truncates the
most significant bits of to zero so that only the bits,,_; - - - by are passed on. For the process
classpv — 1, the bitsb,,_» - - - by are truncated. This means that by continuously increment-
ing 4, for every timeb,,_1 - - - by becomes), by, - - - by becomes 0 twice. The first time it

4B stands for behavior since it has first been used in the cobafescheduling behaviors in reactive robotics
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/* Execute the Major Cycle */
for(round = 0; round < npic; round = round + 1) {
[* Execute the Minor Cycle */
foreach s;0€ S:{
if(round modulo 2PVl == () {
execute ;g

© 0O NO Ol &~ WN P

Figure 1.2: A simple scheduléf; .

SCT with pv =0

SCT withpv=1

minor minor
cycle cycle
Y Y
e o @ |s01] 50;1 sl.l. eeoeo slin sQ.1 s+.81.1| oo e L)
1 A A A
—— —— low
fixed unlimited balance

distance (1) distance (n+1)

Figure 1.3: The simple schedul#y leads to a so-called unbalanced execution. One minor
cycle can consist of a single SGD.1 while a second minor cycle contains unlimited many
other SCTs. Hence, the executions6f1 is not evenly spread.
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major cycl
é)((ZT with pv=0
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minor cycle minor cycle W//% it?rlrfe

unlimited idleness
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EEe molions s ERRE
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balanced

Figure 1.4: Adding idle time to balance the schedule madglman lead to an unlimited waste
of time.

becomes zero is whén,,_1 - - - by is zero. The second time is when:

bpv—l"'bO = 10---0
pv—1---0

The major problem with this algorithm is illustrated in FigulL.3. Assume there is a SGT.1

with priority 0 andn SCTss1.i with priority 1. So,#PCy = 1 and#PC; = n. The first
minor cycle consists 0f0.1. As S executes all SCTs of a priority-class together, the second
minor cycle includes all SCTs with priority O and priority ile., this minor cycle has + 1
SCTs. From a naive viewpoint, it can be said that the SCTsaxtby llistributed.

In a more formal approach, the so-calleslanceof a schedules is defined as

balance(S) = min i @SR, 7) dZ,St(Si’:E)
max dist(s;,y)

wherex andy are minor cycles andist(s;, z) is the number of SCTs which are executed

between start of the execution ef in cycle z and its next execution in cycle + opvlsi] |f

the balance is one, then the schedule manages an equidigteatling of every SCT over the

cycles. If the balances is close to zero than there is at tewsiSCT which is very unevenly

executed.

A small balance is undesirable. As illustrated in the abow®le, a SCT with low priority-
value, i.e., a SCT which should be executed very often, hagatbfor an unbounded time-
period. This is also expressed by the balancg;oivhich is in this case:

balance(S1) = o= 0forn — oo
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The balance of; can be improved by adding idle time as illustrated in Figude This way,
the balance can always be tuned to reach the optimum of onethBus bought at the cost
of an unlimited waste of time. Thidlenessas the sum of idle-times in a major cycle is now
unbounded.

In general, a schedulg is time-optimalif and only if the idleness is zero.

1 /*Initialization */

2 [* computing the initiakvait-values for each SC3;; */

3 quicksort (P)

4 pc=1

5 start=0

6 ngots =1

7 for(i=0; i < maxpv; i+ +){

8 start = 2 - start

9 Nglots = 2 * Mslots

10 Vid with pv[s;q] = pe : {

11 wait]s;qg) =

12 reverse((start + id)modulo  ngts)
13 }

14 start =

15 (start + #{siq | pv[sia] = pc}) modulo  ngs
16 pc=pc+1

17 }

Figure 1.5: The initialization of B-scheduling.

The workloadWW L within a major cycle can be computed as the sum of the ocoteeeof each
SCT, i.e.

WIL = Z #PCZ . Qmaxpv—z'

0<i<maxpv

The numbem,,,;. of minor cycles per major cycle is determined by the highestrity value
maxpv as the SCT or the SCTs with this priority have to be executes @er major cycle. It
follows that the average numbetv of SCTs per minor cycle has to be

av = WL | Nupic With 1,5, = 2MPY
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1 /* Execute the Major Cycle */
2 for(round = 0; round < npc; round = round + 1) {

3 /* Execute the Minor Cycle */

4 id=20

5 done =0

6 while( (done < perfect) A (id < #P)){

7 if(wait[s;q) == 0) {

8 execute s;q

9 wait[siq] = 2pvlsidl

10 done = done + 1

11 }

12 id=1id+1

13 }

14 Vsig € P if (wait]s;q] > 0) 1 wait[s;q] = wait[s;] —
1

15 }

Figure 1.6: The execution of a B-schedule.

27
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Slts — V33333
Layers ,2:\/4’,} ~ A q\
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execution

] “empty” slot

] “filled” slot

Figure 1.7: Slots and Layers of a SCT schedule

For an even distribution of the workload, the actual numB&@Ts in a minor cycle has to be
equal to the average numhber. Unfortunately,av is not necessarily an integer. Therefore, a
distinction between

perfect = [av] and dirty = |av]

must be made.

A so-calledperfect minor cycléhas perfectly many SCTs, whereas the number of SCTs in a
dirty minor cycleaccordingly isdirty. A bad minor cycleincludes more thaperfector less
thandirty many SCTs.

The sequence in which the SCTs are executed within the myaes defines a number of
“Layers”. A SCT in theith layer of a minor cycle is executed as thie SCT when that minor
cycle is executed. This is shown in Figure 1.7.

B-scheduling computes a scheddlg such that

1. Spis time-optimal

2. Sp is a exponential effect schedule

3. ASCTsis in the same layer of all minor cycles in which itxeeuted.
4

. the SCTs are distributed over the cycles so thég executed in cycle + 2rv[i if and
only if s; is executed in cycle

5. the major cycle consists only of perfect and dirty minarleg

It follows from properties 2,3 and 4 thatis well balanced as

dirty + 1
bal S = — 1.1
alance(Ss) per fect + 1 €D

= 1forav — (1.2)
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The worst-case balance 8% is 1/2 when only two SCTs are used and one is more frequent
than the other. In general, the balance becomes better thewurkload is handled in each
minor cycle.

What is the difference between this and the simple scheduakbwhy is this one so much better
in terms of balance?

The simple scheduler executes all SCTs of a priority clasén the minor cycle; wherei
modulo 2P’ becomes zero. Then, in the followi2g§” — 1 minor cycles, no SCT of this class
is executed. The B-Scheduler evenly distributes the el&syadrthe priority clasgwv over the
available2P” minor cycles. For the priority clasBCy, this is easy since every elementf,

is executed in every minor cycle. If there would be no SCTs higher priority class, the
length of the major cycle would also be one.

In this case, there is exactly one possibility to add the S&3 & minor cycle. Therefore, the
number of “slots”, i.e. the number of possible minor cyclesdd a SCT to is one, although
the number of minor cycles in the final schedule might be higker the next priority class
P there are two slots, for priority clag3C; there are2’ slots. Figure 1.7 shows a schedule
with eight slots of which six already contain two SCTs and twatain only one.

Whenever the number of processes in a priority class is dpteutif 2PV, the way in which the
members are distributed over th&' available “slots” is irrelevant. This is the case since all
minor cycles into which a SCT is “inserted” have the same rema SCTs after processing
all SCTs of PC,,,. In detall, if the priority claspv hask2P” members, these are distributed by
the algorithm intok “layers” because each minor cycle gaineew SCTSs.

A problem arises if there is a remainder of empty slots afteiinisertion of priority clas®Cpv
(which is assumed to be the lowest process class where theueh a reminder). This occurs
if #PC,, modulo2P¥ # 0, consequently, there ap8” — (# PC,,, modulo2P¥) empty “slots”.
To illustrate the connection with the perfect and dirty esdefined before, if there would
be no further SCTs to insert, there would B¢ — (#PC,,, modulo2) dirty and # PC,
modulo 2P¥ perfect minor cycles. To be able to fill these empty slots mdirty cycles by
inserting processes of the next process clas$,, ;1 before inserting a SCT into one of the
perfect cycles (and thus forming a bad cycle), the locatibthe left-over dirty cycles (now
called empty slots) must be known.

In terms of the origina2P” slots this is easy, the slots just have to be numbered. Bytaiaing
a pointer to the next available empty slot, all empty slots loa found. If this pointer is to be
used to identify th@P’*+! available slots in the next-higher process class, a probléses. An
operation has to be applied to the pointer to convert it fropoiater for process clags to a
pointer for process clags + 1 so that:

1. for every empty slot in process clgssthere are two empty slots in process class- 1

2. and the new value of the pointer identifies all empty presésts for process clags + 1
if its old value did identify all empty slots for the procedasspuv.
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Obviously, this problem can be solved by maintaining a deitecsure that is used to remember
all currently empty slots. When process clagsis processed, all empty slots that are still
available from process clags — 1 are replaced by two slots. If the original slot was in minor
cyclei of process clasgv — 1, then it is replaced by a slot in minor cydlef process clasgv
and a slot in minor cycle + 2P*~!. This approach is illustrated in Figure 1.8.

P,
¥ (- (X (> (>

‘VHVHV ‘VHV‘

|
L
\J\J\Jy

ey

Figure 1.8: Empty slots that are generated from the tramsiiy — 1 — pv

This problem can also be solved by the bit reverse functidménl12 of the program shown in
Figure 1.5 without any additional datastructure.

The bit reverse function for a-bit-value is defined as

n—1
bitreverse(n,v) = Z 2 bittest(v,n — 1) (1.3)
i=0

wherebittest (v, 1) tests if the2? bit in v is set.
Or simpler, ifv = by, - - - by, thenbitreverse(n,v) = by - - - by,.

As it can be seen in Figure 1.8, the distance of the two slatséplace one slot of the previous
pv — 1 major cycle is2Pv~1. That is exactly the value of the most significant bit of theex
valuei that can address all minor cycles in the current major cyByeapplying bitreverse(i),
this bit is flipped in the result value whenevés incremented by one. Therefore, the two slots
created can be addressed withreverse(pv, i) andbitreverse(pv, i+ 1) if i is a multiple of2.
Moreover, if the first empty slot in priority clags — 1 is bitreverse(pv—1, 1), then the two first
empty slots for priority clasgv can be found akitreverse(pv, 2i) andbitreverse(puv, 2i + 1).
This approach is illustrated in Figure 1.9.

In this figure, the numbers in the squares representing tie 8iGstrate the sequence in which
the SCTs are inserted. This sequence is generated byttheerse() function. As an example,
the sequence in which the slots far = 3 are filled is :
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slotnumber: 0 1 2 3 ?’ 56 7 8 91011 12131415
472"\"4»\

Y (3 e e Na e

pv-1 S8 72]el4] 8]
5|8 72164 8]

Y, v U U V)

pv

Figure 1.9: using the bitreverse function to fill empty slots

Sequence numberindex | bitreverse(pv,index)
0

N~Nw ok ooNRMO

O~NO O WN P
NOoO o~ WDNPR

Now that the bitreverse function can be used to identify-dettr slots from the insertion of
the last priority class, the algorithm can fill the SCTs intmaon cycles so that only dirty and
perfect minor cycles are generated.

This is the case since before any SCT is added to a perfed, @fttirty cycles are filled first
(and thus made perfect). After this, according to the dédimiof perfect and dirty cycles, the
workload is evenly distributed over all minor cycles afidty = perfect = av = WL [ .

When the next SCT is inserted/ L is incremented by one, therefore, perfect is incremented
as well and the schedule contains one perfect minor cycleigpd— 1 dirty ones.

1.3.3 Inter-thread communication and synchronization

If there are multiple threads in the system, they often havexthange data. When using a
preemptive scheduler, the time at which execution of oneatthis stopped and the execution
of another task is resumed is not known a priori.
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The C programming language’s global variables are acdedsiball parts of a program since
they belong to the global name-space. Since all threaddsrgart of this global namespace,
this opens up a trivial possibility for inter-thread comruation.

Listing 1.9: trivial inter-thread communication

i nt global variable;

voi d thread_1()

{

whi | e(1){
global_variable=read_sensor();
KERN_sleep_ms(1000);

}

}

voi d thread_2()

{

whi | e(11

compute_target(global_variable);
drive_to_target();
}

}

These two threads may communicate with different resulepdndding on the execution times
of the called functions, Thread 1 might be interrupted betbe global variable is written and
thread 2 might work on old data. However, this might still lneeptable, but the outcome of
the program might be not transparent.

Whenever the result of a computation depends on the seqiremdgch instructions are ex-
ecuted in different threads, such a situation is calledc@ condition Considering the next
example, there are cases where a race condition leads tem®khat cannot occur in a pro-
gram with only one thread:

Listing 1.10: bad example of inter-thread communication

voi d thread2()
{
whi | e(1f
i f (global variable<=0){
drive_to_target();
compute_target(global_variable);
i f (global variable>0) emergency_stop();
}
}

In the previous listing, consider a changegtilbal _variable by a different thread between
line 4 and line 8, e.g. from a positive to a negative value.hia tase, no if condition is true
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and none of the functions is called. This could never happerinear program but is possible
in a multithreaded system.

Once again, an obvious solution is to prevent any other adoegobal _variable  while
reading or writing it. Disabling the preemptive schedukean option. By this, the read oper-
ation becomestomigi.e. it cannot be interrupted by any other operafioBimilar problems
can always arise if global data is passed between threadsasnbdecome inconsistent. The
parts of a program where such inconsistencies can arisa@lied critical sections

1.3.4 Mutexes, spin-locks and semaphores

The classical solution to the problem presented in the éadian is to enforcenutual exclusion
that is to block one thread before entering the criticalisachile the other thread is still
executing code within the critical section. Unfortunatalye C language does not contain a
language construct that provides mutual exclusions, aledomutex We therefore have to
find an alternative implementation as a function of the cjgegesystem.

A simple solution is to introduce a global variable countihg number of threads entering the
critical section as shown in Listing 1.11.

Listing 1.11: Mutual exclusion by counting

voi d thread_1()

{

whi | e(1){
counter--;  whi | e(counter<0);
global_variable=read_sensor();
counter++;
KERN_sleep_ms(1000);
}

}

voi d thread_2()

{

whi | e(1){

counter--;  whi | e(counter<0);

i f (global_variable<=0){
compute_target(global_variable);
drive_to_target();

}

i f (global variable>0) emergency_stop();

counter++;

5An alternative atomic read operation would be to evalggtdal _variable in one single instruction or
copying it into a local buffer before evaluation. But altighbupossible in this case, the approach fails for complex
data-structures that cannot be handled in one CPU ingtructi



34 CHAPTER 1. AUTONOMOUS SYSTEMS

J

However, this can still lead to a deadlock situation: If thstfihread decrements the counter and
is then preempted, the second thread also decrements thiecand compares it afterwards,
both threads cannot continue since the counter is at -1 now.

One possible solution without operating system interggnis that each thread writes a unique
number instead of decrementing the counter. By this, theathentering the mutex can check
whether it properly entered the mutex. If not, it goes backadt. This is illustrated in Listing
1.12.

Listing 1.12: Mutual exclusion with unique IDs

voi d thread_1()
{
whi | e(1)1
do {
whi | e(lock);
lock=1;
} while (lock!=1);

global_variable=read_sensor();

lock=0;
KERN_sleep_ms(1000);
}

}

voi d thread_2()

{

whi | e(1)1

do {

whi | e(lock);

lock=2;

} while (lock!=2);

i f (global variable<=0){
compute_target(global_variable);
drive_to_target();

}
i f (global_variable>0) emergency_stop();
lock=0;
}
}

Finding unique IDs is simple, one could use the thread IDe®bperating system. But the wait
for a free mutex is executed in form obain-lock i.e. a repeated polling of a memory location,
so at least the rest of the thread’s quantum is wasted byssselaling of the unchanged
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variable. Again, it is better to leave this operation to tpemting system by introducing a new
operating system function.
The two functions necessary are the following:
e nmut ex_ent er ( MUTEX nut ex) checks if another thread has already entered the mu-
tex section and prevents other threads from entering.

e nmut ex_| eave( MUTEX nut ex) frees the mutex section again so that other threads
can enter it.

Their use is demonstrated in Listing 1.13

Listing 1.13: operating system mutex

MUTEX the_mutex;

voi d thread_1()

{

whi | e(1)Y
mutex_enter(the_mutex);
global_variable=read_sensor();
mutex_leave(the_mutex);

KERN_sleep_ms(1000);

}

}

voi d thread_2()

{

whi | e(1){
mutex_enter(the_mutex);

i f (global_variable<=0){
compute_target(global_variable);
drive_to_target();

}
i f (global_variable>0) emergency_stop();
mutex_leave(the_mutex);
}
}

However, in some situations, it is inevitable to use theinabapproach to block interrupts,
e.g. when manipulating data structures of the operatintesygself to implement operating
system mutexes. But the blocking should be used as rarelpssbte and only for a few
instructions.

A construct that is closely related to mutexes seanaphoreTwo operations can be applied to
a semaphorayjpanddown These are generalization of the increment and decremerditigns
on the counter in Listing 1.11. Instead of waiting in a spoklathe operating system will put the
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Figure 1.10: direct blocking priority inversion with twordads

decrementing thread into suspended state when the sersaphorter is zero. When another
thread calls the incrementing operation, the operatingesysvill wake up one of the threads
that have been suspended.

Semaphores have the advantage that they can also protectiansso that only a limited
number of threads can make use of a certain resource. Tlaicataample is a system with a
number of printers. As long as there are still printers add, a thread can enter the printer
driver function by decrementing a semaphore. As soon ag ther no free printers left, all
other threads are blocked from using a printer. When a ctlyrased printer is released by the
thread using it by incrementing the printer semaphore, étigeowvaiting threads is unblocked
and the printer can be used by it.

1.3.5 Priority inversion

One specific problem arises if kernel level semaphores artdx@siis combined with a pre-
emptive priority-based scheduler: the so-calieibrity inversionproblem. Priority inversions
occur whenever a low priority thread enters a mutex that lagrigriority thread wants to enter
as well. Since the higher priority thread blocks until thetexuis available again, although
having higher priority it cannot run.

In Figure 1.10 this situation is illustrated. Thread H is tigher priority thread, thread L is
the lower priority thread. At time step T1, the higher prigrihread is entering the mutex
section, at time step T2, the lower priority thread is engethe same mutex section. At time
step T3, the lower priority thread is entering the mutexisachgain. At time step T4, its time
quantum is over and it is therefore preempted by the higherityrthread. As soon as the
higher priority thread also tries to enter the mutex sectibis blocked (T5) and control is
passed back to the lower priority thread until it leaves thaex section (T6). This situation
is calleddirect blocking It cannot be prevented in general and can only be avoidedulsfud
system design, i.e. by leaving mutex sections as quicklyoasiple again.

But the problem gets even worse if the low priority threadrsgmpted by a medium priority
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Figure 1.11: indirect blocking priority inversion with e threads
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Figure 1.12: Priority inversion with three threads

thread as in time step T3 in figure 1.11. Such a situation asrsho figure 1.11 is called
indirect blocking The medium priority thread can block the higher priorityetid by blocking
the lower priority thread that entered the mutex. This siturecan be present for extended time
periods, even if the programmer of the low priority threaddrto give back the resource as
soon as possible. The medium priority thread cannot prawensituation directly, since it is
not using any mutex operation at all. It is only resolved radter the medium priority thread
gives up the CPU at time step T4. Then, the low priority thread continue and leave the
mutex section. After that, it is preempted by the high ptjotiiread.

One solution is to prevent preemption while in a mutex. Big llas drawbacks since it blocks
other threads from the CPU while any thread is in any mutek@ecA better solution here
is the so-called priority inheritance. While a lower prigrihread is in a mutex section that a
higher priority thread is trying to enter, its priority iscreased to the priority of the highest
thread trying to enter the mutex section. This situationlustrated in figure 1.12. Although
the medium priority thread becomes ready at time step T3pthriority thread continues to
run since it inherited the higher priority in time step T2.téfit leaves the mutex at time step
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T4, the higher priority thread takes over. Only after thie#d gives up the CPU at time step
T5, the medium priority thread continues.

1.3.6 direct hardware access

As stated in section 1, one key component of an autonomouensys that it's connected to
the world by the means of sensors and actuators. Usuallyjtan@mous system not only has
several sensors and actuators but also multiple sensoractunators of the same type. These
devices are connected to the system with various busses, gt networks. The access to
these devices is either provided through some kind of d(way. for I2C devices) or through
direct access of memory locations associated with a deuviEe,a memory mapping of the
device’s registers. The readout of an I2C-connected A/Dexter is given here as an example.

