
Chapter 1

Overview of the course

Slide FCS1 - Overview:

Course: Fundamental Computer Science I

Course Number: 320201

Time: Tue, 8.15-9.30, Fri: 11.15-12.30

Place: Research III Lecture Hall

Instructor: Dr. Holger Kenn, Tel: 3112,
E-mail: h.kenn@iu-bremen.de

Web page: http://www.faculty.iu-bremen.de/course/FundCS1/

Slide Overview of the course:

• Datastructures

– Lists, Heaps, Graphs, Trees

• Algorithms

– Sorting and Searching

– Algorithm Design and Analysis

– Graph Algorithms, Dynamic Programming, Number-Theoretical Algorithms,
String Matching, Computational Geometry,. . . (if we find thetime)

1

This script is based on the textbook to the course:
Cormen Leiserson Rivest Stoll: Introduction to algorithmsSecond Edition, McGraw-Hill/MIT
Press

Other sources are lecture notes of Torben Hagerup’s Lecture”Datenstrukturen und Algo-
rithmen” of the Fall semester ’96 at the Universität des Saarlandes and the lecture notes of
the lecture ”Algorithmen und Komplexität” by Christine Rüband Stefan Schirra of the Fall
semester ’92 also at the Universität des Saarlandes.

1.1 Introduction

Computer science consists of several fields. Each field triesto answer specific questions
such as:

Computer Architecture: How to build computers?

Operating Systems: How to share the ressources of a single computer for multipletasks?

Computer Networks: How to connect computers?

Theory of Complexity: What can be computed? And what cannot?

Artificial Intelligence: How to solve problems that we do not really understand, e.g. un-
derstanding language, programming robots for an unknown environment . . .

Software Engineering: How to cope with the complexity of large-scale software systems?

“Social” computer science: What is the impact of computer use on individuals and soci-
ety?

In this lecture, we will try to find some answers to this question:

Datastructures and Algorithms: How to use computers efficiently?

There are many interdependencies between the different fields of computer science, e.g.
Datastructures and Algorithms uses the model of a computer derrived from Computer Ar-
chitecture, Operating Systems, Computer Networks and Artificial Intelligence use Algo-
rithms . . .

For this lecture, we will use some simple answers for the other questions in computer
science:

Computer Architecture: We assume a simple computer architecture.

Operating Systems: We assume that our computer is only running our program, we as-
sume that input and output to our program is somehow taken care of.

Computer Networks: We do not use network connections.

Artificial Intelligence: We only cover probles that we think are well-understood.

Software Engineering: We only write simple programs.

“Social” computer science: Computers are good!

2

1.2 Fundamentals

A simple example for a problem that can be solved by a computeris sorting. Let’s say we
have the following numbers:

5, 8, 3, 2, 7, 3, 1, 9

These numbers are to be sorted so that they form a sequence so that the next number is not
smaller than the last one. Intuitively, you will probably see that the corresponding sorted
sequence is the following:

1, 2, 3, 3, 5, 7, 8, 9

But unfortunately, such an intuitive approach does not workfor a computer and your intu-
ition won’t work for 100000 numbers either. Therefore, we have to come up with a more
structured approach. That should take into account that we do not always want to sort these
eight numbers, maybe not eight numbers, maybe not even numbers but we want to sort.
We have to differenciate between thesorting problemand a specificinstanceof the sorting
problem. An instance is defined by the specific input, e.g. (5,8, 3, 2, 7, 3, 1, 9). So we had
to deal with an instance of the sorting problem in our first example. In this lecture, we may
use the problem name both for the problem itself and for its instances, but the meaning will
usually be obvious. With an instance, we usually can derive some simple numbers that can
tell us wether it is an “easy” or a “hard” instance. One example is the size of the instance,
for the sorting problem, this is the size of the input , in our case eight.

We can define the sorting problem more formally in the following way:

Definition 1 Thesorting problemof instance sizen is the problem defines as follows:

Input: A sequence of objects< a1, a2, . . . , an >

Output: A sequence< aσ(1), aσ(2), . . . , aσ(n) > of the input sequence such thataσ(1) ≤
aσ(2) ≤ · · · ≤ aσ(n) > andσ being a permutation of1, . . . , n

Sometimes, we’re not really interested in the output sequence but only in the permutation
σ.