Listing 1.14: reading an A/D device through the 12C driver

#defi ne AD_ADDRESS 0x92
#define AD_CHANNEL 1/ * 0..3 */
#defi ne AD_CONFIG 0
/* Configuration= 4 single-ended a/d inputs */

char analog_mbuf[MAXI2CMESSLENGTH];
struct i2cmess analog m;

i nt main()

{

/* 12C ald */

I2C_init (I2CA, 12CA_BASE);

analog_m.address = AD_ADDRESS;
analog_m.nrBytes = 1;

analog_m.buf = analog_mbuf;

analog_mbuf[0] = AD_CONFIG;

12C_process (12CA, 12C_MASTER, &analog_m);

/* set channel */
analog_m.address = AD_ADDRESS;
analog_m.nrBytes = 1;
analog_m.buf = analog_mbuf;
analog_mbuf[0] = (AD_CONFIG & 0x70) | (AD_CHAN & 0x03);
I2C_process (12CA, 12C_MASTER, &analog_m);
/* read val ue */
analog_m.address = ad_data[chip].address | 0x1;
/* Read address */

analog_m.nrBytes = 2;

/* Read one fal se byte, then read val ue */
analog_mbuf[0] = O; /* clear buffer */
analog_mbuf[1] = 0;
analog_m.buf = analog_mbuf;
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I2C_process (12CA, 12C_MASTER, &analog_m);

/* nowthe result is in analog nmbuf[1] */
printf("result =_%d",analog_mbuf[1]);

[ )

This code is complicated, highly hardware-dependent apdnable.

Listing 1.15: reading an A/D device through an interface pornent

i nt main()
{
I12C_init (I2CA, 12CA_BASE);

I2C _init_analog();

printf("result =_%d",12C_ReadAnalogin(1,1));

I

This code is easily portable since all access to the hardiwdnelden in component interface
functions. However, it is still hardware-dependent sirtoe ¢lectrical interface between the
control hardware is left to the designer of the autonomossesy and is therefore still visible
in the application code in the sense that it is the first AD cle&of the first AD chip. Moreover,
the code is much simpler, so even without prior knowledgehefunderlying hardware, it is
easy to understand what is the purpose of the code.

A third property is hidden in thé2C _init _analog() function. It is automatically dis-
covering all A/D interfaces present in the system and iseurtsg them in an abstract way,
independent of their connection to the system. This allample extension of the system by
adding more a/d chips and addressing them in a similar way.

1.3.7 realtime clock

The autonomous system interacts with the physical worldb&@ble to measure properties
of the world, a way to measure time is necessary. One simampbe is a measurement of
the speed of a robot, in this case by observing pulses of gyretecoder. The pulses are often
decoded by the hardware so the application program jusiohaait a while and then read the
counter.

Listing 1.16: measuring speed (bad example)

#define QD1 1
#defi ne QD2 2

i nt main()
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{

short x;
int i
TPU _init();

TPU_makeqd(QD1,QD2);

TPU_getqd(QD1); /* reset QD counter */

for (i=1;i<1000000;i++); /* wait some time */
x=TPU_getqd(QD1); /* read Q@ */
printf("x=%d\n",x);

In this example, hardware functions of the RoboCube are tsembunt the pulses. The
TPUgetqd() function returns the number of pulses counted. Here it igrasd that the
quadrature decoder attached to a wheel axis records 64 sigges for one full rotationon of
the quadrature encoder. It is further assumed that the wlased diameter of 5 cm, so the robot
movesnt x 5cm = 15.7cm for each rotation of the wheel. From this, we can easilguate
the distance traveled to be= 127CMy.

Depending on the underlying architecture, the time betweemwo readouts can be calculated,
for the RoboCube, it will be roughly one second with no pregompand no other interruptions
taking place. With reading of = 384 pulses, the robot would move at ab(ﬁl,m%. But as
we have seen in the previous examples, we cannot assuméehaisk was running uninter-
rupted. By assuming that a second thread of equal priorigtein the system and CPU time
is distributed equally between the two threads, executieglaop would roughly take twice
as long, the robot would therefore travel twice as fast evéh the same amount of pulses
counted. This significant underestimation of the speeddcieald to a dangerous situation.

Even if a operating system function would be used that swspéme thread for one second,
this situation cannot be avoided. The kernel function caly goarantee that the task will
sleep at least the specified time because after the suspeadstover, the process can still be
preempted by other tasks with higher priority. So, if the surament time cannot be specified
exactly beforehand, it should be possible to measure itvedirels.

Therealtime clockwas implicitly introduced in Section 1.3.1 with thead _clock()  func-
tion. At that moment, the underlying mechanism for readirdoak was not explained. The
operating system can keep track of the time by using the sarowiare timer that is used
for triggering the preemptive scheduler. Each time, thel\ware timer triggers a hardware
interrupt, the internal operating system clock countengs@émented. This is called a “clock
tick”. Obviously, this scheme cannot measure times thasheeter than the rate with which
the hardware timer triggers the increment. On the other hiawdinterrupt service routine for
the timer interrupt also uses CPU time, so calling it morerofeduces the CPU time available
for the rest of the system. This tradeoff has to be decided application to application.

The realtime clock is often represented as a number of crasitece one counter does not have
sufficient bits to measure extended periods of time. To avmidnsistent reads on these counts,
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the read operation must be made atomic by disabling the tivtesrupt during read operations.
Note that this does not lead to missed clock tick since thedwmre holds unserviced interrupt
requests pending. So as long as the time between the dgaijlithe interrupt and the re-
enabling of the interrupt plus the execution time of the timéerrupt service routine does not
take longer as the interval between two clock ticks, no cladkis missed. For example in the
standard configuration of CubeQOS, timer ticks happen e¥gry.s. Since the 68332 CPU can
execute a new instruction about every four clock cycles, @ @Pning at 16 Mhz clock speed
could execute 3908 CPU instructions before an interruptidvbe lost.

Since the internal counters can only have a fixed length,|toé& counters will overflow sooner
or later. CubeOS uses two 32-bit counters, one for fractainseconds and a second one
to count seconds. The application program has to deal wishsituation too, but since the
timespan for the overflow of an unsigned 32 bit second court&B6 years, it will hardly
happen in the lifetime of a system.

Listing 1.17: measuring speed

#define QD1 1
#define QD2 2

i nt main()
{
short x;

int i

struct timeval tpl;
struct timeval tp2;
TPU_init();
TPU_makeqd(QD1,QD2);

disable();

gettimeofday(&tp1,NULL);

TPU_getqd(QD1); /* reset QD counter */
enable();

KERN_ssleep(l) /* wait (at |east) one second */

disable();

gettimeofday(&tp1,NULL);

x=TPU_getqd(QD1); /* read Q */

enable();

printf("x=%d  _t1=%f _t2=%f\n" X,
(tpl.tv_sec+tpl.tv_usec/1000000),
(tp2.tv_sec+tp2.tv_usec/1000000));
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1.3.8 initialization and configuration

Autonomous systems are build (and often re-build) in varioanfigurations and therefore
require far more configuration information than e.g. a ndfata If the software developed for
an autonomous system is only to be run on exactly this onersyshen maintaining different
configuration is not an issue and the configuration can bdyeasiintained directly in the
code, as shown in the previous examples. But the operatsigrayitself shall be usable over a
possibly wide range of different autonomous systems, sedtla support for the tailoring to a
special configuration from different configuration options

Configurations can either be determined a priori or at ruatirif predetermined, it can be
defined statically so that it cannot be changed at runtimeypamhically so that later config-
uration changes are possible while the system is running.d&pending on the nature of the
configuration information, it may not need to be changed laie

Often, the configuration for autonomous systems can betsteetin some classes, for which
some parts of the configuration are equal for all of them. Aangxe would be a specific
computational core that would stay fixed but different semsould be connected to it. There
should be a way to specify and re-use such configurationedass

One example for configuration that is not likely to changeranelware configurations such as
interrupt levels, /O memory locations or device addresSesne of this information has to be
present at startup (such as the address of program and datarymevhere as others can be
automatically detected during initialization. But durisgstem operation, hardly any of this is
supposed to change. This is also a candidate for a hardwafiguation class.

Configuration information which is likely to be changed otiere is software configuration,
e.g. the parameters of the control software during systeimdgu If configuration is changed
during runtime, there should be a way to store the currenfigumation persistently so that
in can be reused later on. But in most cases, the configurdtta will simply be printed

out and manually set again or written to a configuration filgst&m Initialization is related
to configuration in the way that some configuration has to lmvknin order to initialize the

system where as other information is determined upon lziigon.

Listing 1.18: initialization and configuration of an AD deei

i nt main()

{
I12C _init (I2CA, 12CA_BASE);
I12C_init_analog();

}

In this example, the configuration for th&Q controller chip is predetermined, e.g the base
address of the controller chip is given by %A _BASEmacro. Other information, such as
which A/D devices are present in the system are determinettiéoh?C _init _analog()
function.
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Thel2C _init _analog() function gives some console output for debugging. For adstiah
RoboCube, this could look like the following:

at address 0x90
at address 0x92
at address 0x94
at address 0x96
at address 0x98
at address O0x9A

analog device
analog device
analog device
analog device
analog device
analog device

a b wdNEF O

In this case, 6 analog devices with a total of 24 A/D inputsehaeen found.

1.4 Communication services for autonomous systems

An autonomous system is often used as a part of a larger sktupltiple autonomous systems
that need to communicate.

Communication systems for mobile autonomous systems lwme snique properties:

e wireless: mobile autonomous systems can rarely estabhgineal connection with ca-
bles.

e ad-hoc: Anautonomous system often cannot rely on a prélestad communication in-
frastructure, so two systems should be able to communicdewt an explicit commu-
nication infrastructure like base station transmittecs Btoreover, autonomous systems
should be able to detect other communication partners witlxplicit configuration.

e robust: Since the environment of the communication oftemnoabe predetermined, the
communication system should be robust against interferéoth from natural sources
and from other systems present in the environment.

e multi-party: The communication between autonomous systenoften not only be-
tween two partners. Therefore, other forms of communiodii@ multicast or broadcast
should be available as well.

e The resources of the autonomous systems are bound wittctéepmnergy, the commu-
nication system should reflect that.

From the many available commercial communication systemily, few can fulfill these con-
straints. Therefore, the choice of a communication systamtb be left to the user. Only
recently, new wireless communication system |@eetootiBT] are available. It has been
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designed for networking battery-powered mobile devidestdfore it has the required proper-
ties for the use in mobile autonomous systems. Unfortupabely few commercial products

are available at the moment. The standardization procesBlé@tooth is still in progress

and therefore, it is not yet clear if Bluetooth will be a shleacommunication method for

autonomous systems.

Within the communication service, the same constraints dpply for communication hard-
ware also apply for the operating system communication awpue to restricted hardware
resources, the services should be as efficient as possible.

There are multiple design guidelines for an efficient impatation of communication. A few
of them are listed here:

e Optimize energy usage: disable unused communication egvicthey are not used.
Especially transmitters consume lots of energy.

¢ Instead of copying data, use pointers to data. Copying data buffer to buffer should
be avoided whenever possible.

e Use datatypes that can efficiently be handled by the CPUthiat.fit the databus width
and can be analyzed with few instructions.

e Whenever possible, use hardware features to reduce CPbeagkrMany communica-
tion devices can handle address detection independertiig. mMieans that the CPU can
do other tasks instead of reading every communication @ntietermine that it is to be
discarded.

1.4.1 wireless communication

For wireless communication, sound, light or radio wavescaramonly used transport medias.
Each of them has its specific advantages and drawbacks.

e Sound waves are easy to generate and can be sent out onutiediaé However,
bandwidth is limited by the physical properties of the eemgtand receivers and the
frequency-dependent propagation of sound waves. Moresgand waves are prone to
interference and the achievable signal-to-noise ratimngdd.

e Light of various wavelength is also easy to generate andctetiés wavelength can
be chosen such that interference is minimal, e.g. there atehvd infrared transmitters
and receivers. The available bandwidth is very high, it istiydimited by the frequency
response of the emitter and the receiver. However, lightis\e@epath, either directly or
through reflections, between the emitter and the receigat'ssapplication is limited to
situations where the environment can be controlled. Onealpopommunication system
based on infrared light is the IRDA protocol suite[MBDS].
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e Radio waves need more complicated and therefore more @xpdarsnsmitter and re-
ceiver components. But apart from this, they are almost ideshe use on autonomous
systems. They can be transmitted and received omni-diresdfican communicate over
great distances with very limited power usage[QRP] and ¥adable bandwidth is very
high. The limiting factor here is mostly the availability off-the-shelf transceiver de-
vices and regulatory compliance with the various inteorati laws governing the trans-
mission of radio waves.

1.4.2 modulation and data encoding

To transmit data over a wireless communication system, dkee lths to be converted to a form
that is suitable for transmission. All three communicatsystems mentioned above are linear
communication systems in the sense that they transmitades@nalog values. Depending
on the physical properties of the space between the tratiesraitd the receiver, these analog
values are changed in a more-or-less predictable way. Tehefusodulationleads to a change
of the properties of &arrier signal in such a way that these changes reflect the data to be
encoded. An important factor for the choice of a modulaticomesne is that these changes are
not varied by the communication channel. One exampfeetuency shift keyinghortFSK

In this modulation system, a sine-wave carrier signal is uhetdd by changing its frequency
according to the digital modulation data. For a bit value paGarrier signal of frequency
f is transmitted, for a bit value of 1, a carrier signal of freqay f + s is transmitted, f
and s being positive frequency values. A simple detectotHizr modulation are two tuned
resonance circuits for the frequencigand f + s. Depending on which resonance circuit is in
resonance with the input signal, the detector outputs @adligior 1. Even if the amplitude of
the sine carrier signal changed at the input of the detettterfrequency of the input signal is
invariant However, a certain minimal amplitude is necesarthe detection as, depending on
the rate of change of the digital signal, a minimal frequestuft s is necessary. For a detailed
introduction in various modulation schemes for digital coamication, see [GG97].

Depending on the communication system and the transporiumedeveral statistical proper-
ties of the data stream have to be observed, e.g. the streaetises has to be balanced,
i.e. it's number of bits with value 1 has to be as high as the bemof bits with value
0. A simple scheme to ensure this property is “Manchesteoding” as it is used Ethernet
networks[IEE88].

1.4.3 Media Access Methods

When communication channels are shared between multipliemaules must be followed to
determine who is using a communication channel at a times&hgles can be very simple,
e.g. one party is allowed to transmit all the time. Howevsgytmust be chosen depending on
the application and the nature of the communication.
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In complex communication systems, the media access ruesiadeled after the same con-
siderations as e.g. a scheduler in a general-purpose mgesgtstem is modeled, i.e. there are
goals, e.g. equal distribution of communication resounredelay time maximas. Therefore,
it is very hard to give an optimal media access algorithm fosgplications.

However, there are some successful communication systenhsdn give guidance for form-
ing a media access method. If communication is rarely takipghe full communication
bandwidth of a channel, a randomized method W@&MA/CD(Carrier Sense Multiple Access
/ Collision Detect)[Rag93] can be chosen. In this case, gy piatens into the channel before
transmitting. (Carrier Sensing). In case that the comnaiitin channel is occupied by another
party, it waits for this communication to stop. Whenever tbenmunication channel is free,
the party transmits, monitoring its own transmission (Smh Detect). When its own trans-
mission is not the same as the one from the monitor, anothéy jgatransmitting as well, a
collision is said to have occurred. In this case, both paudiep their transmission and wait
a randomized time until they try to communicate again. Obsig this media access method
has severe drawbacks if the communication channel is int#psised, then the probability for
waiting (and for collisions) is high. Another problem is tliae time until one party is allowed
to transmit is not bound.

Another method for media accessaken passindgRag93]. One party is selected to “have the
token” in the beginning. This party is allowed to transmitftek it did transmit some or all
available data, it “passes” the “token” on to the next pastgénding a specialized data packet,
the “token”. Then, this party is allowed to transmit. Dep@gdon the way, the next party to
have the token is chosen, there are multiple implementitdrioken passing possible. One
problem with token passing is error recovery and startupthénbeginning, there must be a
special protocol to determine the first station to transthéd,“token” must be inserted into the
system. Due to communication errors, the “token” might @eblost, then the system has to
recover from this and recover the “token”.

Token passing has the advantage that as long as the tokessenpiin the system, it can be
made to behave deterministically for timing and throughpuit if the token is lost, it needs
some recovery mechanisms.

Fortunately, in some applications of autonomous systerashrasimpler media access methods
can be used. For example, the VUB Al Lab RoboCup team (Seéo8ettd) uses a single
“master” station that is the only one transmitting.

In general, it can be said that the media access method haslé&dttio the application pro-
grammer because it is so dependent on the application of/ers.

1.4.4 high-level data encoding

Another problem arises in the interaction of autonomousesys using various CPUs and
operating systems. In this case, the basic datatypes ofsbenss might not be the same.
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For text encoding, the effects may be neglectable, but eembdata can be encoded differ-
ently. One example is the position of the four bytes of a 32alrd in memory. If a 32-bit
word has to be send from a PC with an Intel CPU to a RoboCube avifotorola CPU, as
four byte values, the two systems have to agree to a commadasthon the byte ordering.
Similar problems arise for alignmérand floating point encoding. There are various standards
that describe data encoding[Sun87, XML].

The operating system has to provide some mean to encode éande) data before sending it
to other systems.

1.5 Conclusion

An operating system has to support the following functiam$é suitable for the use on au-
tonomous systems:

e preemptive multithreading

e a service to schedule repetitive executions of simple tasfts based on exponential
effect priorities

e basic interthread communication services such as mutexesemaphores including a
priority inheritance mechanism

e functions to provide simplified access to sensors and aotuat
e arealtime clock

e a communication service capable of supporting wirelessngconication between multi-
ple systems

e and a service that tailors the operating system so that dfdgtizely used services are
provided and the system is configured so that it runs on theéweae selected to build
the autonomous system on.

5some CPUs can only work with 32 Bit values if they are proppdgitioned on a memory address that can be
divided by four
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Chapter 2

Operating system design

In the last chapter, the functions were analyzed that aratipgrsystem for autonomous sys-
tems should support. In this chapter, different possibteriral designs are presented and
analyzed. From these, one is selected to implement CubeOS.

2.1 Operating Systems

Operating systems literature presents a number of gepedatiperating system design goals
such as multiprogramming/-threading, fair resource sligaiinter-thread synchronization and
communication together with common problems associatédattiaining these goals. Sharing
of resources is a well-researched problem, for a discussitms topic, see [Tan87].

Operating system concepts can be put into several claspesdiag on their internal design.
The classes presented here are overlapping, so there avbjectroriented microkernel sys-
tems.

e Monolithic kernel operating systerase operating systems that consist of one static ker-
nel that implements the whole application programmingriate.

e Micro-kernel operating systendistribute their internal functions to a number of pro-
cesses that communicate with each other via interprocesmoaication. This interpro-
cess communication is the only function implemented by amahkernel. The API,
although implemented by different processes is presenttdttapplication in a uniform
way (through the IPC interface of the micro kernel) as it ith@ monolithic kernel.

o Nanokernelsare application-specific operating systems which have th@ypurpose of
hosting exactly one application program, often a virtuathiae such as the Java VM.
These kernels only implement exactly the API needed by dpgfication. Nanokernels
are mostly monolithic, although micro-kernel implemeiutas are possible.

49
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e object-oriented operating systerae similar to micro-kernels, but do not present a uni-
formed API to the application. Instead, the applicationgoamn uses an object-oriented
interface that can be extended through object-orientdthtques. An additional concept
in some object-oriented operating systems are concurigatts[YTT89] that play the
same role as threads do in a micro-kernel operating system.

e component operating systere also similar to micro-kernels. However, the operating
system kernel can be extended with additional (applicagjmecific) components so that
the border between application programs and operatingrsyisecomes blurred.

e realtime operating systenase optimized for the use in realtime systems.

These different types of operating systems are discussbd following sections with a special
focus on their suitedness for the use in autonomous systems.

2.1.1 Monolithic kernel operating systems

Application Application Application
Program Program Program
! ! !
API
Kernel
Drivers

!
I/O Hardware

Figure 2.1: The structure of a monolithic kernel

The traditional way of implementing an operating systenoidefine an application program-
ming interface and to program a kernel which implements ke Kernel itself is seen as one
big program that implements all the functions necessarysézw@e all API functions. Most
operating systems that are used today have been implemarikgsiway, the traditional UNIX
kernel is a good example, others are MacOS, Novell Netwaited@U[Com84].

Unix is also a good example for the way operating system ddsigjuided by the intended
application software.

The UNIX API system calls are mainly centered around progexecution and file-system
operations[Rit79]. The first part of UNIX that has been defiireits development process has
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been the file-system and its API, first on paper, later implgedgeon a PDP-7. At that time, the
file-system API was that important, because the computeéesysnly had minimal RAM, so

most program data had to be kept on disk. The PDP-11 whichheasdcond machine UNIX
was ported to had 24 kBytes of main memory of which 16 kBytesevadocated for the kernel

and 8 kBytes were available for user programs.

Although this seems small compared to computers used ttigayerformance impact from
the lack of memory was minimal. This was the case since whdedPU had a memory cycle
time! of one microsecond and most instructions used two cyclesgigk of the system could

deliver one 18-bit word every two microseconds on lineadseao bulk data transfer was
roughly as fast as main memory. The user program memory wasignenough for two user

programs at the same time, so a switch between two programkl\afso mean storing the
current program on disk and reloading the next program. Sanger application programs
did not completely fit into user memory. This is the originloé tUNIX paging system where a
memory access to a unavailable part of the program wouldesgisthe current program until
the memory page that contained the accessed memory loe@mioaded.

Ritchie and Thompson, the two main developers of UNIX, wadntecreate a flexible system
that should be easy to program on and they wanted to test steas for operating system
design. Later on, they invented an official reason for thélabk to keep supporting the de-
velopment of UNIX: word processing. Instead of restrictthg system for the use as a word
processing environment, they ported some word processilg that were previously devel-
oped to the UNIX system. The idea was successful and the tpappfications office at the
bell labs used the system for their word processing needse$iie PDP-11 hardware that was
used at this time did not have memory protection featuresviioald prevent user programs
from writing arbitrary memory locations including kernekemory, testing new programs on
the same system that was used for word processing requitegimex care since every pro-
gram could crash the whole system. In later hardware vessibis memory protection was
added and the different processes were protected agaiegeimng with each other. In case
one process tries to overwrite a memory location that it isatlowed to write, a so-called
segmentation fault occurs and the process is terminatee i other processes in the system
continue unaffected.

In a 1974 review of the system in tikdlommunications of the ACJRT74], Ritchie and Thomp-
son list the following features of UNIX as the most important

Unix is a general-purpose, multi-user, interactive opegasystem for the larger Digital
Equipment Corporation PDP-11 and the Interdata 8/32 coenputt offers a number of
features seldom found even in larger operating systemisidimg

1. A hierarchical file system incorporating demountableaods,
2. Compatible file, device, and inter-process I/O,

the minimal time the hardware needs to read or write a mentmation
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The ability to initiate asynchronous processes,

System command language selectable on a per-user basis,
Over 100 subsystems including a dozen languages,

High degree of portability.

o g M w

As stated here, UNIX was designed as a general-purposersyisét should support the inter-
active use of the system by multiple users. As already shisl,general-purpose approach is
quite different from the one necessary for autonomous Byste

The notable exception to other systems was the uniform fégicd and inter-process 1/O.

Unix managed this by re-using its file-system API. Speciat$ystem entries were used to
connect programs to device drivers and other programs,ctoalted “special files”. Instead

of containing information about the location of data on thekdthe special file disk entry

contains a major number selecting a device driver and a nmaotber selecting the instance
of the device.

By this, the mechanics of the system calls did not need to Aegdd, the whole APl was kept
stable over multiple releases and still, most later exterssio the system could be included
into the kernel without any additional APIl. Many aspects fwé pbriginal APl (such as the

ioctl() and fctrl() system calls) made extensions possibé did support almost any kind of
external devices. But this obviously had the drawback tHah&raction with these devices

had to be done through the existing interface. The API onbyadd byte-positioned seeks with
a 32 bit offset and read/write transfers in bytes or in a pexd@ned block size.

The first challenge to this concept came with the integraticdhe TCP/IP protocol suite which
led to an extension of the API that was still file based (the BSEket interface and the AT&T
streams) but included additional system calls to deal watifvork addresses [Rag93].

When UNIX became commercially successful later, the nud#tof available hardware sys-
tems led to the problem of integrating vendor-specific cade the kernel. The API could

easily support additional device types (by adding otheiicgeelasses in the form of “major
numbers”). The “C” [KR88] language in which the system wagplemented defined a linker
mechanism through which independently compiled prograrts mauld be bound together to
form one executable program. For each system, a kernel beujgnerated that would exactly
fit to the hardware by combining pre-compiled object files aadly compiled configuration

files.

Later versions of the different vendor implementations &fIX included linker and binary
modules to build customized kernels for different applaad. There are also systems, e.g.
Linux[BCO0O0], which integrate the linker’s function intodtkernel, so binary modules could be
loaded and unloaded while the system is running.

As stated before, the UNIX APl was mostly concerned with yisésm calls. A system call
executed by the user program would stop its execution, $aw&HU context and pass control
to the kernel. The kernel would then check permissions atid parameters of the call and
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execute it on behalf of the user program, e.g. read a dat& blom an 1/0O device. Until the
device responds, the kernel would pass CPU control on tderelift task that is ready to run.
After the disk hardware read the data block and put it in adoufiemory, it would inform its
driver (e.g. via a hardware interrupt). Then, the CPU wowdspcontrol back to the kernel,
again saving the context of the currently executing tasle Rérnel would then copy the data
from the disk buffer into the address space of the task ekmgrthe system call and pass the
CPU control back to the calling process.

This way of handling API calls is very useful if there are mahseads in the system that are
mainly I/O bound, that is waiting for external hardware t@exte functions. This is often
the case in server systems that service multiple users sudhtabase or web servers. Also,
the scheduling is non-critical in this application domaince there are hardly any threads
competing for CPU time since most of them are blocked by wngifor 1/0. Therefore, the
time quantum for UNIX-like systems can be large. Usualhyhr@ad can keep the CPU for as
long as 250 milliseconds[BCO00] without any performancerddgtion visible to the user.

Scheduling in UNIX is trying to evenly distribute CPU timeddferent processes. Therefore,
the priority of a process in the UNIX scheduler is often dyramdepending on the amount
of CPU time that a process had in the past, i.e. a process ithdt det the CPU for a long
time gets its priority increased whereas a process that tme@€PU for a long time gets a
lower priority. This has clear advantages for server apfibois, i.e. no process can “starve”,
not getting the CPU for an extended period of time but it i® dard to determine the exact
realtime response time of such a scheduler since it depantteeauntime history of all tasks.
Therefore, when UNIX-like systems are used in realtimeiappbns, the scheduler is usually
extended with a special class of realtime processes thatdtatic priorities[CHO] that are not
changed over time.

2.1.2 Micro-kernel and modular operating systems

The kernel modules in monolithic operating systems suchat/NIX kernel allow the exten-
sion of these kernels in clearly defined domains, i.e. a néweidcan be added.

However, some internal kernel functions cannot be exteimedch an easy way. l.e. it is not
possible to replace the scheduler or the memory managerhéme kernel in this way, since
the changes necessary are widespread all over the kernel.

Micro-kernel operating systems try to solve this problemrbglementing only minimal func-
tions in the kernel itself, such as basic multi-threading amer-process communication and
implementing everything else as modules, including netimg;, scheduling and memory man-
agement. If possible, these modules are implemented assepaocesses that communicate
with each other through the microkernel IPC API. Anotheraadage is that these separate pro-
cesses have their own memory segment and stack, so theyo&getpd from each other and in
case of a programming error, only one module fails and theofeéle kernel stays intact.
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Figure 2.2: The structure of a microkernel OS such as MINIX

Examples for micro-kernel operating systems are MINIX@2h) MACH[RBF"89] and Win-
dows NT[Sol98].

Micro-kernels can also be written in an architecture-iredeent way. In this case, microkernel

functions are then separated into two modules of which onéaats the hardware-dependent

functions (the hardware abstraction layer) and the otheht#rdware-independent functions.

To port the microkernel to a new architecture, only the haméadependent functions have to

be re-implemented[Sol98], but both architecture-indejeen and architecture-dependent parts
of the kernel still have to be recompiled with an architeetspecific compiler.

However, the microkernel itself still uses a fixed API towstide application program that uses
the same underlying mechanisms as in a monolithic kernemdst cases, this API is even
more restricted than in traditional monolithic kernelsjugt consists of basic multithreading
functions and interprocess communication. If the APl meddm is architecture-dependent, it
is part of the hardware abstraction layer.

To extend the API of a microkernel system, a kernel modulgédibe implemented that usually
contains a process. Then, an application library is implastethat contains the API functions.
The API functions in the library contains calls to the mi&ernel API that forwards calls to
the corresponding kernel process that executes them.

A system call from the user program to the kernel module hagplerough the kernel IPC
and involves several context switches since all processes tiheir own context and memory
segment. For example, A call could involve context switctiemn the application program

to the kernel, then from the kernel to the kernel module. Ailtdseing delivered from the

kernel module back to the application program requires #imesamount of context switches
again. Since the context switch takes time, calling a difection through this mechanism is
inefficient.
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2.1.3 Nanokernels and virtual machines

‘ Application ‘ ‘ Application ‘ ‘ Application

Virtual Machine

!
API

Kernel
Drivers
)

I/O Hardware

Figure 2.3: The structure of a simple nanokernel OS supppetiJava VM

Micro-kernels allow the replacement of kernel internalsisTallows the construction of an
application-specific kernel that only implements the fimwlity needed for the application.
Still, the construction of that kernel is a time-consumiagkt so it is only done if the benefit
from it outweighs the cost. One example is the constructiba special-purpose system to
execute a virtual machine, e.g. JAVA. Consider the requarms for the Sun Microsystems
Java Runtime environment, quoted from the JDK1.3 readme file

Windows 95, Windows 98, Windows NT 4.0, or Windows 2000 ofiagesystems running
on Intel hardware. A Pentium 166 MHz or faster processor.

At least 32 megabytes of physical RAM is required to run GUdlagations. Forty-eight

megabytes is recommended for applets running within a l¥owsing the Java Plug-in
product. Running with less memory may cause disk swappirighitias a severe effect
on performance. Very large programs may require more RAMftaquate performance.

If a Java VM is to be integrated into an embedded device, ibispossible to integrate a
complete PC including an expensive operating system ngegterrequirements stated above.

The Dallas TINI board [Wil00] is an alternative. It consisfsa special-purpose hardware and
operating system kernel running a Java VM. Since the Javasvilkionly possible application
program, the TINI's kernel only includes the functions resaey to run the VM and some code
that implements hardware access and networking. It thexrdéfas much less memory and CPU
requirements than a general-purpose operating systera dé€hign is called aanokernel

TINI contains 1 Mbyte of FLASH ROM, 1 Mbyte of RAM, an etherriaterface and a serial
interface. Is size is 8cm x 3cm x 1cm and it is sold for $50.

The benefit is obvious: Size and price make TINI suitable fanynapplications where a PC
could not be used.
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The TINI kernel itself is not accessible to the user, it ikéd with the VM and delivered

to the user as one binary file. This file is written into the pement FLASH memory of the

TINI-Board and it is only replaced for bug-fixes. The userlaapions are implemented in
Java and compiled with the standard Java compiler. Thednde-is then converted into an
application-specific format and transfered to the TINI oahere it is executed by the VM.
Another example for a nanokernel architecture is JN [Mon¥#E JN API exactly implements
the functions needed for the VM and for the KA9Q TCP/IP protatack, JN runs on standard
386 and 486 embedded PC hardware.

2.1.4 object oriented operating systems

The object-oriented approach to software design has al=o dyeplied to operating system de-
sign. Early object-oriented systems such as Smalltalk B&& can be considered as operating
systems since they provide equivalent functions such asanemanagement, scheduling and
interprocess communication[YTT89].

The MUSE operating system [YTT89] combines object-oridrard reflexive[Mae87] features
to form a distributed operating system. Later ancestorb@fMUSE operating systems and
its object-oriented approach are Apertos [Yok93] and Apgrused for example in the Sony
Aibo[FK97].

MUSE is purely object-oriented in the sense that everythimegoperating system deals with
is some kind of object. Tasks, files, network connectionsalirebjects. MUSE uses concur-
rent objects in the sense of a dedicated computational batehtis a state and local storage
which can be dynamically created and destroyed. Concumeans here that their methods are
executed concurrently in the same sense as tasks are ekeougurrently in a conventional
operating system.

Meta-objects are entities that create and destroy obgefisie the computation within methods
of objects and communication between objects. In this wayarobjects can be seen as virtual
machines. A meta object is also an object that is defined byta-bigect, the meta-meta-
object. The meta-meta-object can be viewed as the intetdetbe AP of a conventional kernel.
A meta-object spans up a meta-space. The meta-object atieeabjects which implement
their methods by using this specific meta-object are saié io this meta-space. An object can
move between meta-spaces whenever their correspondirsgabpeicts are compatible which
means that they are both providing the same functions toemeht the object’s methods.

The multiple meta-spaces implement different APIs towadhesr objects. One example for
such an meta-space is the driver meta-space. Its metatamjelements methods that allow
direct hardware access. Other examples for meta-spackshmuealtime meta-spaces which
implement special realtime functions or persistent mptess that permanently store data.
Meta-spaces can either execute the objects methods gaiivel CPU or as bytecode on a vir-
tual machine. So a Java VM could be implemented as a meta&.s@atnmunication between
objects residing in the same or in other meta-spaces ardduatittough their corresponding
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Figure 2.4: MUSE as an example of an object-oriented opeyatystem

meta-objects. By this, a object in a Java VM metaspace cahaseressage to a driver object in
the driver meta-space. The meta-objects take care of dat@isions and communication pro-
tocols. Moreover, communicating objects can also be ldcatdifferent computers connected
through a network and the meta-objects would still alloneasparent communication.

The meta-meta object implements functions that can be cadpa the API of a micro kernel,
such as context switching, interrupt handling and someedsivAdditionally, the meta-meta-
object implements a scheduler that distributes CPU timbdanieta objects. These implement
another scheduler that distributes the CPU time furthepdhéir objects.

Although the object-oriented approach is very flexible aglsome drawbacks. Since commu-
nication between objects in various meta-spaces are ingolitgd through their meta-objects,
various interfaces between objects and meta-objects bdwe passed. This makes communi-
cation inefficient. Moreover, the timing aspects of the camivation are not transparent and
since objects can migrate from one metaspace to anothesethantic (and the timing behav-
ior) of calls can only be determined at runtime. This makésurd to plan the timing behavior
of the system.

2.1.5 component operating systems

Like component systems in general, operating systems lmesgoftware components have the
following features:

e There is a component model that specifies interfaces bete@aponents.

e Components of different origin can be combined and depldyethe implementor.

e The component system can be extended by the implementorapiilication-specific
components.
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There are multiple examples for component operating sysffelBB™97, CHO, Szy99]. One is
Chorus Internally, Chorus contains a microkernel, a networklstaud boot code for several
embedded platforms based on x86, SPARC an PowerPC CPUsust®iis mainly used in
the telecom industry for routers, switches and line cardserdfore, the main focus for the
design of Chorus is reliability. ChorusOS contains compési¢hat implement so-called OS
personalities. These personalities implement the API ahdrdeatures of other operating
systems, e.g. the UNIX-API of Solaris.

The main advantage of the component-oriented approack wotffigurability and scalability.
Chorus can be configured from a 10K kernel for the usage orgles®PU embedded system
up to a full-featured multi-CPU system with multiple perabties and complete multi-user
operating systems running on top of these personalities.

Chorus uses memory management features of the supported @GRsdlate different parts of
the system from each other, i.e. isolating critical from 1goitical system parts. Chorus also
contains transparent interprocess communication sexviddese services can be used uni-
formly between processes running on the same computer outiipla CPUs in a distributed
system.

Application Application Application
Program Program Program

~N r I

| Solaris personality | (ihorus personality

I Network Protocols

Micro
Kernel

e

Disk Network Terminal
Driver Driver Driver

Y A A

Disk File System

I/O Hardware

Figure 2.5: The structure of the chorus component operatistem

One interesting aspect of component-oriented systemsnitnast to pure microkernel systems
is that communication between components does not nettggsss through the microkernel
IPC. Instead, is is even possible that an application proglisectly accesses hardware devices.
One example where such a direct access can be useful arerk@notocols. By making use
of the memory management features of the CPU it is possibedoess network data from
application down to hardware level without copying it. Gdawsly, this requires direct hardware
access to the network hardware buffer but it can signifigandrease performance.
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2.1.6 Realtime operating systems

Another way to characterize operating systems is theingrnehavior and their suitedness for
realtime applications. According to the comp.realtime [#&@], an operating system has to
provide several functions to qualify as a “realtime” opegrgisystem:

What makes an OS a RTOS (Real-Time Operating System)?

e A RTOS has to be multi-threaded and preemptible.

e The notion of thread priority has to exfst

e The OS has to support predictable thread synchronizati@hamsms.

e A system of priority inheritance has to exist.

¢ In general, the behavior of the OS should be predictable andrdented.

To evaluate a realtime operating system for its suitedn@sa Epecific application, the
following figures should be known:

e The interrupt latency (i.e. time from interrupt to task exéen) : this has to be com-
patible with application requirements and has to be pratlet This value depends
on the number of simultaneous pending interrupts.

e For every system call, the maximum time it takes. It shouldpledictable and
independent from the number of objects in the system;

e The maximum time the OS and drivers mask the interrupts.

This is a very practical approach to define a realtime opegatystem. More formally, there are
a number of realtime operating system services that an tipgisystem has to make available.
These requirements are defined in standards such as theelSQM5-1, Portable Operating
Systems Interface (POSIX) standard. The realtime-spegéits are in the POSIX.1b-1993
addendum. The same realtime operating system standaodaralpart of the Open Group’s
Single UNIX specification.

It defines the API for the following realtime-related opérgtsystem services:

e Semaphores

e Process memory locking
This is a function to prevent the kernel from swapping outri@mory segments of a
process to a swapfile on disk.

e Memory mapped files and shared memory objects
This allows threads to access files as part of their addregespithout any explicit disk
0.

2as there is for the moment no deadline driven OS, that is arh@%an base its scheduling-decisions upon the
task deadlines directly.
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e Priority-based scheduling

¢ Realtime signal extension
Unlike the normal signals, these signals are queued, iteoitimes the same signal is
send to a process, it will also receive it two times.

e Timers
This defines the resolution of the systems realtime clockgradularity for time delays.

e POSIX Interprocess communication

e Synchronized input and output
This allows the configuration of I/O operations so that theyunbuffered and actually
written to the output device when the system call returngré&tore, the execution of the
program and the 1/0O operations are synchronized.

e Asynchronous input and output
This allows explicit queuing of IO data and asynchronousaligg of completed opera-
tions.

All these services do not make every system using them dmeaftystem according to the
definition of realtime computing. However, by using theseises, it is much simpler for the
implementer of a system to predetermine the realtime ptiegesf the system while designing
it. But still, the final system may not meet all constraintsnirthe design phase.

2.1.7 Exception handling

Classic operating system concepts strongly differentieiisveen user programs and system
programs and often require hardware support to enforcedtfierence. The kernel runs in a

privileged CPU mode that allows the execution of differerstiuctions and the access of cer-
tain memory areas. The unprivileged CPU mode cannot adeess instructions and memory

areas. In case such an attempt is made, the current prodessrispted and the CPU is put

back into privileged mode executing an exception handlee @xception handler is part of the

operating system and deals with the privilege violatione Triterfaces between the privileged

kernel mode and the unprivileged user mode are specialtyresd through system calls and

context switches that give up privileges. The idea behinsl @pproach is to safeguard the

kernel from unwanted interaction with the user progranhegitecause of program errors or
malicious intent and also protect multiple user prograramfeach other.

Many advanced operating system techniques such as viremlony and paging require priv-
ileged CPU modes and hardware support through a memory mareag unit. The memory
management unit can translate virtual addresses accegsapbhvileged CPU instructions
into physical memory locations and it can execute a prieitegxception handler in case the at-
tempted access was either forbidden or the virtual addrassat present in physical memory,
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a so-called “page fault”. The kernel, running in privilegedde, can then load the required
page from disk, blocking the unprivileged process until plage is loaded. Then, the kernel
reprograms the memory management unit and restarts th&ileged process with exactly
the same instruction that caused the page fault exception.

The privileged kernel mode is also necessary to enforce ptioperties of the system such as
stability against bad programming and fair multi-user andtrprogram operation. Moreover,
the privileged kernel mode is essential for system secgutéta integrity and process account-
ing. These requirements usually exist in a professionalpzdimg environment, where multiple
users share a central computing system and often pay fanshige.