Now after we have defined the problem, what is the way to solve it with a computer?

Independent of computers, the theory of algorithms is old. The term originates from the
9th century in the arabic world. A famous mathematician of this century was Abu Abdallah
Muhammad Ibn Musa al Khwarizmi (780-850, the times of CaliphHarun al-Rasid) who
wote several books. The most famous one is the Kitab al-muhatasar fi hisab al-gabr wa al-
muqabala which was the first algebra book, it introduced the use of variables, equations and
it used the indian base-10 numeral system with zero. The bookalso contains a collection
of indian calculation methods.

This book was brought to europe and translated various timesin the 12th century. It is
the source of the common believe that the base-10 numeral system was an arabic invention
although it was in fact invented in india. One of the latin translations by Gherardo di
Cremona (1114-1187) was called "Dixit Algorismi".

3

Figure 1.1: Abu Abdallah Muhammad Ibn Musa al Khwarizmi (780-850)

4

What is analgorithm?

By using our problem definition, we can say that an algorithm is a computational procedure
that transforms the problem input into the problem output. An algorithm that creates the
right solution for every instance of a problem is said to becorrect. We say that a correct
algorithmsolvesa computational problem.

An incorrect algorithm may not halt at all and produce no output or produce an incorrect
solution. Contrary to common intuition, incorrect algorithms can be used for many appli-
cations as long as their error rate can be controlled.

In this lecture, we will use thepseudocode. If you are familiar with any procedural pro-
gramming language such as Pascal or C, you will probably haveno problem understanding
the algorithms.

An example for an algorithm solving the sorting problem is shown as Algorithm 1.

Algorithm 1 Insertion-Sort
1: for j← 2 to length[A]do
2: key← A[j]
3: { Insert A[j] into the sorted sequenceA[1 . . . j − 1].}
4: i ← j - 1
5: while i > 0 and A[i] > key do
6: A[i+1] ← A[i]
7: i ← i-1
8: end while
9: A[i+1] ← key

10: end for

5

1.3 Analyzing algorithms

Analyzing an algorithm means predicting its ressource usage. Ressources can be memory
requirements, communication bandwith or the use of specialdevices such as graphic render
hardware, but in most cases, we’re interested in the computational time that it takes for the
algorithm to produce its output.

Before we can analyze an algorithm, we have to have some assumptions on the compu-
tational hardware the algorithm will be executed on. In thislecture, we will generally
assume a simple one-processor Van-Neumann-like architecure calledrandom access ma-
chine(RAM). In the RAM, instructions are executed sequencially without any concurrency
or parallelism, we assume no cacheing of data or instructions and a uniform main memory
access time. Occasionally, we will look at different architectures such as special-purpose
hardware or parallel architectures.

Even analyzing simple algorithms can be quite challenging involving discrete combina-
torics, probability theory, algebraic and analytic dexterity.

1.3.1 Analysis of Insertion Sort

To find out computational time the Algorithm 1 uses, we first assume that each line of the
algorithm takes a constant time to be executed on the RAM, thetime beingc1 . . . c10. For
the lines 3,8 and 10, we will assumec3 = c8 = c10 = 0.

As we can easily see, the runtime of this algorithm depends onits input sizen = length[A].
For eachj = 2, . . . , n, we definetj to be the number of times the test of the while loop in
line 5 is executed for that value ofj.

To understand the algorithm, it is helpful to define aloop invariant:

At the start of each iteration of thefor loop, of lines 1-10, the subarrayA[1 . . . j − 1]
consists of the elements originally inA[1 . . . j − 1], but in sorted order.

InsertionSort(A)

1: for j← 2 to length[A]do
2: key← A[j]
3: { Insert A[j] into the sorted sequenceA[1 . . . j − 1].}
4: i ← j - 1
5: while i > 0 and A[i] > key do
6: A[i+1] ← A[i]
7: i ← i-1
8: end while
9: A[i+1] ← key

10: end for

cost times
c1 n
c2 n− 1
c3 = 0 n− 2
c4 n− 1
c5

∑n

j=2 tj
c6

∑n

j=2(tj − 1)

c7

∑n

j=2(tj − 1)

c8 = 0 n− 1
c9 n− 1
c10 = 0 n

The total runtime for an input sizen is

6

T (n) = c1n + c2(n− 1) + c4(n− 1) + c5

n
∑

j=2

tj +

c6

n
∑

j=2

t(j − 1) + c7

n
∑

j=2

t(j − 1) + c9(n− 1)

This equation describes the runtime, but it is not very handy. We can now analyze different
types of input and predict the runtime. Let’s first find thebest-caserunning time. If the
sequence is already sorted, the equation simplifies to

T (n) = c1n + c2(n− 1) + c4(n− 1) + c5(n− 1) + c9(n− 1)

since lines 6 and 7 are never executed. This equation can be expressed in the form of a
linear equation in the form ofan + b for some constantsa andb.

What about theworst case? This occurs if the array is sorted in reverse order.

With
n

∑

j=2

j =
n(n + 1)

2
− 1

and
n

∑

j=2

(j − 1) =
n(n + 1)

2

we get the worst case running time to be

T (n) = c1n + c2(n− 1) + c4(n− 1) + c5

(n(n− 1)

2
− 1

)

+

c6

(n(n− 1)

2

)

+ c7

(n(n− 1)

2

)

+ c9(n− 1)

=
(c5

2
+

c6

2
+

c7

2

)

n2 +
(

c1 + c2 + c4 +
c5

2
−

c6

2
−

c7

2
+ c9

)

n

−(c2 + c4 + c5 + c9)

and this is a quadratic function of the forman2 + bn + c

There is a third case that is sometimes analyzed, the so-called average caseruntime. It
is often as bad as the average case. For example, if we assume that for each subarray
sequence on average about half of the sequence is greater than A[j], the while loop has to
search through about half the sequence, soTj = j/2. By analyzing this case the same way
we analyzed the other cases, we will find that it also leads to aquadratic function. In the
average case analysis, the problem is to precisely define theaverage case, i.e. the likeliness
that a certain instance of the problem occurs.

1.4 Algorithm Design Techniques

What we used in the insertion sort algorithm was the so-called incrementalapproach. Hav-
ing sorted one subarray of lengthj − 1 we inserted another element to it, thus creating a
sorted subarray of lengthj. There are other approaches that will be sketched here, we will
see applications of these techniques later on.

7

1.4.1 divide-and-conquer

By recursivlydividing the input into several sub-problems, these can be reduced to trivial
cases that can be solved in a single step. Then, the results ofthe sub-problems are combined
to form a solution. One example of this approach is themerge sortalgorithm: It divides
the input sequence in halves, reapplies itself to the halvesand combines the two sorted
halves into a single sorted sequence. Since the sub-sequences are sorted, mergesort only
has to compare the first element of each sequence and pull out the lower one of the two.
Mergesort is an old algorithm that dates back to the time of punchcard stack. Its greatest
advantage is that it can be used even with minimal memory.

The main task of mergesort is done by the Merge procedure thatlooks as follows:

MERGE(A,p,q,r)

1: n1 ← q − p + 1
2: n2 ← r − q
3: create ArraysL[1 . . . n1 + 1] andR[1 . . . n2 + 1]
4: for i← 1 to n1 do
5: L[i]← A[p + i− 1]
6: end for
7: for j ← 1 to n2 do
8: R[j]← A[q + j]
9: end for

10: L[n1 + 1]←∞
11: R[n2 + 1]←∞
12: i← 1
13: j ← 1
14: for k← p to r do
15: if L[i] ≤ R[j] then
16: A[K]← L[i]
17: i← i + 1
18: else
19: A[K]← R[j]
20: j ← j + 1
21: end if
22: end for

Mergesort itself is then quite simple:

MERGESORT(A,p,r)

1: if p < r then
2: q ← b(p + r)/2c
3: MERGESORT(A, p, q)
4: MERGESORT(A, q + 1, r)
5: MERGE(A, p, q, r)
6: end if

8

1.4.2 Asymptotic notation

Definition 2 For a given functiong(n), we denote byΘ(g(n)) the set of functions

Θ(g(n)) = {f(n) : ∃c1 > 0, c2 > 0 andn0 > 0 such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)∀n ≥ n0}.