In a PC, reliability and stability are not considered thapariant, so most desktop operating
systems such as MS Windows or MacOS do not protect systenaskdiemory and resources
from being accessed by other tasks, although these systemgse the privileged CPU mode
internally if the system CPU supports it. The focus of systsign in these systems was
clearly defined by usability considerations and low rearctimes to user input. This does not
necessarily mean that these systems have to be less statbtkjebto the high amount of in-
stalled software and the untested interactions, somegmgtend to behave in an unpredicted
way. Since the OS kernel does not protect the resources ofgagom from bad interactions by
other programs, the whole system tends to become unstabigadgram failures.

In embedded systems, the design focus is usually on réfjalliut embedded systems often
also have restricted hardware resources and are lacking muttionality. As an example, the
RoboCube’s MC68332 CPU core CPU32 (see Section 3.1) sigppagtivileged CPU mode,

but it cannot enforce memory restrictions of user prograuestd the lack of a memory man-
agement unit. But even if an embedded system has the necéssdivare for memory pro-

tection, the question is how the system should react to atwwol. The approach of the classic
multiuser operating systems is to abort the process thatechthe violation and eventually
store debugging information for a “post-mortem” analysisso-called core dump. This so-
lution is useful during the development phase of an embedgstém, but in productive use,
this approach might lead to even more damage. For exampléyrtane 5 rocket was actually
destroyed by a failing acceleration measurement systetmths re-used from the Ariane 4
rocket. Due to the higher acceleration of the new Ariane &,system caught a non-critical
floating point overflow that lead to a system core dump. Thie-ctump used up other sys-
tem resources that in turn influenced the flight path comtrothe rocked deviated from its
pre-planned course and had to be destroyed.

Another approach is to declare the reaction to exceptionbBarapplication program, so that
only exceptions that are not “caught” by predefined routileesl to a failure. However, in
the final program, these exceptions either do not occur ce h#so to be dealt with properly,
otherwise the program still fails.

The obvious approach is to write programs in such a way tlet tton't need the exception
handling.
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One way to be sure that no failure occurs is to formally prdwe ¢orrectness of all parts
of the system including hardware and software. Althougk #pproach is practically used
in some applications, e.g. in the formal verification of tlystem software of smartcards, it
cannot be applied in general since data about some part® afygtem is not available for
formal verification, e.g. the hardware itself. The otherljbemn is that a verification needs a
specification against which the program is verified. Errorhe specification therefore cannot
be discovered by program verification. Although this soumidgl, it is a hard problem for
systems that interact with the real world, as do many emlzkdgistems. The acceleration
measurement in Ariane 5 worked perfectly well accordings®pecifications, but these were
only specified according to the maximal acceleration of aei4 rocket.

Even for formally verified systems like smartcards, where ititerfaces are clearly defined,
e.g. in the form of communication protocols and the goalshefdpecification are clear, e.g.
not to leak secret information, there may be ways to circumtige goals of the specification
without violating it. Differential power cryptoanalysis such an approach which works by
observing the power consumption of the smartcard devicE8]

However, in a controlled environment, formal verificatienvery successful. Although com-
plete systems can hardly be formally verified down to the \ward level, it is still possible to
formally verify some aspects of a system. There can be soswgrgtions on the correctness
of the used hardware components and of the environmentditzmrs (temperature, electrical
power, clock speed) they are used in, then the interactitimeske hardware components can be
formally verified, e.g. in form of a timing analysis.

With such a formally verified hardware, a software systenmin on this hardware can again
be formally verified as long as it does not depend on intesastivith the environment.

If there is an interaction with the environment, again, ¢hieave to be assumptions on these
interactions. In controlled environments such as factotpmation, these assumptions can be
made, i.e. from the rate that goods are processed, theihtyd¢ig distance the goods have to
be moved and the power of the actuators they are moved witit, gssumptions on the timing
of such a system can be deduced. On the other hand, the syateta he protected against
a violation of these assumptions, i.e. humans being présene processing area. Therefore,
these systems usually are fitted with emergency shutdowsoeeto protect humans and the
processing system in the event of unwanted interaction.

But what can be done, if the environment cannot be contraflestich a way? The system has
to behave in a “best effort” way, but system failure cannotibeided in general. If a failure
occurs, the system can use a number of fall-back stratemiesdver from it.

One of these strategies is multi-programming in which threesaystem component is imple-
mented several times, often by different people. Theserpgrogcomponents are then run in
parallel and their outputs are compared to each other. I ttese is a difference in output,
a majority vote is used to deduce which output is consideoeletvalid. These approaches
were e.g. used in the spaceships of the Apollo program[ODbjiously, this strategy at least
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triples’the resource use and development work. Multiprogrammimgpeatect against pro-
gramming bugs but does not protect against systematicserror

Another approach closely related to multi-programmindhés fail-over strategy. In this case,
two identical (hard- and software) systems are implemewnteidh monitor each other’s per-
formance. In case one of the systems fails, its partner @kesits task. This strategy doubles
the hardware and needs additional components for morgtariil fail-over. It protects against
hardware failures and some software errors and is ofteningbd context of high-availability
server systems.

2.2 Conclusion

From the analysis of the different approaches to operatisgm design, the design of CubeOS
was derived. CubeOS should be as modular as possible, so@onent system was chosen
as the main design approach. Unlike Chorus which bases thpaent system on a micro-
kernel, CubeOS should do without. Since the hardware pratfor CubeOS does not support
memory management, using a microkernel would only decrpadermance due to the nec-
essary context switches. Without memory management, tengabe of the isolation of the
different processes running on the micro-kernel agairgt ether cannot be enforced. Further-
more, it was decided that only one application should rurherhardware at a time. Therefore,
multitasking with multiple address spaces was not implgsgeim favor of a pure multithread-
ing solution with one common address space for the operatystem and the application
program. This also improves efficiency since no addresda@esion is needed when pass-
ing data between the operating system and the applicatiogrgm. Although the hardware
supports a privileged and a non-privileged execution modky, the privileged mode was used
for both the application program and the operating systegair the reason for this was that
the hardware can not enforce memory protection, therefsiag the non-privileged mode for
application programs does not improve reliability.

3To get a clear majority vote, at least three independentémphtations are necessary. With only two imple-
mentations, a failure can be detected, but not resolved.
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Chapter 3

The CubeOS Kernel

To understand the implementation of the CubeOS kernel, fitss necessary to inspect the
RoboCube hardware in some detail. The full documentatidgh@RoboCube hardware can be
found athttp://arti.vub.ac.be/"thomas/robocube/overview.htm l.

3.1 Hardware: The RoboCube

The so-called RoboCube has been designed as a universialgpepose hardware system for
autonomous systems design at the VUB Al Lab. However, Culle3®een designed in such
a way that it can be used on almost any hardware using a Maté6xx CPU, provided that

the implementor of such a system is willing to rewrite sonme-level system-dependent code.

The RoboCube is the last development in a long tradition dfestded robotic hardware archi-
tectures that have been developed at the VUB Al Lab.

Earlier architectures were systems based on embedded BwWdrarsuch as the LOLA bases
and the Sensory Motor Brick (SMB-I) based on the 68HC11 &lgitJ, and later the SMB-II
based on the MC68332 CPU. CubeOS is also capable to run ohatdsvare. The SMB-II
has been designed as a computational core for experimetitseliavior-based robotics. It
therefore contains a special-purpose kernel in its ROMithalble to read sensor values, write
actuator values and contains some simple hardware-claatriining functions.

The SMB-II was intended for medium-sized robots, e.g. e@dtom construction kits like
LEGO and Fischertechnik.

The SMB-II software system runs in fixed time steps. One stegtarted in a fixed schedule
every 25 ms. A step starts by the kernel reading sensor valueasall sensor inputs. Then, the
user program is invoked that runs several behavior prosegdeer all behaviors are completed,
the kernel writes actuator values into the systems actiatut waits for the next step to begin.

65
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0

Figure 3.1: The RoboCube CPU board

This system has several drawbacks, e.g. it is restricteddotly this system structure and it
reacts badly to overload conditions. If all behaviors caro®terminated before the next step
is triggered, the system fails and aborts execution imntelgia

The SMB Il hardware has a fixed amount of 1/O interfaces thatrerdwired on the board
to specific functions. Although there are many of these faters on the SMB Il, extending
them is only possible in limited ways and since the kerneideesl in ROM, it cannot easily be
extended with additional drivers.

These restrictions of the existing SMB Il system led to theettgpment of the RoboCube.

3.1.1 CPU

The RoboCube’s CPU core is the Motorola CPU32[CPU90] cotds TPU core contains a
subset of the functions of the well-knows MC68000 CPU. Thénnd#fferences are that the
CPU32 is lacking support for an external floating point und aome differences in the instruc-
tion set. The CPU32 core can be embedded into several haremaironments and packages.
The one used on the RoboCube is the MC68332[MC690] MCU (Muwntroller Unit) which,
together with the CPU32 core, contains additional hardi@rembedded controller usage.

The CPU32 has the following characteristics:

e 32-bit internal register set for address and data regjsd@rbit integer unit, 32-bit com-
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Figure 3.2: MC68332 internal device structure

mand words, in other words a full 32bit CPU

e linear address space of up2® = 4 Gbytes of memory locations. However, in hardware
implementations that use the CPU32 core, this address spactfully available due to
hardware interface limitations. The RoboCube uses a maxiwi2?! = 16 Mbytes of
memory locations.

e 256 hard/software interrupt vectors that can be used toigaasynchronous interrupt
service to hardware devices. The external device can gptwf vector to be called
together with one of 7 interrupt levels.

e a special hardware interface, the background debug moedaoé can be used to ana-
lyze the CPU at run time. It provides functions to inspect ehdnge data and control
flow of the CPU together with hardware breakpoints and CPtg stéormation.

3.1.2 System

Apart from the CPU, the MC68332 includes several other @ésvi@ he internal structure of the
device can be seen in Figure 3.2

¢ the system integration module SJMC690] consists of five functional blocks that sim-
plify the construction of a controller system.

— the system configuration and protection block provides suigien of the CPU32
signals. It contains the reset status logic, the halt mgnitee bus monitor, the
spurious interrupt monitor, a clock prescaler and two tantire software watchdog
timer and the periodic interrupt timer.
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— the system clock contains hardware to generate all systeok<lfrom a single
inexpensive 32768 Hz crystal.

— the external bus interface controls the interface betwiernternal MC68332 bus
that connects its modules and the external bus that is ussehttect external de-
vices. It also contains functionality to use some of its exdébus pins as general-
purpose I/O pins.

— the chip select block provides 12 programmable chip sebbetscan be used to
map external devices into the address space of the CPU. Edloh ohip selects
can be configured independently with its own base addressk Isize, wait state
configuration etc. Alternatively, the chip select pins ctsode used as general
purpose I/O pins.

— the system test block is used during factory tests.

¢ thetime processor unit TPUs a dedicated micro-engine that operates independently of
the CPU32. It contains 16 internal channels with dedicatedare 1/0O pins, each of
these channels can execute a so-called TPU functions. Eneseicrocoded programs
that provide a certain functionality, i.e. pulse-width m&ted output. Any channel can
execute any available TPU function, a priority based scleedn the TPU distributes
micro-engine execution time to the TPU function that arese.u

¢ thequeued serial module Q3RISM96] contains two functional blocks.

— the serial communication interface (SCI) provides a usigkasynchronous re-
ceiver transmitter (UART) with programmable baud rate aaudty

— the queued serial peripheral interface (QSPI) providesr@wsae interface to ex-
ternal devices that comply to the Motorola SPI[QSM96] if#tee standard. The
QSPI can execute up to 16 automatic transfers between ekiemices and its
internal dual-ported 80 byte RAM that is available to the GRU

e 2048 bytes of static RAM. This RAM can also be used as micreaoémory for the
TPU to store the microcode of new TPU functions.

Next to the MC68332 MCU, the RoboCube system uses several ddvices. In its minimal
setup, the cube system only contains the MCU, 256k of SRAM Higk ROM containing
the boot monitor software. In this setup, the system useMtbds internal SCI interface for
communication and OS image download.

More recent implementations of the RoboCube use a 1MbyshHROM for the boot monitor
software and additional permanent storage. By adding SRA&hary boards, the Cube’s
RAM can be extended to 12 Mbytes.
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Figure 3.5: A stack of Cube boards

3.1.3 Busses

The RoboCube is an open-bus architecture: This means thatyttem bus can be extended
through additional modules. The physical connection oflibie is done through a vertical
stacking connector system. The system therefore formsapinodules that are stacked on
top of each other as shown in Figures 3.4 and 3.5. Some of thedales exist only once in
such a stack, other types of modules can be used severalitintessame stack.

One specific RoboCube module, the bus extender module nerttardware to attach addi-
tional busses to the cube system. The Bus board contains &RDWAth two serial commu-

nication interfaces and two 12C bus controllers that fornridde device between the internal
CPU bus and an external serial 12C bus. The 12C bus is madklaaihrough the RoboCube
stacking connectors and through additional connectordherbts extender module. 12C is a
universal serial bus system that is implemented in manycds\and is used to attach multiple
interface types such as binary 1/0, A/D input or D/A outputides to the RoboCube system.

3.1.4 i/ointerfaces

The RoboCube system has a multitude of interfaces that carsdxk to attach i/o devices to
the system. Depending on the application, the choice of btteedifferent interfaces leads to
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Figure 3.6: The RoboCube Bus Extension board

different application performance due to the differentrebteristics of the interfaces.

e TheTPU[TPU93] can be used as a very powerful digital i/o interfdnd,the number of
interface pins is limited to 16. Due to the TPU micro-engiités often used for tasks
that should be performed independently without CPU intetiea such as motor control,
wheel odometry or ultrasound sensing.

e The CPU busis even more flexible, but has to be kept as short as possilgjeai@ntee
proper system operation. Moreover, any device attachdwtetG@PU bus can only operate
through direct CPU control. The CPU bus is often used for leuyi motor control
such as direction bits or low-latency high-bandwidth ifaees as the RoboCube Digital
Camera Interface.

e TheSP[QSM96] and2C[PCF97b] busses are low-bandwidth serial busses that dgn on
be used for low-bandwidth devices with medium latency. Bisth be extended to about
one meter. The SCI's drawback is that it need dedicated efeislines to select one of
the attached devices but the MCUs QSPI interface can do speratmns without CPU
intervention. The 12C bus does not need dedicated chiptdéles, it can be operated
with only three wires connected and there can be up to 12¢eewttached to one 12C
bus. Due to the in-band signaling of the device addressaté&nty is higher than the
SCI’s latency and the bus bandwidth is also lower.

e The UART interfacessuch as the SCI[QSM96] and the DUART[SCN95] can also be
used to connect external devices. These serial interfamede extended up to sev-
eral kilometers through standard transceiver devicegl@gs transmitters etc. However,
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Figure 3.7: A RoboCube 1/O board

their bandwidth is limited and additional protocols haveb®implemented to ensure
reliability.

3.1.5 intelligent devices

As already said, the RoboCube contains some devices whitlexacute functions without
explicit CPU control. The most complex device in this clasghie TPU. Communication
between the TPU and the CPU happens through a shared RAM hiela iw mapped into the
memory of both systems. From the CPU'’s viewpoint, the TPUalaos some global registers
such as clock control registers and a set of registers (oaindoits in some global registers)
that are associated with one TPU channel. By setting theneltapecific registers, the CPU
can program the TPU so that one specific TPU function is erecan this channel. This
TPU function can change register contents in the shared RAdd ahich then can be read
by the CPU. The TPU can also signal asynchronous events ©©RkEby generating a CPU
interrupt. Apart from the preprogrammed TPU function méode that is stored in its mask
ROM, the TPU can also execute newly-written code. The CPltewii PU machine code into
the MC68332's internal RAM area and switches the TPU intolatimn mode. The internal
RAM area then disappears from the memory map of the CPU anded by the TPU as
microcode memory.

Another intelligent device is the QSPI interface. It contad microengine that can automati-
cally transfer data from external devices into its dual@dram area. By using this function,
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external devices such as A/D converters can be used as ivieymemory mapped.

3.1.6 boot monitor

As already seen, the MC68332 contains the SIM which in tumtaios the programmable
chip selects. These are hardware signals that are usedigo as$ernal devices to memory
locations in the address space of the CPU. Whenever an addrdse programmed range of
the chip select is accessed, the chip select signal is texfived that the external device can
respond to the memory operation. To run programs on the Rai®CGhese chip selects have
to be properly initialized. One special chip select (CSBQ@Tutomatically initialized upon
reset, itis set in such a way that the corresponding deviceged into memory from address
0 on, where the CPU fetches its reset stack and reset progranter (PC) values. On the
RoboCube, CSBOOT is therefore connected to a ROM devicehaduntains the RoboCube’s
boot monitor code which then initializes the chip selectfieAthe initialization, the memory
map looks like this:

| startaddr end addr size | function

000000 OFFFFE 1M | SRAM

100000 3FFFFR 3M | SRAM extension
400000 6FFFFR 3M | SRAM extension
700000 9FFFFR 3M | SRAM extension
A00000 CFFFFH 3M | SRAM extension
D0O0000 DFFFFH 1M | -
EO0000 EFFFFHR 1M | FLASH-ROM
FOO000 F3FFFR 256K | Camerd
F40000 FDFFFH 631K | -
FEO000 FEFFFR 64K | Fast BinOut
FFO000 FFDFFH 56K | -
FFEOO0O FFE1FR 512 | 12C-B!
FFE200 FFE3FR 512 | 12C-Al
FFE400 FFE5FR 512 | Duart
FFE800 FFEFFR 2.5K | -

FFFOO0O FFF7FR 2K | CPURAM
FFF800 FFFO9FR 512 -
FFFAOO FFFAFF| 256 | SIM
FFFBOO FFFBFH 256 | CPURAM Cirl
FFFCO0 FFFDFR 512 | QSM

FFFEOO FFFFFR 512 | TPU

'depending on the hardware, the initialization of the chipate of the 12C controllers, the camera and the fast
binout is left to the operating system
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It also initializes the serial port terminal devices of theblBCube and waits for user interaction
on these interfaces. After the user selects one of thesdaoés by sending a 0x13, the boot
monitor presents its prompt and waits for commands. Thesemands consist of system
tests, memory inspection, OS download and boot instrustido avoid damaging the memory
content of the system SRAM, the boot monitor only uses the 883@’s internal 2k RAM for
its stack and variables.

3.2 Software Environment

There are multiple programming languages, compilers atetgreters for the 68xxx archi-
tecture available, both commercial and non-commercialbeQs$ is implemented in C, the
C-Compiler chosen for CubeOS is the Gnu C-Compiler.

GCC was chosen for several reasons:

e Isis available for free. CubeOS was intended to be avail@miolearious applications in-
cluding teaching and research. The cost for a commerciapitentan easily exceed the
available financial resources, especially in teaching e/aezompiler license is required
for every student. GCC is released under GPL[GPL91] license

e Itis available in source code. No compiler is completely-fneg. To be able to analyze
the compiler’s internal workings has proven to be valuatidewdebugging CubeOS$.

e GCC is available for multiple platforms, both as native cderpand cross-compiler.
Therefore, the user of CubeOS has a wide choice of platfoontie tused for develop-
ment. As an additional advantage, certain parts of Cube@®i dwe tested with the
native gcc on the development computer before they weredntred into CubeOS, i.e.
some parts of the scheduler.

e GCC already has a proven track-record for its use in embeeddtbnments. Its source
code package contains functions to build arbitrary crasegilers from any supported
host platform to any supported target platform. Inthe casaubeOS, the target platform
compiler (for them68k-cofftarget) was compiled (among others) for the host platforms
Sun Solaris and Linux i386. Other host platforms can easégted by the user.

e The GCC package also contains compilers for objective-CCariel The C++ integration
(g++) can be used together with CubeOS to produce C++ agiplicarograms running
on the RoboCube. The gcc 2.95 package also contains a SThatitte library, making
g++ an (almost) ANSI-C++ compliant compiler.

2At one time, gcc version 2.8.1 was found to produce invalidecovhen configured for the 68332 CPU. After
analyzing the compiler, one of the tables specifying the capabilities for the MC68332 CPU was found that
specified the presence of a floating point unit. Therefore cttmpiler generated floating point opcodes instead of
emulation functions. Changing the compiler configuratioomnf 6833x to generic CPU32 fixed the problem. In
GCC 2.95, the problem was corrected.
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e GCC is compatible with several free libc implementationsioag others th&Cygnus
newligNEWT] and theGnu libdGLI] and the free gnibinutilgBIN] collection.
GCC provides some extensions to the C language to integsaésrdler code.

For example, the following instruction in a C sourcecode idads out a specific hardware
register of the MC68332 CPU that is only accessible via aiapassembler instruction:

Listing 3.1: C-Assembler-Integration with gcc
voi d * VBR_address;

asm ("movec _%vbr_,  %d0");
asm ("movel _%%do0,%0":"=m" (VBR_address));

The result of this operation is stored in the C variabBR_address .

The integration of assembler code is important for codinghivare-dependent code such as
interrupt handling and the context switch.

For the C library (which also is an integral part of the C laage implementation), the Cygnus
newlifNEW] was chosen for it's reduced memory usage and free ahiditl, it is released
under the IGPL license. [LGP99]

To compile the operating system and application progranugeOS uses other programs of
the GNU tool chain, such &8NU make GNU Id andGNU objcopy The Make utility controls
the complete progress of building CubeOS object files amdriiss.

Some code within CubeOS has been derived from freely alilagburces, such as
the XDR implementation that has been derived from the XDR lémentation of Sun
Microsystems[Sun87].

3.2.1 Details of the C language implementation of GCC for th&oboCube CPU

To be able to prepare the C runtime environment during staha to integrate assembler and
C language, the way C instructions are converted into maadde must be known.

o flat memory
The m68k architecture uses a flat memory model, all pointe¥s32 bit wide. The
CPUS32 contains 8 address and 8 data registers. Addresgere§yisis used as a stack
pointer.

e stack, heap, text, data and bss
The RoboCube’s memory map after the initialization corgane continuous memory
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space from address 0 on. In this memory space, all relevéasttactures are positioned.
After download, the program memory looks like this:

| start addr end addr | function \
000000 0003FH 1024 bytes| Interrupt vector table
000400 text
data
_end bss
_end available
MEMMAX stack pointer

the _end symbol is set by the linker and denotes the last memory locdtiat is used
for program and data. The stack pointer is set to the maximamany location. The
stack grows downwards, memory allocatednbglloc()  grows upwards.

symbols

All ¢ functions and variables are prefixed with_aymbol, there is a macro to make
use of the c¢ function from within assembler source files. &heme several special
symbols set by the compiler that do not correspond to funstior variables such
as _end and _start . Details about these symbols can be found in the compiler
documentation[GCC].

calling convention

A call to a C function is implemented by pushing its argumemtshe stack and execut-
ing a JSR to the called function. The called function assuttnaisit can overwrite the

contents of AO, A1, DO and D1. In case it wants to make use aragmgisters, it has to
restore them afterwards. This is important for interruptise routines as will be shown
later on.A7 is used as the so-called frame pointer.

frame pointer

The frame pointer is used for finding the current storage doall variables and argu-
ments. Each function has its own frame pointer that pointhéostack location after
which arguments and local variables can be found. The fravimegys form a linked list

which is set by the compiler. This is used for runtime debugdo find the stack frames
of all called functions.

assembler integration

GCC has means to pass data between assembler and C. In the §/pdools are de-
clared that can be used in the assembler part and are thexwedplith the appropriate
addressing scheme in assembler instructions.
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3.3 The global design of RoboCube

The physical structure of its hardware makes the Cube Systeyflexible. Depending on the
application, multiple existing and additional specialfpase hardware modules can be com-
bined to form the computational core of an autonomous systéhe operating system has
to adopt to this hardware component architecture by progidnechanisms for tailoring it to
the current hardware configuration. Since the user may lafdication-specific hardware
modules, it should also include mechanisms for integrasipglication-specific code on the
hardware driver level.

On the other hand, hardly any application will use all feasuof the Cube System. Unused
features could still interfere with the running system biyngsup memory- and CPU resources.
To avoid this, the generated executable should be minimsahduld only include the neces-
sary code for the application and no dead code for featuiasattie not used. If necessary,
unused hardware features should be disabled automatid¢alighermore, intelligent 1/0O de-

vices may require additional binary code that is not exetimg the main CPU but by the

device. Examples are micro engine code executed by the TBidutation mode or in-system-

programmable hardware devices [ISP01].

A minimal cube system consists only of the CPU board with tle8332 MCU, Ram and
ROM. By this, the hardware features contained on the CPUdbzer be assumed to be present
all time. In this case, the MCU’s SCI interface is used as tivagry console interface and for
software download to the boot monitor. The operating systamt support this as a fall back
configuration at all times as it will often be used to test nemdded hardware.

Building autonomous systems is a complex process with bogsrong in hardware and soft-

ware. Each component of the operating system is thereforglemnented with corresponding
test code that tests proper operation of the component aselof the corresponding hardware
device so that bugs can easily be identified. Although thi®iglirectly related with exception

handling mentioned in Section 2.1.7, this approach is aalddéutool to analyze a failed system
to find the cause of the failure later on.

3.3.1 CubeOS components

The CubeOS kernel consists of several basic componente isetise of component-oriented
software engineering. Depending on the hardware configarahey are linked into the final
executable.

The CubeOS components use C language binding as interfagentmn. All interfaces of a
component have to use a strict naming convention. The coemgrame in capitals goes first,
then an underscorethen the routine name. For examp&RNssleep() is a C-function
interface to thessleep()  function of theKERNcomponent.
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QSM TPU RG RCJ DUART
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Figure 3.8: Cubeos internal component structure

Each component has an initialization routine that has tcaliedtbefore using any other inter-
face, by convention, it is called_init() for a componenkK. The init() routine must be safe
to be called several times. Components may register a tlaliration function with atexit().
Components can implement private routines. These are chdmka “” as first character of
the function name. These routines are implementationrotpe, so they may not exist in a
specific implementation of a component and are thereforsidered unsafe to be called for

general applications. Private routines do not need to berdented.

Components can contain global state information kept ierivetl variables. If their content is
implementation-dependent and not to be used outside ofdimpanent, these internal vari-
ables should also be marked with a trailing, “otherwise they can use arbitrary names, but
naming both of function and variable interfaces should bmaemonic as possible. Compo-
nent variables have to be considered read-only from othmpooents although the compiler
and CubeOS cannot enforce this.

CubeOS contains several resources for component configuiatform of static structures.
One such structure is the globabnfig structure that holds hardware information such
as hardware addresses. The config structure is accesseé byrtiponents through global
macros. This approach allows several versions of the binarmgponents to be generated,
either with or without reference to the config resource. Comngmts may define their own
configuration datastructure as it is in the RobLib companenesented in Section 4.1.

If CubeOS is compiled with a resource-based configuratiomaaro like DUARTBASEIis
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evaluated toconfig.duart base. In a static configuration, it might be evaluated to
OxFFE400. In case of the resource-based configuration, the usergrogpecifies the re-
source , e.g. by supplying an initialization function thattes the appropriate values into the
config structure.

Figure 3.8 shows the global component structure of Cube®8.afrows show the direction
of function calls between components. This graphical stinechas been extracted from the
CubeOS library by extracting all function names in all objéles with the nn{BIN] tool.
The object files are grouped into components by evaluatieagitme prefix of the functions it
defines. Then, all undefined function names in object filesrgehg to a component are taken
as calls to other components and a directed call graph idrootesd from this. This graph is
drawn by using the AT&Tdot [Kou96] library.

The KERN component
APP QSM TPU
KERN
DUART LIBC LIST NEWLIB TTY

This component contains the basic CubeOS kernel functions.

e Thestartup codgrepares the hardware and sets up the basic C runtime emardnvith
heap and stack memory. It does not contain a callable icedad calls thenain()
routine of the application.

e The memory access macraimplify the access to memory-mapped hardware devices.
Since they are implemented as macros (and not as C-funytioey are not using the
cubeos naming scheme and are not really a part of the KERNaoemp. But since they
are defined in the main kernel include fidebeos.h they are listed here

e The periodic timerinterrupt service routine advances the system clock arakes/the
scheduler. It is automatically initialized and does noteéhawcallable interface. However,
there is a way to install application specific routines i@ timer interrupt.

e Thescheduleimplements basic preemptive multi-threading. Dependmg®configu-
ration, it provides priority-less round-robin schedulimgpriority-based scheduling. The
scheduler has multiple interface functions to create, esudpwake up and kill threads.
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It uses the memory management of the C library to allocate angfor the stack of new
threads. The implementation of the scheduler is describ&skction 3.4.4.

e Thethread synchronization primitivesich asemaphoreandmutexeprovide functions
to protectcritical sections Their implementation is described in Section 3.4.6.

e The interrupt vector table manageallows the installation and de-installation of cus-
tomized interrupt and exception handlers. It is descrilpe8dction 3.4.3

e Theexception handlecatches CPU exceptions, halts the system and informs the use
It does not have a callable interface. Its function can bermaen by installing a dif-
ferent handler in the interrupt vector table for the coroggfing exception vector. Its
implementation is described in Section 3.4.7

e Thesoftware resetunction triggers an external hardware reset via the eatevatchdog
hardware.

The LI ST component

AP KERN

N/

LIST

This component implements basic data-structures that.greused by the scheduler. It con-
tains a double-linked list data-type with constant timerapens for insertion and removal. Its
implementation is described in Section 3.4.2.

The LI BCcomponent

KERN

LIBC

This component interfaces the CubeOS system with the ndWdiG[NEW]. It provides the
hook functions for basic I/0 and memory management. Thes& hoictions are called by
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the LibC when a user program (or CubeOS component) callsfiibctions® Note that this
is component does not stick to the global naming conveniiorcémponent functions since
the functions called by the libc are fixed, exgad() and LIBC is there to provide a clean
interface to the C-library.

The TTY component

APP KERN NEWLIB

\TTY /
I\

DUART

Cl

This component implements basic serial 1/O. It contains ta-daucture,iobuf, that imple-
ments a linear buffer which is used for buffered I/O. It alsmtains aty structure that holds
all information for a serial device and provides deviceeipendent access to the serial port
functions.

The DUART component

APP FBIN RSM TTY

N/

DUART

KERN

This components implements the low-level tty driver for tlwe serial UART communication
channels of the MC68681 DUART[SCN95].

3Although the application program can directly call the LIBa@mponent, this usually is not necessary since the
application calls the C library which in turn calls the LIBGrictions.
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The QSMcomponent

s

KERN SC

This component implements the low-level driver for the MG88s internal queued serial mod-
ule. The QSM contains two sub-modules, the QSPI and the STlissa serial UART com-

munication channel like the two on the DUART. QSPI is a quengsicontroller for the serial
peripheral interface (SPI) bus.

The TPUcomponent

APP FBIN

N/

TPU

KERN

This component implements a simple API to access the MCG3382) module. It also con-
tains functions to install call-back interrupts. These ased to signal TPU states back to the
CPU without need for the CPU to poll the TPU state.

The | 2Ccomponent

APP

12C
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This component implements a driver for the Philips PCF8B84{97b] 12C Bus controller
and for several[PCF97a][PCF97c] I12C devices connected Tdhe component implements an
interrupt service routine that communicates directly wiith hardware and a command queue
in which application programs insert I2C commands. For tfierént 12C device classes, there
are discovery functions that discover all devices of a ciasbhigh-level functions to operate
the device.

The FBI N component

APP

FBIN

N

DUART RC TPU

This component implements a device-independent intetiaaarious “fast” digital outputs
of the RoboCube. These outputs are handled separately thiegare often used for motor
control. To simplify code reuse, FBIN provides a generi@iféce to these outputs that is
independent of the hardware implementation. FBIN implesé¢his for the TPU pins, the
DUART's output pins, special purpose memory-mapped outpgisters (8- or 16-bit wide)
and general-purpose /O pins of the MC68332 MCU.

The RSMcomponent

APP

DUART

This component contains the low-level network code for apsémetwork implementation
based on serial I/O channels and Radiometrix]Rad97] radmsteiver modules. It provides
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manchester encoding for outgoing data, datagram checkantha radio state machine (thus
RSM) for datagram reception. The radio state machine cafected to any TTY structure
in such a way that instead of buffering incoming charactiese are directly processed by the
state machine.

The XDR subsystem

APP

N

XDR XDRMEM XDRSTDIO

N

NEWLIB

This is a port of the Sun Microsystems external data reptagen standard that allows ef-
ficient data exchange between systems using differentybir@dting conventions for simple
and complex data-types. XDR handles conversions betwea@usanteger and floating-point
standards. This component also bends the global compoaamhg convention to provide a
generic XDR implementation that is compatible to the onentbin other operating systems.
Therefore, the XDR functions use a lowercase xdr insteatieoféquired XDR.

The hardware configuration components:RCJ, RG

FBIN FBIN

RCJ RG

These components only contain an initialization routiret firepares a hardware-specific con-
figuration for special-purpose hardware systems. More e$d¢hcomponents can be added
whenever there is a new class of RoboCube hardware thatéssogported. (The RCJ compo-

nent initializes the RobCup Jr Cube, the RG component idi®RoboGuard special-purpose

base board.)
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3.4 Detailed aspects of the implementation

CubeOS is an open-source operating system, the most rementry of the operating system
and its documentation can be foundhdtp://arti.vub.ac.be/cubeos/ . The im-
plementation described here is the one of CubeOS Versia@10.40nly some parts of the
implementation are shown in detail, all other parts and alder versions of the code can be
found on the website.

3.4.1 System configuration

CubeOS is distributed in source code form. Its source-cagedonsists of several subdirecto-
ries in which the code for the different components is storeaentral makefile controls the
build process that compiles the source-code and archivelgjatt files into the CubeOS library
file libcubeos.a. Additionally, a set of global configurascare kept in a separate subdirectory.
These configurations consist of hardware-dependent h&betein which the configuration for
one specific hardware subset is defined as C preprocessansnddre different configuration
options are chosen by one specific macro declared in the Igioslkefile. For each known
configuration, a separate version of the CubeOS library eaautomatically generated by a
global shell-script.

For each of these different hardware configurations, atis&ept exists that specifies the mem-
ory options for the target and the locations of the corredpmnCubeOS library file. When the

application program is linked with the CubeOS library, timkér automatically decides which

components are to be included in the target file. This can be dimce the linker finds unbound

calls to the initialization routine for each used comporeet therefore links the corresponding
object files.

3.4.2 Abstract datastructures

The CubeOS Kernel contains some general-purpose datdwsts that are used by the system
and that can also be used by application programs.

The iobuf data-structure implements a simple FIFO buffedusr communication i/o.

Listing 3.2: The internal list data-type structures

#defi ne BUFLEN 1024 //!< default buffer space

struct iobuf {
unsi gned short head; //!< the head pointer
unsi gned short tail; /[1'< the tail pointer
unsi gned short cnt; /1< the nunber of chars
unsi gned short buflen; /1'< the configured buffer space
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char data[BUFLEN]; /1< the data storage area
h

To avoid the overhead of allocating and freeing buffer mgnaynamically, a static internal
buffer of 1024 bytes is allocated for every iobufWith the internal buflen field, it is still
possible to reduce the buffer length, i.e. to limit time gsla

Another data-structure is the generic list. Internallyg tHST component consists of several
access functions and two data-types. The list data-steiswpports the usual list operations
in O(1) execution time.

Listing 3.3: The internal list data-type structures

#define LIST _TYPE _USER 0

#define LIST TYPE SYS 1

#defi ne LIST_TYPE_PRIO 2

typedef struct list s list;

typedef struct entry s entry;

struct entry s {

list * list; /[/'< pointing to the list the entry belongs to
entry * prev; /[1'< the previous entry in the |ist

entry * next; /1< the next entry in the Iist

voi d * data; /1< pointer to the data content of the entry
int len; /[1'< length of the contained data (in bytes)
b

struct list_s

{

entry * head,; [1'< pointer to the head entry of the list
entry * tail; [1'< pointer to the tail entry of the list

i nt entries; /1< nunmber of entries in the |ist

i nt type; /[1'< type code for list, used in the schedul er
h

One list entry can be either in no or in exactly one list. Thiadsdructure also supports finding
the list an entry belongs to.

The list data-structure is used in the priority based scleedfor consistency checks, a list
entry can be marked as belonging to a priority class liss, ithwhat the type field is used for.

“Additionally, serial console 1/0 even works if the memorymagement of the libc is broken or the system runs
out of memory. This has proven to be very useful for systenugging.
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3.4.3 Interrupt service routine implementation

The 68k architecture maintains a table of 25&eption vectors These vectors can be used
to signal various CPU conditions and hardware events. Teed# vectors are predefined by
the processor architecture, the remaining 192 can be usad application-specific way. The

memory location where the exception vector table can bedanmemory is determined by

the content of therector base registevBR

The vectors 0 to 15 are used to signal CPU exceptions suclegaliinstructions, division by
zero and memory access faults. These are handled in a specidtion handler which halts
the system and reports the exception condition to the ugethier with additional information
such as program counter and stack pointer values.

The vectors 24 to 31 are used for signaling hardware intesrigpthe CPU. The 68332 MCU
supports two mechanisms for signaling hardware interrupts

The first one is the standard 68k interrupt signaling. Theres hardware device signals the
interrupt condition via a dedicated interrupt line. Forleaaerrupt level, there is one such
line. When the CPU has detected the interrupt, it executég@mupt acknowledge cycle. The
interrupting device puts its assigned interrupt vector benon the data bus. The CPU reads
the vector number and fetches the corresponding interrepiow from the interrupt vector
table.

If a device is not able to signal an interrupt vector to the GRlthe interrupt acknowledge
cycle, a second possibility exists. The device can requéstvectoringoy signaling theAVEC
signal instead. The 68332 CPU can genefaf&Csignals automatically for all interrupt levels
by configuring theSIM accordingly. This second mode is often used in conjunctigh alder
8-bit devices that are not fully compatible with the 68k aetture, such as thé controller
of theRoboCube

Configuring the SIM’s chipselect registers is a very haréwdependent task that is usually
left to the hardware developer. The specific configuratiotinés implemented in one of the
hardware configuration components like RCJ or RG and writismthe SIM registers upon

system initialization.

The KERN component provides an API to change values in tlegrint vector table, e.g. to
catch processor exceptions and redirect them to the apphgarogram.

3.4.4 The multi-threading scheduler and context switch imfementation

Themulti-threading scheduleran be used either in a cooperative or in a preemptive way. As a
cooperative scheduler, it can be directly called by a thteagve up the CPU. For preemptive
multi-threading, the scheduler is called automaticallythmy periodic timer interrupt handler.
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The periodic timer interrupt handler is called by the peigddner of the MC68332s System
Integration Module. The interrupt handler startup codenplemented in assembler. As with
all other interrupt handlers, it first saves the CPU statethedirst two address and data regis-
ters onto the current stack and calls a corresponding Ci@inSctAs with all assembler listings,
the actual function of the code is explained in the comments.

Listing 3.4: Calling the scheduler

PTIMERVEC:
ori.w IMM(0x0700),sr [l level 7 int mask
move.l al0,sp@- // push AO Al DO D1 according to
move.l al,sp@- // nB8k calling convention
move.l dO,sp@- // so that they can be restored
move.l dl,sp@- // after KERN ptint
jsr SYM(KERN_ ptint)

The preemptive scheduler call from the interrupt handler lma caused by two mechanisms.
The first one is the quantum counter. The quantum is the tiredloead is allowed to keep the
CPU. In CubeOS, the quantum is specified in timer ticks. Déjpgnon the configuration of
CubeOS, timer ticks occur at a different rate as specifiedings.h. The default configuration
is shown here:

Listing 3.5: ptimer.h ticks and quantum definitions

#defi ne PTIMER_PITR_VAL 0x0008 // timer period, 977 uSec
#def i ne TICKS_PER_SECOND 1024 // how many times the ISR

/1 is called per second
#defi ne QUANTUM  TICKS_PER_SECOND/8

/1 how long is a quantum

/1 every 64 ticks = 62.5nmsec

Depending on the choice of theTIMERPITR_VAL , the interrupt service routine is
called more or less often, the corresponding values can badfan [MC690]. The
TICKS_PERSECONDalue is used as a reference within the kernel, it must becestra-
ingly to match the CPU clock setting and tRFIMERPITR _VAL setting. Here is such a
reference usage. The system clock is in seconds. On eachheltime _ticks value is
incremented. Whenever it reachEKCKS _PER SECONRhe system clock is advanced.

Listing 3.6: periodic timer ISR C-Function (Head)

i nt KERN_ptint ( void)
{
/* Advance the system clock */
i f ((++_time_ticks) == TICKS_PER_SECOND) {
_time_seconds++;
_time_ticks = 0;

}

°As mentioned Section 3.2.1, the remaining registers aenaatically saved by the compiler if they are used
by a function.
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The following listing contains the call to the kernel del&t handler described later on. When-
ever the delta list handler wakes up a thread, it returns E ctirently running quantum is
then aborted immediately and the scheduler is called.

Listing 3.7: periodic timer ISR C-Function (Delta handler)

i f (KERN_delta_handler ()) {
_KERN_quantum_count = 0;
return (1);

}

The next listing part contains the call to the preemptiveedcifer. Whenever the quantum
expires, the periodic timer ISR C-Function returns 1. Tharrecode is then evaluated in the
assembler code that called the interrupt service routine.