We say thatg(n) is anasymptotically tight boundfor f(n).

Definition 3 For a given functiong(n), we denote byO(g(n)) the set of functions

O(g(n)) = {f(n) : ∃c > 0 andn0 > 0 such that

0 ≤ f(n) ≤ cg(n)∀n ≥ n0}.

We say thatg(n) is anasymptotically upper boundfor f(n).

Definition 4 For a given functiong(n), we denote byΩ(g(n)) the set of functions

Ω(g(n)) = {f(n) : ∃c > 0 andn0 > 0 such that

0 ≤ cg(n) ≤ f(n)∀n ≥ n0}.

We say thatg(n) is anasymptotically lower boundfor f(n).

Other interesting properties of asymptotic notation:

Transitivity:

f(n) = Θ(g(n)) andg(n) = Θ(h(n))⇒ f(n) = Θ(h(n))

f(n) = O(g(n)) andg(n) = O(h(n))⇒ f(n) = O(h(n))

f(n) = Ω(g(n)) andg(n) = Ω(h(n))⇒ f(n) = Ω(h(n))

Reflexivity:

f(n) = Θ(f(n))

f(n) = O(f(n))

f(n) = Ω(f(n))

Symmetry:

f(n) = Θ(g(n))⇔ g(n) = Θ(f(n))

Transpose symmetry:

f(n) = O(g(n))⇔ g(n) = Ω(f(n))

f(n) = Ω(g(n))⇔ g(n) = O(f(n))

9

1.4.3 Other useful mathematical notations

Floor andCeiling:

Forx ∈ R : x− 1 < bxc ≤ x ≤ dxe < x + 1

Logarithms: Like ln denotes the natural logarithmloge, we introducelg = log2.

Modular arithmetic:

Fora ∈ Z andn ∈ N : a mod n = a− ba/ncn

a is calledremainderor residueof the quotienta/n.

If (a mod n) = (b mod n) we writea ≡ b (mod n).

Functional iteration:

f (i)(n) =

{

n if i = 0
f(f (i−1)(n)) if i > 0

Iterated logarithm:

lg∗(n) = min
{

i ≥ 0 : lg(i)(n) ≤ 1
}

Fibonacci numbers:

F0 = 0

F1 = 1

Fi = Fi−1 + Fi− 2 for i ≥ 2

Fibonacci Numbers are related to thegolden ratioφ and its conjugatêφ.

φ =
1 +

√

(5)

2

φ̂ =
1−

√

(5)

2

Fi =
φi − φ̂i

√

(5)

1.4.4 Runtime of mergesort

The MERGEprocedure runs inΘ(n) time, wheren = r − p + 1. The lines 1-3 and 10-13
take constant time. Thefor loop of lines 4-9 takeΘ(n1 + n2) = Θ(n) time and there are
n iterations of the for loop of lines 14-22 of which each one takes constant time.

MERGESORTitself runs inΘ(n lg n) time. In order to see that, we have to solve the recur-
rence

T (n) =

{

c if n = 0
2T (n/2) + cn if n > 0

10

It can be shown thatT (n) = Θ(n lg n) but here, only an intuitive idea is sketched. Let’s
assume for simplicity that n is a power of two. MERGESORTrecursively divides the prob-
lems inton subproblems of size 1. The depth of recursion islg n. At each recursion level,
the algorithm needsΘ(n) time and this happens forlg n recursion levels.

1.5 Heapsort

Heapsortis a sorting algorithm that sorts inO(n lg n) time, but sorts in place, i.e. does not
make copies of the data. Heapsort makes use of a datastructure calledheap.

The binary heap datastructure is an array object that implements some form of a binary
tree. For that array, we have to remember not onlylength[A] but alsoheap-size[A] which
may not be equal, i.e. no element pastA[heap-size[A]] is part of the heap although it may
be a valid array element.

Given the indexi of a node, PARENT(i) is the parent node, LEFT(i) is the left child,
RIGHT(i) is the right child.