Listing 3.8: periodic timer ISR C-Function (Head)
i f (++_KERN_quantum_count == QUANTUM) {

_KERN_quantum_count = O;
return (1); /* and call scheduler */

}

return (0); /[* don’t call scheduler */

}

The return value of a C function is kept in the DO register ef@PU. This can be evaluated in
assembler as follows:

Listing 3.9: Calling the scheduler

jsr SYM(KERN_ptint)
cmpi #1,d0 /* Returned 1 ? */
bne NO_SCHED/* No: Do not call Scheduler after rte */

]

NO_SCHED:
move.l sp@+,d1
move.l sp@+,d0
move.l sp@+,al
move.l sp@+,a0
rte // rte resets the status register to the old val ue

If the C function returned 0, a branch execution to M@SCHEDabel is executed. Then,
the register are restored from the stack andrtie instruction restores program counter and
status register. To call the scheduler, there are sevetiahsp The first one is to call it directly
with a JSR instruction as shown in the next listing and theathges and disadvantages of this
approach are discussed later on.

Listing 3.10: Calling the scheduler
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bne NO_SCHED/* No: Do not call Scheduler after rte */
jsr SYM(KERN_schedule)

NO_SCHED:
move.l sp@+,d1

If the scheduler does not switch to a different thread, thedaler function simply returns and
the execution of the current thread is resumed as shown here:

Listing 3.11: The scheduler (Part one)

voi d KERN_schedule ( voi d)
{

i nt old, new;

asm ("move.w _%%sr,%0""=m" (_KERN_context_srsave));
asm ("oriw _#0x0700,%sr"); /* Disable Interrupts */

old = getpid ();

/* compute the next thread to be executed */

[..]

if (old == new) { /* Nobody else ready to run */

asm ("move.w _%0,%%sr": :"m" (_KERN_context_srsave));
return;

}

In lines 5 and 6, interrupts are disabled by writing the stagister. When called from the
ISR, this would not be necessary but if it should be possibleatl the scheduler directly, this
is necessary to protect the internal scheduler datastescand prevent re-invocation of the
scheduler.

The actual scheduler (that is the program which computesdkethread to be run) is omitted
here, it is assumed thaew contains the process id of the next thread to be run. In case th
new and the old pid are the same, there is no need for a comtéghsso the status register is
restored to re-enable interrupts and execution is resum#gkicurrent thread. So in this case,
calling the scheduler directly works without problems.

Listing 3.12: The scheduler (Part two)

i f (_KERN_ptable[old].state == STATE_RUNNING) {
_KERN_ptable[old].state = STATE_READY;

}
__MYPID = new;
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_KERN_ptable[new].state = STATE_RUNNING;

_impure_ptr = &(_KERN_ptable[ _MYPID].reent);

KERN_contextsw (&(_KERN_ptable[old].regs),
&(_KERN_ptable[new].regs));

/* this is the new task */

return;

91

Whenever the new and the old PID are different, the sche@xecutes a context switch. It
saves the complete state of the CPU into a memory block amoressa different state from
a different memory block, excluding the program counter.amalyze its impact, it has to be
analyzed in detail. The context switch is written in assemblhe area where the CPU state is

stored looks like this.

Offset 0 4| 8|12|16|20| 24| 28
Content| d0 [ d1t [ d2[d3[d4|d5] d6| d7
Offset 32| 3640|4448 |52 |56 | 60
Content| a0l [ a1l | a2| a3| a4 | a5]| a6 ssp
Offset 64| 66 | 68
Content| 0x00007 | sr? | pc

The actual context switch routine looks like this. Most afwork is done by thenovem.|
instruction which dumps all CPU registers into memory.

Listing 3.13: The context switch

SYM (KERN_contextsw):

move.| ao, Sp@-

/1 Save AO onto old stack
move.l sp@(8),a0

/1 Move address of old area into A0
movem.| #Oxffff,a0@

1d0,d1,a0 and al are saved on the stack prior to the call toctmedsler function according to the calling

convention. See 3.2.1.

2The status register is only 16 bit wide, so it is padded byero
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/'l Save all registers
move.! sp@, a0@(32)
/1 Put original A0 in old savearea
addq.| #8, a0@(60)
/1l Move SP beyond return address
/[l as if a return has occurred

add.| #64, a0

/1 Skip past registers dO-7,a0-7
move.w #0, a0@+

/!l Pad SR savearea, since SRis a word
move.w _KERN_context_srsave,a0@+

/!l Save SR in old savearea
move.| sp@(4), a0@+

/!l Save PC in old savearea
move.| sp@(12),a0

/'l Move address of new area into A0
movem.| a0 @, #0xTfff
/'l Restore all regs (even AQ) except SP

move.| sp@(12), a0
/1 Move address of new area into A0 again
move.| a0@(60),sp

// Put SSP into kernel stack
move.| a0@(68),sp@-
/!l Move PC onto current stack

move.w a0@(66),sr
/]l Restore the status register
move.| a0@(32),a0

/]l Restore AO from new area

rts
/1 since we pushed the pc onto the stack,
/1 we just pretend to return

The rest of the code is concerned with providing a target esdto the twanovem.| in-
structions without damaging the information in the AO régjisnd to maintain the two stacks
(the one of the calling thread and the one of the resumeddhzarectly. After the context
switch, the calling thread’s stack contains the saved AQesalt no return address. The stack
of the resumed thread contains the saved PC as return addriessis then removed by the rts
instruction. By using this scheme, the context switch laokihe calling thread like a function
call that just takes a very long time. It returns only whendbatext switch is called again by
a different thread that restores the context of the origimaad. If the context switch is called
from an interrupt service routine, the context informati®not only kept in the context storage
area but also in various locations on the stack. This can &e isethe following table. The
stack contains the following data when the context switdalked from an ISR:
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previous thread’s stack data

EE EE EE EE| Exception stack frame

A0 A1 DO D1 | Saved registers for C function call
RA FP AR LV | Return address, Frame Pointer,
Arguments and local variables of ISR
RA FP AR LV | Scheduler

RA FP AR LV | Context switch

SP—

The context switch could now be called to switch the contbyt,the exception stack frame
created by the interrupt call would remain on the stack andldvonly be removed if this

thread would be restarted later on. Therefore, the regigtér A1, DO and D1 would be kept
on the stack, the status register and the program countddwelkept in the exception stack
frame and the rest of the context would be kept in the contexage area. This situation is
not transparent. It arises from the way, the preemptivedidbe is called from the interrupt
service routine.

A much clearer situation can be obtained by modifying thekstaithin the interrupt service
routine in such a way that the exception stack frame is rechbedore the scheduler is called.
This can be done by moving up the exception stack frame,tingaghe return address that was
contained in the exception stack frame below and replatiagdturn address of the exception
stack frame with the scheduler’'s address. After this, thekskooks as if the interrupted thread
just wanted to call the scheduler before being interrupiéis is done by the following routine:

Listing 3.14: Calling the scheduler

/* This is the current stack

SP-> di 2 Word
do 2
al 2
a0 2
SR 1
PC 2
VEC 1

---- Rest is data of interrupted function ----

(of interrupted function)

W& want the stack to look |ike this:
SP-> di 2 Word

do 2
al 2
a0 2
SR 1
PC 2 (Address of Schedul er)

VEC 1
PC 2 (of interrupted function)

---- Rest is data of interrupted function ----
*/
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MOVE.I sp,a0
MOVE.l  sp,al
adda #(-4),a0
MOVE.I  sp@+,a0@+
MOVE.I sp@+,a0@+
MOVE.I sp@+,a0@+
MOVE.I sp@+,a0@+
MOVE.I  sp@+,a0@+
MOVE.I  sp@+,a0@+
/* Now everything is noved and SP is */
/* pointing to the data of */
/* the interrupted function */
MOVE.I al@(14),sp@-
/* Pushing the return address */
MOVE.I  IMM(SCHEDWRAP),al@(14)
/* And replacing the pc with wapper address */
adda #(-4),al
MOVE.I al,sp
/* Moving SP to the end of the stack */

[.]

SCHEDWRAP:
move.w sr,sp@-
move.l a0,sp@-
move.l al,sp@-
move.l dO,sp@-
move.l dl,sp@-
jsr SYM(KERN_schedule)
move.l sp@+,d1l
move.l sp@+,d0
move.l sp@+,al
move.l sp@+,a0
move.w sp@+,sr
rts

Using the wrapper instead of the actual scheduler addre¢egs the unsaved address reg-
isters of the thread from being overwritten by the scheduleuses the same scheme as all
other interrupt service routines. This makes the preemmivd cooperative scheduler calls
equivalent.

Now that the underlying mechanics of the scheduler are @edahow is the actual scheduling
decision taken? CubeOS provides two independent scheiduybdéementations, more can be
added. The first one is a simple, priority-less round-rolgimesluler which is implemented as
follows:

Listing 3.15: priority-less round-robin scheduler
( new = old; 1
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while ((new < MAX_PROCESSNUM) &&
(_LKERN_ptable[new].state != STATE_READY))
new++;
if (new == MAX_PROCESSNUM) {/* wrap around */
new = 0;
while ((new < old) &&

(_KERN_ptable[new].state != STATE_READY))
new++;

This scheduler just runs through the process table and fooksready thread. Unfortunately,
this implementations has several drawbacks, includingviisst-case runtime that is always
occurring whenever there is no other thread ready.

By using the list data-type, another simple scheduler haa aplemented. It honors thread
priorities and is much more efficient. The prioritized rotnathin scheduler keeps all threads
that are ready in so-calleéady lists There is one such list for each possible priority.

Whenever the scheduler is executed, it looks for a readyathie the lists that contain the
processes with a higher or the same priority. If such a thieddund, the current thread is
added to the list end of the ready list for its priority and tiesv thread is first removed from
the ready list it is in and its execution is resumed afterwar@ihe implementation is shown
in the next listing. Since this is a critical part of the oférg system, the scheduler code
contains multiple sanity checks for the data extracted ftioenprocess table since an error in
this implementation could lead to crashes that are hardliogie

Listing 3.16: prioritized round-robin scheduler

{
i nt prio = MAX_PRIONUM,;
int quit = 0;
entry *this;
i nt endprio=0;

i f (_KERN_ptable[old].state == STATE_READY)
endprio = KERN_ ptable[old].prio;
new = old;
whi | e (('quit) && (prio >= endprio)) {
/* look into process class prio */
i f (LIST entries (& KERN_prio[prio]) > 0) {
/* there are processes in this class */
this = LIST _head (& KERN_prio[prio]);
/* this should give the next thread to run */
/* the rest are sanity checks */
while (
(this) &&

0ther data-structures would be possible here, especiatyity queues. The list implementation was chosen

for its simplicity since there are only a small number of pgspriorities for the multithreading scheduler in
CubeOS.
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(this->data) &&
((( struct process *)
(this->data))->state != STATE_READY))
this = this->next;
i f (this)

quit = 1; /* if not, we'll retry one class |ower */
}
prio--;
}
if (quit == 1) { /* we’ve found another thread */
new = (( struct process *) (this->data))->pid;
}

The priority-less round robin scheduler has a worst-casgéme O(P) with P being the num-
ber of of process-table entries. The prioritized scheduwdera worst-case runtime O PRI)
with PRI being the number of different priority. Both and PRI can be specified at compile
time of the operating system. In current implementatidng,/ is 4 andP is 32.

Obviously, there are asymptotically faster datastrustfwe keeping the scheduler information,
such as a priority heap[CLR91]. However, in this case thestzont overhead of the implemen-
tations play an important role since in most cases, the watasres are small, e.g. there are
only four or eight different priorities used. The more coioaled routines for building and
maintaining a heap on four entries would eat up the advarmaglee asymptotically faster
O(logn) access time of the heap.

3.4.5 time delay and communication i/o

As already mentioned, the periodic timer interrupt routimes the so-called delta list handler.
The delta list is a data-structure that contains tempgratispended threads. The threads are
ordered with ascending delay times. The delta list alsoainstthe suspend times for the
threads in form of delta times. To compute the delay timeaed thread, all delta times of all
threads in front of the thread in the delta list and its owrageime have to be added.

delta delay| thread name
LIST HEAD — 100 ms thread 1
200 ms thread 2
500 ms thread 3

The advantage of the delta list is that there are only few lraperation in the periodic timer
interrupt service routine necessary to service the dedta Trhe delta list handler just decre-
ments the delta time of the first entry. Then it removes alliesitwith zero delay time from
the list head and wakes up the corresponding threads. H there any threads woken up, the
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delta list handler ends the current quantum and calls thedsdér. By doing this, threads can
be re-awakened with the time granularity of the periodicetinmterrupt calls instead of the
larger granularity of the quantum.

Again, it is probably possible to find asymptotically moréaént datastructures for the delta
list, e.g. a heap or a binary search tree to speed uihg insertion time. Once again,
there was not put any effort in this after a rough estimatibine necessary constant overhead
showed that there was little to gain with respect to perforeeasince the delta list is usually
short and it cannot contain more tHAAXPROCESSNUAtries.

3.4.6 semaphores and priority inversion avoidance

As stated in Section 1.3.5, priority inversions can be a@itly using a priority inheritance
protocol. Although there are other solutions like the ptyoceiling protocols [BW97], they re-
quire static information of maximum priorities that havd®preset in threads and semaphores.

CubeOS implements the priority inheritance within the seimege handlers foup() and
down() .

The down() handler works straightforward: If a thread blocks on a sdmeas it tries to
inherit its priority to all threads that passed the semapl@fore it to increase their priority
up to its own. To do this, it inspects all those threads thatkapt in a list in the semaphore
datastructure. Only if the current (possibly inheritedppty of the blocking thread is higher
than the priority of the inspected thread, the priority of thspected thread is increased to
the current priority of the blocking thread. If a priority iilscreased, this fact is recorded in
a priority inheritance log kept in process table entry of ifiead. Then the blocking thread
suspends itself.

Theup() handler first checks if the priority of the current thread basn changed through
priority inheritance. If this is the case, the priority imhance log is searched to determine if
this semaphore changed the priority. If it did, the semapli®removed and the maximum of
all priorities in the priority log and the default prioritg computed and set as a new priority.

Both operations have complexiy(n) since they have to run through the list of threads or the
list of priority inheritance log entries. But we can assurat toth lists are short, e.g. they
cannot be longer than the number of threads in the system.itAshve delta list, the possibility

to speed up thé&(n) operation exists, e.g. by employing bitfields or hash tablest was not
implemented.

3.4.7 exception processing and recovery

As stated in the last chapter, formally verifying systemisasd and of limited benefit. There-
fore, we take a more practical approach to exception prowesshe exceptions that can occur
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on a CubeOS system can be put into several classes depemdihgiocause and effect, an
exception can fit into more than one class.

e A fatal exceptionis an exception that a system cannot recover from.

A non-fatal exceptions an exceptions that a system cannot recover from.

A hardware exceptioiis caused by a hardware device. Hardware exceptions cam occu
during normal operation but they are often related to harevailures.

A system exceptiors caused by the operating system itself, often the resut lmiig.
CubeOS contains sanity checks in various components tiatrigger both fatal and
non-fatal exceptions.

An application exceptioms caused by an application program.

A mathematical exceptias the result of an unwanted mathematical operation. Tlrere a
non-fatal mathematical exceptions such as floating poietfmws and fatal ones such as
division-by-zero. But even the fatal division-by-zero dasnon-fatal in an application
specific way. For example, a division is contained in a lo@i th executed very often.
Instead of testing the operands of the division each timeimihe loop, the programmer
might instead not to test, thus saving time in the loop. Ihastbn-by-zero occurs only
few times, it might be more efficient to handle this case inxaeption handler.

All these exceptions have to be dealt with in an applicatipaeific way and only from the
application it is possible to decide whether an exceptiofatal or not. CubeOS uses the
default behavior of treating hardware exceptions, dividig-zero and some system exceptions
as fatal. The default behavior for fatal exceptions is tadpthe computational core to a safe
state by triggering a system reset.

Apart from that, triggering a reset has another advantadpe réset signal can be tapped by
external application-specific hardware e.g. to stop a ngprabot before it bumps into some-
thing.

For non-fatal exceptions, the KERN component contains eiapeeporting function

KERNcomplain()  that is used as a central hub for error messages. It may saverth
ror message into permanent storage for later “post-mort@nalysis or just report it to the
console.

But even if there is no explicit failure, a system may deakllo®. in a loop with interrupts
disabled. To overcome this situation, a so-cabeftware watchdogan be used. Despite its
name, this is a hardware device that monitors system sdatfearactivity. When there is no
activity for a certain period, the watchdog device assurhatthe system is dead and reboots.
In the RoboCube hardware, a general-purpose 10 pin of the838% MCU is connected to
the DS1232[DS195] external watchdog device that triggeesat if the system did not give a
pulse output for 500 ms. This device also monitors the vellagel of the system power and
triggers a reset if the voltage drops below a predefined.level
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Application of CubeOS

4.1 reusable components: RobLib

Components of the operating system can easily be compleahevith reusable components
written by users. One such example is the RobLib. It is a gem@plementation for a two-
wheeled mobile robot base controller.

The two-wheeled mobile robot bases that can be controleedsing a two-wheeled differential
drive with a third passive castor wheel. The two drive whéelge the same diameter and the
motor units of the two drive wheels are equivalent. The matuts have a quadrature pulse
encoder and a DC motor with a gear-box. The output of the lgeratis connected to the wheel
shaft. This base type is parameterized with the wheel ratidsdistance of the drive wheel.
A third parameter specifies the number of quadrature pulsssreed for one full rotation of
a drive wheel, including quadrature encoder charactesisind gear-ratio. The RobLib is able
to control a mobile robot base on various levels. Its lowestll of control is a direct control
of the base’s motors. With the three base parameters, theilRoan keep track of the base’s
position and orientation relative to its starting point.elitext higher level of control is the use
of two PID controllers for maintaining a fixed rotational speon the two wheels independently
of each other. For this, three additional parameters (Pgdi@nfor the controller have to be
specified. The highest level of control are the vector comdranBy this, the application
program can directly specify a vector which the base drives.

Internally, the RobLib implements this functionally by niradt use of various CubeOS func-
tions. The interface to the motor control hardware is immatad through th@PU and the
FBI Ncomponents.

The lower level control of RobLib is implemented through MarOR componentMOTCR is
configured by the application program via th®TOR confi g() function. MOTOR keeps
track internally of the state of the two motors in an interdata-structure. If théVlOTOR

99
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Figure 4.1: A simple robot base with differential drive
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component is used for position recording and PID motor abnthe application has to call

some internal functions regularly. This can be implemeritgdising a separate task of the
multi-threading scheduler, by registering a timer intptrfwinction or any other mean. To keep
track of the base position, the application has to queryMBEOR component for the number

of pulses recorded for each motor.

The higher level functions are contained in DRl VE component. This component also con-
tains a function that has to be called regularly, but it alsatains code to register this function
with a timer interrupt. ThéRI VE component first calls th®IOTOR component to update the

position counters for both motors, then it computes a negetaapeed for both PID controllers

from the updated position. It then calls t®TOR component to run the PID controllers.

The DRI VE component can be configured into different modes that infleehe effect of the
target speed computation. The modes are:

e MODE_OFF: This mode does not run the PID controller and does nat seget speed.

e MODE_SPEED: This mode just forwards a target speed set by thecafiph to the
MOTOR component.

e MODE_VECTOR: This mode modifies the target speed in relation talts&ance to the
endpoint of a vector so that the base stops there.

Note the difference between MODEBFF and MODESPEED with a speed setting of zero.
In the latter case, the base actively holds its current ijpositvhere it would roll away in
MODE_OFF.

Each mode corresponds to an interface function that paesesngters, sets the internal state
accordingly and returns. There is also an interface functivough which the application
program can query if a vector command has been completedh&mniaterface function returns
the current position and orientation of the base. Inteyn#iie RobLi b component does all
its computations with a 64 bit fixed-point arithmetic. It@lases pre-computed tables for
trigonometric functions. This approach leads to a low coraiion time for the PID controller
and position tracking functions without hardware floatppant support. As already said, the
RobLib makes use of the corresponding CubeOS componentsahBUWBIN to control the
MC68332 TPU and the binary outputs on the RoboCube. The TRbeisnain hardware
interface for motor control and odometry. In the RobLib, fafthese channels are used for
odometry, with a pair of channels forms one quadrature d&codhis quadrature decoder
represents an up/down impulse counter that is controllethbyencoders on the motor axis.
The CubeOS TPU driver configures two TP channels to form tledkr by linking them
together in QDEC mode. Motor control is implemented by thé)Bpulse width modulation
function. Again, the CubeOS TPU driver prepares one TPU mélgmer motor to generate a
fixed-frequency square waveform with variable duty cyckat ik controlled by the controller
application. Upon initialization, the RobLib initializése TPU driver which in turn initializes
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Figure 4.2: Internal structure of the RobLib

the TPU hardware and sets up the channel functions. Theotamformation for the mobile
base state and the odometry position is reset to orient@taeygrees, position (0,0), speed 0.

4.2 interpreter for visual control block architecture: icon-L

As an example for an industrial application, a visual cdrdaral programming environment for
factory automation systems has been ported to CubeOS aRbbiwCube. Thecon-L system
is used to control and program various programmable cosysiems in industrial applications.
icon-L is a product of ProSign[Pro], a german software camypa

The icon-L architecture is a graphical programming tooldmmtroller applications that is based
on so-called function blocks. Function blocks consist ofsual interface for design and in-
spection and of multiple binary components for multiplegérsystems that implement the
functionality of the function block. The graphical prognamimg tool allows the combination
of pre-existing function blocks to complex software stares. The advantage of the graphical
approach is that there is no need for classical programnkillg and therefore, a designer that
has specialized knowledge in the application domain of gegysan start working even with
limited training. To be as portable as possible among diffeembedded control targets, icon-
L utilizes a virtual hardware-independent processor. fpdieation generated by the graphical
programming tool is downloaded into the target in form ofsa &if pointers. The virtual pro-
cessor then calls the appropriate pointers to call funstigithin the target-dependent binary
component that corresponds to the function block (See EigL8).

The virtual processor, the function block target librarg &s support routines form the icon-L
target code. They are written in ANSI-C. Porting the icorakget code to CubeOS was done
in several steps. In a first step, the support routines (treaed D-Shell) were derived from
existing template code and adopted to the CubeOS API. Ingkestep, the generic function
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Figure 4.3: The internal structure of the icon-L virtual pessor

blocks target portions and the virtual processor were cladgind linked with the D-Shell and
the appropriate CubeOS components such as TTY and KERN €Bhéting binary target code
was then downloaded into the RoboCube target and executdthugih this implemented the
basic functions of icon-L on the RoboCube, hardware-sgeftifictionality such as input and
output was still missing.

To implement hardware-dependent function blocks, the-lcpnogramming system contains
an additional tool, MFB, for modeling new function blockss An example, a new function
block with the functionality of the RobLib was implementesing MFB. The specification of
the host part of the function block defines its graphical syhaind its inputs and outputs. From
this, MFB creates C template code in which the correspondipigfunctions for initialization,
inputs and outputs are inserted.

After the API functions have been added, the new functiorlbtarget code is compiled and
linked into the existing RoboCube target code for icon-Le Tésulting target code can control
a two-wheeled robot base from the graphical icon-L system.

Listing 4.1: the MFB function block description for contiinty the RobLib

PRIMITIVE ROBLIBCTL,;
INPUT  SIGNAL LSpeed : WORD : 0,10 : LEFT,
INPUT  SIGNAL RSpeed : WORD : 0,20 : LEFT;
OUTPUT SIGNAL  QDLeft : WORD : 30,10 : RIGHT;
OUTPUT SIGNAL  QDRight : WORD : 30,20 : RIGHT;

STATICSYM,;
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Figure 4.4: A screenshot of the icon-L program editor. Tregpam is displayed in graphical
form. The blocks are the executable parts of the programinteeconnecting lines transport

data from one block to another.
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BEGIN
Width = 30;
Height := 30;

SimpleBox(0,0,30,30, WORDIDCOLOUR,DARKGRAY);
END STATICSYM;

TARGET;
BEGIN
DRIVE_pid_speed(LSpeed, RSpeed);
QDLeft = MOTOR_encoder(MLEFT);
QDRight = MOTOR_encoder(MRIGHT);
END TARGET;

END ROBLIBCTL;
END CUBEIO.

Listing 4.2: the target code generated by MBF

/************************************************/

/* ROBLI BCTL Modul nunmer : 2 */
/************************************************/
#define LSpeed _W(1)
#defi ne RSpeed _W(2)
#def i ne QDLeft _W(3)
#defi ne QDRight _W(4)
FUNCTION(4,GUARDCTL)
BEGIN
DRIVE_pid_speed(LSpeed, RSpeed);
QDLeft = _MOTOR_encoder(MLEFT);
QDRight = MOTOR_encoder(MRIGHT);
END(4)
#undef LSpeed
#undef RSpeed
#undef QDLeft
#undef QDRight

The complete process of implementing the icon-L target dodeCubeOS took one week
with two programmers, where as the same process for othemeooml hardware/software
combinations took up to several months with larger prograrmgrteams.

4.3 semi-autonomous architecture: RoboGuard

The RobLib has been used in various projects. As an exammeRbboGuard is presented
here. Parts of the following section have already been gt in the ICRA 2001 [BKO1b]
proceedings and in the SIRS 2000 [BKOO] proceedings.
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RoboGuard is a joint development between Quadrox [QUA], WiBe video surveillance
company, and two academic partners, the Al-lab of the Fleraree University of Brussels
(VUB) and the Interuniversity Micro-Electronics CenteM@EC). A RoboGuard allows remote
monitoring through a mobile platform using onboard camewrad sensors. RoboGuards are
supplements and often even alternatives to standard Bangs technology, namely Closed
Circuit Television (CCTV) and sensor-triggered systemsbdGuards are tightly integrated
into the existing range of products of Quadrox. This is anartgmt aspect for the acceptance
of any novel technology in well-established markets asacnsts are usually not willing to
completely replace any existing infrastructure.

For efficiency and security reasons, the RF-transmittedosstream of the on-board cameras
is compressed using a special wavelet-encoding [DC97].INMIEC is the responsible partner
for this feature of RoboGuard. The mobile base and its cbat®at the hands of the VUB
Al-lab.

In accordance with recent interest in service robotics hgthere has also been previous
work on security robots. This work is widely scattered, iaggrom unmanned gunned ve-

hicles for military reconnaissance operations [AHID] to theoretical research on reasoning
within decision-theoretic models of security [MF99]. Thell®Guard approach deals with a
system operating in semi-structured environments undaahniwcontrol and which is a product,

i.e., it must be competitive to existing alternative sauos for the task.

The RoboGuard itself is a semi-autonomous tele-operategifiance robot. The device con-
sists of a differentially driven robotic base with a Robo€diased controller, several sensors,
a standard PC-based computational core, a IEEE802.1lesérektwork adapter and multiple
USB cameras. The device is powered by several on-boardalgddbatteries.

Besides the mobile base, the RoboGuard system consistshafgirng/communication station
and a tele-operation control station. The charging/conioation station contains a lead-acid
battery charger, a wireless access point, and a WAN commeciihe tele-operation control
station consists of a standard PC with WAN connection anceerisig device. The WAN
connection that is used to remotely control the mobile baismieliable in various ways. First
of all it can break down completely, the other problem is thpredictable network latency and
available bandwidth.

In contrast to the naive intuition, including a human oparan the control loop of the base

can make the task more complex. It is very difficult, if not mspible for a human teleoperator
to efficiently steer a mobile base with video-streams fronmdboard camera only. Operators
do not take the current speed and momentum of the base inboir@cehey neglect possible

delays, they have difficulties to develop a feeling for ttze sif the base, and so on. In addition,
the mobile base has to be protected from accidental or rmaianisuse.

Shortly, the mobile base needs an advanced system for miavigend steering support in-
cluding obstacle avoidance. The fusion of operator stgex@mmands, autonomous drive and
navigation functionality, as well as domain-specific plhility and safety checks is a non-
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trivial task. For this purpose, the modular approach of gidiehaviors is especially suited.
It also turned out that we could strongly benefit in this resgeom insights gathered in the
domain of robot soccer [BKWO00, BWBK99, BWE8].

4.3.1 Components and Integration of the Mobile Base

When developing and integrating the different hardware mmments of the mobile base, it

was necessary to engineer specific aspects through sdeeasdd test and developments. For
example, it is necessary to exactly adapt the drive-uniith (wotors, gears, encoders, wheels,
etc.) to achieve a maximal performance at minimal cost. Bingesholds for the power-system

and all other sub-units of the base. The following two basegesas an example of this process
of constant adaption and improvement. At the moment, thengebase is produced in a small

series to be used as RoboGuards.

The basic hardware aspects are the mobile platform inajtie RoboCube controller, the mo-
tor drivers, the support frame, the power system and theggmeanagement. All these factors
are strongly interdependent. In addition, they are styoaffect by the type of main-computer
supplementing the RoboCube as this main-computer straftggts the power consumption.
The main-computer is used for the high-level computatiespecially the image acquisition,
the image compression and the communication on board obtiw.rDue to an adaptation to
the developments of the computer market, the type of maimpcder on the robot was changed
and therefore there were significant changes within the-dasmgn between the first and the
second version.

The most significant feature of the first version of the baggi(& 4.5) is the usage of a network
computer, namely the Corel Netwinder. At the beginning @f pinoject, network computers

seemed to be a promising technology especially in respélistproject. The Corel Netwinder

is very compact, offers many default interfaces, and it hesrg low power-consumption.

But its computing power is not sufficient for the needs of fingject. Furthermore, it is ques-
tionable if this trait of computers will survive the fast cemt developments in the market.
To guarantee availability and increase in performanceHerftiture, it was seen necessary to
switch to a PC-based approach. This implied that the driwd{m@wer-system of this first base
were much too small. They had to be severely adapted for tkieveesion. But the general
development of motor-drivers and the control-electromiese already successfully completed
on this base.

The second version of the mobile platform (figure 4.6) ancelvaas developed with several
intermediate tests and changes. It is already a very mataesibn, i.e., there will be no or
only minor changes to its low-level functionality for fueuiversions. As mentioned above, a
small series of these bases is produced at the moment to énuReboGuards.
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Figure 4.5: The first version of the RoboGuard base includestaork-computer, the Corel
Netwinder.

4.3.2 The Control Software

The RoboGuard control software’s task is the low-level oardf the RoboGuard Base as well

as several forms of support for the operator. Ideally, theraipr has the impression that he or
she is in full control while the system autonomously take® ad crucial tasks like obstacle

avoidance, keeping on a trajectory, emergency stops, and.s®he software architecture is

structured into several layers (figure 4.7), each allowswggal modules or behaviors to run in
(simulated) parallel.

4.3.3 RoboCube Software Drivers and Operating System Suppo

The RoboGuard control software relies on the RoboCube aitgrtiplatform and on CubeOS
to implement the control application. The RoboGuard cdl@ranakes use of the RobLib’s
MOTOR and DRIVE components.The communication with the amdd®C makes use of the
serial communication driver in CubeOS. It provides quewmgdii and output to the application
as well as platform-independent data encoding (XDR). Updtralization, the controller ap-
plication initializes the RobLib which in turn initializeése TPU hardware, sets up the channel
functions and resets the odometry to zero.
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Figure 4.6: The inside core of the second version of the Rolaotbase. It includes a mobile
PC-board and four color-cameras allowing full 360 degresegesllance.

strategic [communication, plausibility checks]
path—planning [obstacle-avoidance, short paths]
motion-control [vectors, curves, dead-reckoning]
motor-control [PID-speed controller]
operating system [drivers, tasks, control-support]

Figure 4.7: The software architecture of RoboGuard’s neolilse.
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Then, the RobLib control thread is configured to be executedye25 msec. The communi-
cation thread is constantly running, waiting for incomiragkets on the serial communication
link that is connected to the onboard PC of the RoboGuardlmbhse. Upon proper reception,
the content of each packet is translated into control conadséor the control task.

4.3.4 The Strategic and Path-Planning Layers

A core function on these layers is operator communicatian, the transmission of control

states from the operator’s console or so-called cockpihéocontrol hardware. To ensure a
low-latency operation over the Internet link, a protocosdxh on UDP packets has been im-
plemented. The protocol is completely stateless. The packe formed at the cockpit by

synchronous evaluation of the control state and transomgsi the onboard PC of the Robo-
Guard platform via Internet. Here, they are received anustraited to the RoboCube via the
serial port. The communication behavior parses the paek®stsnakes its content available to
other behaviors via shared memory.

Cockpi t Wrel ess Onboar d RoboCube

PC Bridge PC

Appl i cati or _h_ Al
Transpor t le _»_J
I nt er net f":"’l /

1 t
Net wor k 1 / 1 > /

T 1
Data Link 1 / 1 /
Physi cal > / > /

Et her net Serial Port Serial Port

I nternet Wreless

o Dat a I nband Handshake
transnissi on Et her net

To ensure low-latency-operation, there is no retransorissn lost packets although UDP does
not guarantee successful delivery of packets. Howevecespackets are transmitted syn-
chronously and are only containing state information, gétiemo need to resend a lost packet
since the following packet will contain updated state infation. By exploiting this property
of the protocol, low-latency operation can be assumed.

The communication between the RoboCube and the onboard &Cnisand handshaking to
prevent buffer overruns in the RoboCube software. The conication layer software in the
RoboCube confirms every packet with a 0x40 control code. @nilyis control code has
been received, the onboard PC communication layer softiramemits the next packet. If the
RoboCube communication layer software did not yet confirmaeket when a new packet ar-
rives from the Internet transport layer, this packet isalided so that the control layer software
only receives recent packets, again ensuring low-latepeyation.

Plausibility checks on the same layer can be used to dis@kefs or to modify the implica-
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tions of the information they contain. This is done in a roésed module. This functionality
is optional and allows a convenient incorporation of baokgd knowledge about particular
application domains. The strategic layer also includess#ficiency behaviors like energy-
management. Depending on the preferences of the custdraexttitration of these behaviors
can be handled in the rule-base. For example, a low-priamigsion could be autonomously
aborted if the base is likely to run out of energy during its@xion.

The path-planning layer handles functionality to facibtahe operation of the base. It can
incorporate world-knowledge on different scales, agaipetieling on the preferences of the
customer. Its simplest functionality consists path sizddiion, i.e., jitters from the manual
control can be smoothed away by temporal filtering. Behavior obstacle avoidance protect
the system from accidental or malicious misuse, and helpaemalong narrow hallways and
cluttered environments. Last but not least, it is possibliet the base navigate completely on
its own when detailed world-knowledge in form of maps is jled.

4.4 distributed architecture: RoboCup

Parts of the following sections have already been publishélde VUB Al Lab team descrip-
tion paper[BWBK99], in the RoboCup workshop proceeding&)B] and in the Advanced
Robotics Journal[BKWOO].

The Small Robots League of RoboCup [KAR7, KTS"97] allows global sensing, especially
bird’s view vision from an overhead camera, and restrictssiae of the physical players to a
rather extreme minimum. These two, most significant featofehe small robots league bear
an immense potential, but as well some major pitfalls foufeitresearch within the RoboCup
framework.

First of all, it is tempting to exploit the set-up with an okiead camera for the mere sake of
trying to win, reducing the robot-players to RF-controlteg-cars within a minimal, but very
fast vision-based closed-loop. The severe size limitatamfrthe players in addition encourage
the use of such “string-puppets” with off-board sensing emntrol instead of real robots. The
Mirosot competition gives an example for this type of apptofMir]. This framework would
lead to dedicated solutions, which are very efficient andpetitive, but only of very limited
scientific interest from both a basic research as well as &ompplication-oriented viewpoint.
If the teams in the small robots league would follow that rdhi league could degenerate to
a completely competition-oriented race of scientificallganingless, specialized engineering
efforts.

Though the two major properties of the small robots leaglmhad sensing and severe size
restrictions, discourage the important investigationreboard control, they also have positive
effects. First of all, the global sensing eases quite sommepgon problems, allowing to focus
on other important scientific issues, especially team bhehatn indication for this hypothesis
is the apparent difference in team-skills between the smlatits league and the midsize league,
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where global sensing is banned.

The size restrictions as a second point also have a benefégatt for the investigation of team-
behavior. The play-field of a ping-pong-table can easily lbmated in a standard academic
environment, facilitating games throughout the year. it isontrast difficult to embed a regular

field of the midsize league into an academic environmeng the possibilities for continuous

research on the complete team are here limited. The sewereesitriction of the small robots

league has another advantage. These robots can be muckichgapsts of electro-mechanical
parts significantly increase with size. Therefore, it is ef@asible to build even two teams and
to play real games throughout the year, plus to include tam(¢s) in educational activities.

4.4.1 Classification of Team-Approaches

For a more detailed discussion of the role of heterogeneityan-board control in the small
robots league, it is useful to have a classification of déffieitypes of teams and players.

Minoru Asada for example proposed in the RoboCup mailiagth use a classification of
approaches based on the type of vision (local, global or doead) and the number of CPUs
(one or multi). He also mentioned that in the case of multipRUs a difference between
systems with and without explicit communication betweeaypts can be made. Though this
scheme is useful, it is still a first, quite rough classifieati Therefore, we propose here to
make finer distinctions, based on a set of crucial comporfentse players.

In general, a RoboCup team consists of a (possibly emptygf $etst-computers and off-board
sensors, and a non-empty set of players, each of which tefisisombination of the following
components:

1. minimal components

(&) mobile platform

(b) energy supply
(c) communication module

2. optional components

(&) computation power

(b) shooting-mechanism and other effectors
(c) basic sensors

(d) vision hardware

Note, that the most simple type of player, consisting of anipimal components, is hardly
a robot. It is more like a “string-puppet” in form of a radiortrolled toy-car without even
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Figure 4.8: There are several basic components which caxbept the minimal ones, freely
combined to form a player. Situation A shows the most simype of player, a radio-controlled
toy-car, which can hardly be called a robot. Situation B shawmuch more elaborated player.
Unfortunately, the size-constraints of the small robotgyilee put a strong negative pressure
against the important implementation of on-board feattoethe players.

any on-board sensors or computation power (though it codt lve possible that this type
of device has an on-board micro-controller for handling ¢cbenmunication protocol and the
pulse-width-modulation of the drive motors). The actuattedl of this type of players com-
pletely takes place on the off-board host(s).

Based on this minimal type of player, the optional composieain be freely combined and
added. In doing so, there is a trade-off between

e on-board sensor/motor components,
e on-board computation power, and

e communication bandwidth.

A player can for example be built without any on-board comapah power at the cost of com-
munication bandwidth by transmitting all sensor/mototad® the host and back. So, increas-
ing on-board computation power facilitates the use of a lemebmmunication bandwidth and
vice versa. Increasing sensor/motor channels on the oéimet increases the need of on-board
computation power and/or communication bandwidth.

On-board features are important for research in robotiesedisas Al and related disciplines
for several reasons. Mainly, they allow research on immbréspects which are otherwise
impossible to investigate, especially in the field of sefmotor capabilities. For effector-
systems for example, it is quite obvious that they have torbbaard to be within the rules
of soccer-playing. Here, the possibilities of systems wiithny degrees of freedom, as for
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example demonstrated in the Sony AIBO[FK97], should notydré encouraged in special
leagues as e.g. in the one for legged players, but also witeiamall robots league. In general,
a further splitting of the RoboCup activities into too maergdues seems not to be beneficial
and it also seems not to be practical. Too many classificatidnich would justify just another
new league would be possible. In addition, the direct coitipetand comparison of different
approaches together with the scientific dialogue are onleeofrtain features of RoboCup.

In the case of sensors and perception, the situation isasitalthe one of effector-systems,
i.e., certain important types of research can only be dotle @n-board devices. This holds
especially for local vision. It might be useful to clarify heethe often confused notions of
local/global and on-/off-board. The terms on- and off-ldbare easy to distinguish, general
properties. They refer to a piece of hardware or softwardchwis physically or logically
present on the player (on-board) or not (off-board). Théonstof local and global in contrast
only refer to sensors, i.e., particular types of hardwardp@erception, i.e., particular types
of software dealing with sensor-data. Global sensors amcepgon tell a player absolute
information about the world, typically information abotg position and maybe the positions of
other objects on the playfield. Local sensors and perceptioontrast tell a player information
about the world, which is relative to its own position in thend. Unlike in the case of on- and
off-board, the distinction between local and global is fuand often debatable. Nevertheless,
it is quite clear that the important issue of local vision ceny be investigated if the related
feature is present on-board of the player.

Hand in hand with an increased use of sensor and motor systeraglayer, the amount of
on-board computation power must increase. Otherwise, dhrcs resource of communica-
tion bandwidth will be used up very quickly. Note, that thare many systems using RF-
communication at the same time during a RoboCup tournarispiecially in the small robots
league, were only few and very limited off-the-shelf produsuited for communication exist,
transmission of large amount of data is impossible. It isf@mple quite infeasible to transmit
high-resolution local camera images from every player tost for processing.

4.4.2 Towards a Robot Construction-Kit
The Motivation

Existing commercial construction-kits with some compotal power like Lego
Mindstormg™ [Min] or Fischertechnik Computing" [Fis] are still much too limited
to be used for serious robotics education or even reseatobrefore, we decided to develop
our own so-to-say robot construction-kit.

For RoboCup’98, the VUB Al-lab team focused on the developmod a suited hardware
architecture, which allows to implement a wide range ofedléht robots. The basic features of
this so-called RoboCube-system are described in [BKW9&].RoboCup’99, the system was
further improved and extended. A more detailed descrigaiven in [BKWOO].
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The RoboCube-system is constantly further improved, orsdifisvare as well as on the hard-
ware side. At the moment for example, several options forpgeasive high-resolution color-
vision are investigated.

Mechanical Components for RoboCup

Figure 4.9: The drive unit as a mechanical building-blockjcli can be mounted on differently

shaped bottom-plates, forming the mechanical basis farsivbody-forms. Different ratios

for the planetary gears in the motor-units are availableh ghat several trade-offs for speed
versus torque are possible.

Keeping the basic philosophy of construction-kits, a “@ensal” building block is used for the
drive (figure 4.9) of the robots. The drive can be easily medmnto differently shaped metal
bottom-plates, forming the basis for different body-forlike the ones shown in figure 4.10.
The motor-units in the drive exist with different ratios tbe planetary gears, such that several
trade-offs for speed versus torque are possible.

Other components, like e.g. shooting-mechanisms and the®uabe, are added to the bottom-
plate in a piled-stack-approach, i.e., four threaded rdidsvdo attach several layers of sup-
porting plates.

4.4.3 Using the RoboCube for Highlevel Control

Though the RoboCube has quite some computation power feiziés its capabilities are nev-
ertheless far from those of desktop machines. So, it is nagbab that interesting behaviors
in addition to controlling the drive-motors and shootingy @ctually be implemented on the
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Figure 4.10: A forward- (left) and a defender-type (rightpot. The mechanical set-up of
the robot-players is based on a piled-stack approach sathdifferent components, such as
shooting-mechanisms and the RoboCube, can easily be added.

RoboCube, i.e., on board of the robots. Therefore, we detraiasin this section that for
example path-planning with obstacle avoidance is feasible

Path planning is with most common approaches rather coripuddly expensive. There-
fore, we developed a fast potential field algorithm based amiattan-distances. Please note
that this algorithm is presented here only to demonstragectimputing capabilities of the
RoboCube. A detailed description and discussion of therglgo is given in [Bir99].

Given a destination and a set of arbitrary obstacles, tharithgn computes for each cell of a
grid the shortest distance to the destination while avgidiie obstacles (figure 6). Thus, the
cells can be used as gradients to guide the robot. The dlgord very fast, namely linear in
the number of cells. The algorithm is inspired by [Bir96],evé shortest Manhattan distances
between identical pixels in two pictures are used to esartia similarity of images.

The basic principle of the algorithm is region-growing lthee a FIFO queue. At the start, the
grid-value of the destination is set to zero and it is addettieécqueue. While the queue is not
empty, a position is dequeued and its four neighbors areléanice., if their grid-value is not
known yet, it is updated to the current distance plus Onetlagygare added to the queue.

For the experiments done so far, the resolution of the magithis set to 1cm. As illustrated
in figure 7, the potential-field is not computed for the whadecer-field to save computation
time. Given a robot positiopos and a destinatiodest, the field is restricted in the x-direction
to the difference opos anddest plus two safety-margins which allow to move around obstacle
to reach the destination.

The motion-grid is used as follows for the soccer-robotse global vision detects all players,
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Figure 4.11: A potential field for motion-control based onrfiattan distances. Each cell in the
grid shows the shortest distance to a destination (mark#dZeiro) while avoiding obstacles,
which are marked with ‘[X]'.

including opponents and the ball, and broadcasts thisrimdton to the robots. Each robot
computes a destination depending on its strategies, wh&lkalao running on-board. Then,
each robot computes its motion-grid. In doing so, all otladots are placed on the grid as
obstacles.

Robots have so-called virtual sensors to sample a motiohagrillustrated in figure 8. The

sensor values are used to calculate a gradient for a shpa#sto the destination, which is
ideal for a reactive motion control of the robot. In doing dead-reckoning keeps track of the
robot’s position on the motion-grid.

Of course, the reactive control-loop can only be used fomdtéid amount of time for two
main reasons. First, obstacles move, so the motion-gridkdvée updated. Second, dead-
reckoning suffers from cumulative errors. Therefore, ibip is aborted as soon as new vision
information reaches the robot, which happens several tipeesecond, and a new reactive
controller based on a new motion-grid is started.

Figure 4.14 shows performs-results of the path-planniggrdhm running on a RoboCube as
part of the control-program of the robot-players. The défeé tasks of the control-program
proceed in cycles. The execution time refers to a single wi@t of each task on its own

(including the overhead from the operating system). Thgueacy refers to the frequency
with which each tasks is executed as part of the player-obrite., together with all other

tasks.

The control-program consists of four levels which run tbgetwith the CubeOS completely
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Figure 4.12: The potential field (grey area) is not compugedte whole soccer-field. Instead,
it is limited in the x-direction to save computation time.

Semm—:
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NENIEEE
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i j/lt = sensor |

Figure 4.13: Twenty-four so-called virtual sensors reagdphtential values around the robot
position on the motion grid. The sensor values can be useortgpete a gradient for the
shortest path to the destination, which can be easily usadeactive motion-control.
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frequency  execution time

_ strategies 17- 68 Hz 4- 13 msec
[coordination, communication]
path-planning 17- 19 Hz 79 msec
[obstacle-avoidance, short paths]
motion-control
[vectors, curves, dead-reckoning] 100 Hz 0.2 msec
motor-control 100 Hy 0.1 msec

[PID-speed controller]
operating system

[drivers, tasks, control-support] continuous

Figure 4.14: The path-planning is part of a four-level saftevarchitecture which controls the
robots players. It runs, together with the CubeOS operatystem, completely on board of the
RoboCube.

on-board of the RoboCube. The two lowest levels of motor-rantion-control run at a fixed
frequency of 100 Hz. Single iterations of them are extrenfedy as the TPU of the MC68332
can take over substantial parts of the processing. Thegyraind path-planning level runin an
“as fast as possible”™mode, i.e., they proceed in everedrcycles with varying frequencies.

The execution of the pure strategy-code, i.e., the actbeetion itself, takes up only a few
milliseconds. Its frequency is mainly determined by whethe robot is surrounded by obsta-
cles or not, i.e., whether path-planning is necessary orTrta computation of the motion-grid
takes most of the 79 msec needed for path-planning. As tvas giie used, one still deter-
mines the motion of the robot while the next one is computee cycle-frequency is at least
17 Hz. So, in a worst case scenario where the player is cdhstamrounded by obstacles, the
action-selection cycle can still run at 17 Hz.

45 Advanced behavior-oriented architecture: NewPDL

Parts of the following section have already been publishatié SAB 2000 proceedings sup-
plement book[BKS00], in the ICRA 2001 [BKO1a] proceedingsl én the SIRS 2000 [BK0O]
proceedings.

Programming behavior-based systems using the framewodymdmical systems has been
advocated by a large number of researchers in the field [M@291, McF91, Pol93, Bee95]
and demonstrated in concrete robotic systems [GB92, GHBBi& advantage of dynamical
systems is that it enables a tight interaction betweensgsid actuating and smooth behavior
integration. However, if we want to build truly complex sgists within this dynamical systems
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perspective we need adequate higher level abstractioriaredpin a suitable programming
language. We also need to worry about running these progoemyzhysical robots which
means that we need adequate handling of the physical timextasps well as support for
virtual parallel execution, sensor/motor-interfaces] tre exploitation of side-effects.

In general, behavior-oriented programming languagesftikexample the subsumption archi-
tecture [Bro86, Bro90] or motor schemas [Ark87, Ark92] deédth these aspects. A com-
pletely different scientific area, namely the field of raat¢ systems [BW97, Mel83, You82]
investigates programming support for above issues, epefriom the viewpoint of efficient
implementation with guaranteed qualities of service.

We report on work related to the process description langwRQL [Ste92] which we have
used in our laboratory for almost 10 years to build a largéeetyanof applications.

4.5.1 The Process Description Language (PDL)

The Process Description Language (PDL) was introducedteBpg. It enables the efficient
description of a network of dynamical processes in termsaofibles whose state changes at
the beginning of each program execution cycle.

The basic PDL-programming constructs are:

quantity . A bound global variabley, i.e., a variable with a fixed minimum and a fixed
maximum value. Sensor- and motor-values are representdzadiyg quantities which
can only be read, or respectively be written.

process : A piece of program which is executed in (virtual) paralletwother processes in
cycles with a fixed frequency, typically 40 Hz. Processesqusstities to communicate
with each other and the system’s sensors and actuators.

value (gq) : This function returns the value of the quantitjrom the previous cycle.

add _value (g, ¢e) : This procedure influences the value of a quanjityy summing the eval-
uation of the expressioato ¢q. The change takes only effect at the end of the cycle in
which the procedure was activated. Note that ottt _value commands in the same
process or in other processes can influepaethe same time.

The very first version of PDL was implemented in LISP. Veryajly a version in C was
implemented for use with dedicated in-house built sensmter hardware. The most recent
version of PDL is also implemented in C.

In this implementation, the quantities are represented biyuct  datastructure that holds
both the current and the future numerical value. All nativenerical datatypes of C can be
used here, i.efloat or short , however, the programmer has to take care of the specific
properties of the datatype to prevent overflows or imprensi
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The PDL processes are implemented as simple argumentlassc@ohs that have no return
value. Instead, the only data exchange with other partegitbgram are implemented through
the access functions to quantities which are global vafabl

The new version of PDL or nPDL runs on top of CubeOS. ProcdasseBDL are a different
concept than processes in other operating systems, aradishire CubeOS:

e CubeOS threads

— provided through the CubeOS KERN component

— concurrence through preemption

— higher priority threads block lower priority threads

— can be suspended

— have direct access to hardware and are often hardware-gisgten

e nPDL-processes

— user-defined functions

— run-to-completion

— best-effort scheduling

— hardware access through special variables
— — therefore hardware-independent

The main idea is that very basic processes like motor-chrdometry, and other control-
processes, are handled by using CubeOS threads. There &laékof these threads, which
of course can be extended by the advanced user. These toaratterefore be considered as
generating a fixed overhead which is so-to-say subtractadasstant from the overall amount
of available CPU time.

Behavior-processes or short b-processes are in contrétgmioy the user. There are arbitrarily
many b-processes. Therefore, the workload generated bydegses is not fixed.

Efficient real-time scheduling of virtually parallel prases is an essential requirement for a
non-trivial implementation of behavior-oriented systetesigned from a dynamical systems
point of view.

Behavior processes can be implemented in the form of SCTsegemqted in Section 1.3.2,
SCTs are a generalization of behavior-processes.

The basic language constructs can be implemented in atdtfaigvard manner:
e A quantityis a bound globastruct  variable. Upon initialization, the lower and upper

bound of a quantity are written into the struct. The undedyilatatype of a quantity can
be any simple numerical datatype of C.
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A sensor quantitys a quantity that represents the present value of a sengat. ifhis
quantity is written automatically by the nPDL environmentlas influenced by the cor-
responding sensor.

A actuator quantityis a quantity that represents the future value of an actuatgr the
speed of a motor. This quantity is automatically read by fABIn environment and its
value influences the corresponding actuator.

Quantities are accessed by the masrabue( q) andadd_val ue( g, x) . Other ac-
cesses are not recommended.

Quantities are declared with typgeiantity  and are configured with the functiemi d
add_quantity (char * name, preset, mn, max).

Sensor quantities are connected to a sensor with the funotibd connect sensor
(sensor s, short arg, quantity Q).

Actuator quantities are connected to an actuator with thection void
connect _actuator (actuator a, short arg, quantity q).

A processis an argumentless void run-to-completion function. A pssonly uses
quantities as input and output and exits after having psszegs input data.

Processes are pseudo-parallel, meaning that the resutahputation is independent
of the sequence the processes are invoked. This resultstherway the processes
can access external data. Since all quantity values are ffizéate the first process
is executed, all processes work on the same data. Writingaatity is only possible

through adding and adding is commutative, so the sequertbe aflditions is irrelevant.

The quantity, actuator and sensor structures are definedHik, in this case for a quantity
based on thoat datatype:

Listing 4.3: the nPDL datatypes and structures

struct quantity_struct;

typedef struct quantity struct *quantity;
struct actuator_struct;

t ypedef struct actuator_struct *actuator;
struct sensor_struct;

t ypedef struct sensor_struct *sensor;

struct quantity_struct

{

char *name;
fl oat value;
fl oat min_value;
fl oat max value;
fl oat new_value;
actuator act;
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short int act_arg;
sensor  sen;
short int sen_arg;
guantity next;

h

struct actuator_struct
{
char *name;
voi d (*set) (actuator a,quantity q);
short int (*fupdate) (actuator a);
short int update_arg;
short int value;
short int inuse;
actuator next;

h

struct sensor_struct
{
char *name;
voi d (*get) (sensor s,quantity q);
short int (*fupdate) (sensor s);
short int update_arg;
short int value;
short int inuse;
sensor next;

The sensor and actuator datatypes contain function pseittes update function, the actuator
contains an additional set function pointer, the sensotates an additional get function. The
set functions converts the datatype of the attached quantid the internal short int value
datatype of the actuator. The get function converts theriateshort int value of the sensor into
the quantity datatype. The update functions implement ¢heaal/O operation for the sensors
and actuators. The inuse field is used for only calling upfiatetions of sensors and actuators
that are actually used by the application program.

An internal cycle of nPDL looks like this:

=

. call the update() function of all active sensors

N

. for all quantities that are attached to a sensor, call &g function.
3. run all active processes once

4. for all quantities, copy the newalue field into the value field

(21

. for all quantities that are attached to an actuator, balket() function



124 CHAPTER 4. APPLICATION OF CUBEOS
6. call the update() function for all active actuators

Step 3 in this list is equivalent of one minor cycle in the SChexluler.

nPDL records the time used for executing these instructson stores the time in a global
variable that can be queried in the next cycle by calling tmefiondelta _t() . This value
can be used to differentiate and integrate over sensor sjakig. to compute speed from
positions.

In the original version of PDL, there were no priorities ahdd every thread was running in
every cycle. A cycle was executed every 25 ms, so for exangotgating speed from position
was straightforwardy = % with At =25ms.

Instead of running the PDL cycle in a fixed 25ms schedule, nRIDE it on a best-effort basis,
as fast as possible. To overcome problems associated veile thariable-length cycles, the
delta _t() function was introduced that reports the time it took to exedhe last nPDL
cycle.

In the SCT scheduler, the time recordediadta _t() is still the time of the last nPDL cycle,
but since not all process were run in that cycle, computifigraintials in a process based on
delta _t() mightlead to unwanted results.

For example, a low-priority process, i.e. with a high expuia effect priority, is computing
the current power consumption of the system by observingleguantity:

Listing 4.4: energy-watching thread

{

voi d watch_energy()

{
fl oat delta_fuel,power;
delta_fuel=value(fuel)-value(old_fuel);

add_quantity(old_fuel,-value(old_fuel)); /* now zero */
add_quantity(old_fuel,value(fuel));

power=delta_fuel/delta_t();

Because of its high exponential effect priority, the precesonly executed e.g. every 8 minor
cycles. This would lead to a eight-fold overestimation @& gower consumption.

A solution to this problem can be implemented in two ways, whéch is less accurate but
efficient, the other is less efficient but more accurate.

The less efficient but more accurate solution is the intrédocof virtual sensor quantities
for derivatives of sensor quantities. This can be implemerdy introducing an additional
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class of SCTs with exponential effect priority of zero theg axplicitly run before any other
SCT. In these SCT, the derivatives and integrals are cordpartd put into the value fields
of corresponding quantities, e.g. for a sensor quantity, there might be a computation of
d_fuel.

Since all delta values and derivatives are computed witlbmptial effect priority zero but the
results of these computations are used less often, thisficient.

The other approach is to multiply theelta _t() result with 277 with prio being the ex-
ponential effect priority of the process. This is less aatrisince the cycles over which the
sensor delta is computed may not all take the same time taixesoAt - 277 is just an
estimate.

4.5.2 simulation of a nPDL system for debugging

nPDL can be used to form complicated dynamic systems. Adthatiis hardly possible to
simulate all aspects, e.g. the interactions through thea@mwent, it is still beneficial to simu-
late the behavior of the complete system by applying amife@ensor values and observing the
response of the system.

Such a simulation has been implemented by using the visasletoQWT[QWT] based on the
TrollTech QT 1.x library[QT]. The simulation is implementé C++ and is available for most
UNIX-like operating systems. A screenshot of a running $ation program can be found in
Figure 4.5.2.

The simulation is implemented by re-defining the semantitseonPDL constructs. Instead of
reading a sensor value from a sensor, a slider is displaygallows realtime manipulation of
the sensor value during simulation. For all quantitiesudiilg actuators, a rolling plot graphic
can be displayed that shows a time-series of the quantitesal

Since there is no real timing relation between the simutatiost and the actual application in
an autonomous system, the time is measured in rounds ingteadcution time. The execution
within the simulation can therefore be started or stoppeulhat

4.5.3 postmortem analysis of a running program

The simulation can only give a limited view on the behaviothaf system since all interactions
with the environment are missing and are replaced by a humifinially setting sensor values.

Alternatively, we want to record data onboard with only mial impact on the performance of
the system. For this, a data recorder component has beesnmapted that can record arbitrary
blocks of data into RAM and print them later. The recorder ponent cannot only be used in
context with nPDL but is of general use.
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The recorder has the following simple interface:

e The recorder works on a predetermined datatygmord that has to be defined by the
user. Internally, a record is used as one atomic fixed-lebigitk of data.

e int REC _init _recorder(int records,int recordlength) initializes
the recorder.

e int REC rewind _rec() rewinds the write pointer of the recorder.
e int REC _rewind _play() rewinds the read pointer of the recorder.

e int REC _this(void * record) stores one record and advances the write
pointer.

e void * REC _next() returns one record and advances the read pointer.

e int REC _status()  returns the current status of the recorder.

The input and output routines to the recorder have to be geoMby the application, e.g. output
might be implemented by simply printing the content of a rdcd~rom this, graphs can be
produced, e.g. the performance of a PID controller implaaten can be verified by plotting

its temporal response as in Figure 4.15.
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Figure 4.15: The temporal response plot of a robot PID ctiatronplementation.



Conclusion

This thesis presented the design and the implementatioheofCubeOS operating system
for autonomous systems from the analysis of the requiresnienvarious applications using
CubeOS. Among others, a novel scheduling algorithm is desgtithat guarantees execution
frequency ratios for scheduling repetitive executionsimipge control tasks.

CubeOS has proven to be very stable and a perfect fit for the@dte hardware. Espe-
cially the extendibility towards additional hardware bdih the designers of the system and
by its users has been an advantage over systems that areveitiger-specific or run only on
standard hardware. Projects that have extended CubeOB8eaRoiboCube have been conduct-
ing research in different areas such as humanoid robot#l#enadio communication, energy
management for mobile robots or home automation.

Using software components to design a special purpose topgersystem for robotics is a
novel approach, but it has proven to be a successfull oneClHoeOS, various special-purpose
components have been implemented together with the comdspm hardware components
for the RoboCube. One example is a digital camera compohanptovides on-board vision
capabilities for small robots.

Another clear advantage of CubeOS was the posix-compstibfl CubeOS and it’s C library.

By this, of-the-shelf source code could be re-used. For pi@nthe free generic JPEG library
has been ported to CubeOS without any major rewrite and withdhanges in the makefile
provided by the distribution. It only took a few hours to imapient the functionality of a
simple digital photo camera by using the JPEG library andemgenting the digital camera
component.

The operating system itself has been successfully used dyyleo&vith various backgrounds
in embedded systems. Most recent work is RI®S (“Roboter in der Schule”: Robots at
School) project in which high-school students are prograrmgrthe RoboCube with CubeOS

. This project has been started in the year 2000 by Andreas Bliver Kohlbacher, Herbert
Jakob and myself to introduce highschool students intodkearch field of robotic®IDShas
shown that even untrained persons can easily use CubeO&arbboCube to build simple
autonomous systems, in the caseRIDS miniature robots. The students and their robots
have successfully competed in the German Open RoboCuprligague and in the RoboCup

129
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Junior World Championship 2001.

TheRIDSproject website can be found laitp://www.rids.de/
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