The implementation of these functions is as follows:

PARENT(i)
return bi/2c

LEFT(i)
return 2i

RIGHT(i)
return 2i + 1

Heaps can be organized asmin-heapsand asmax-heaps.

For a max-heap:

A[PARENT(i)] ≥ A[i]

For a min-heap:

A[PARENT(i)] ≤ A[i]

Heapsort consists of the following procedures:

MAX -HEAPIFY (A,i)

1: l ← LEFT[i]
2: r ← RIGHT[i]
3: if l ≤ heap-size[A] andA[l] > A[i] then
4: largest← l
5: else
6: largest← i
7: end if
8: if r ≤ heap-size[A] andA[r] > A[largest] then

11

9: largest← r
10: end if
11: if largest 6= i then
12: exchangeA[i]↔ A[largest]
13: MAX-HEAPIFY (A, largest)
14: end if

BUILD -MAX -HEAP (A,i)

1: HEAP-SIZE[A]← length[A]
2: for i← blength[A]/2c downto1 do
3: MAX-HEAPIFY (A, i)
4: end for

HEAPSORT(A)

1: BUILD -MAX -HEAP(A)
2: for i← length[A] downto2 do
3: exchangeA[1]↔ A[i]
4: HEAP-SIZE[A]← HEAP-SIZE[A]− 1
5: MAX -HEAPIFY(A, 1)
6: end for

What are those three procedures doing?

MAX -HEAPIFY creates a heap from two existing heaps rooted at LEFT(i) and RIGHT(i)
and an additional elementA[i]. The additional element is inserted into the root and sinks
down the heap until it reaches a final position and the heap property is re-established.

The running time of MAX -HEAPIFY on a subtree of sizen rooted at given nodei is the
Θ(n) time to rearrange the three top elements plus the runtime of MAX -HEAPIFY of the
changed subtree. The changed subtree has at most size2n/3. The runtime of MAX -
HEAPIFY is then

T (n) ≤ T (2n/3) + Θ(1)

To solve this recurrence, we can apply themaster theorem

Theorem 1 (Master Theorem) Leta ≥ 1 andb > 1 be constants, letf(n) be a function
and letT (n) be defined on the nonnegative integers by the recurrence

T (n) = aT (n/b) + f(n)

where we interpretn/b to mean eitherbn/bc or dn/be. ThenT (n) can be bounded asymp-
totically as follows.

1. If f(n) = O
(

nlog
b

a−ε
)

for some constantε > 0 thenT (n) = Θ
(

nlog
b

a
)

.

2. If f(n) = Θ
(

nlog
b

a
)

thenT (n) = Θ
(

nlog
b

a lg n
)

.

3. If f(n) = Ω
(

nlog
b

a−ε
)

for some constantε > 0 and if af(n/b) ≤ cf(n) for some
constantc < i and all sufficiently largen, thenT (n) = Θ(f(n)).

12

1.5.1 Other useful applications of Heapsoprt: Priority Queues

Definition 5 (Priority queue) A priority queueis a data structure for maintaining a setS
of elements, each associated with a value calledkey. A max-priority-queuesupports the
following operations:

1. INSERT(S, x) inserts the elementx into the setS. The operation could be written as
S ← S ∪ {x}.

2. MAXIMUM (S) returns the element ofS with the largest key.

3. EXTRACTMAX(S) removes and returns the element ofS with the largest key.

4. INCREASEKEY(S, x, k) increases the value of elementx’s key to thge new valuek,
which is assumed to be at least as large asx’s current key value.

A min-priority-queuesupports the following operations:

1. INSERT(S, x) inserts the elementx into the setS. The operation could be written as
S ← S ∪ {x}.

2. M INIMUM (S) returns the element ofS with the smallest key.

3. EXTRACTM IN(S) removes and returns the element ofS with the smallest key.

4. DECREASEKEY(S, x, k) decreases the value of elementx’s key to thge new valuek,
which is assumed to be at least as small asx’s current key value.

The following procedures implement a max-priority-queue by unsing procedures from
HEAPSORT.

HEAPMAXIMUM (A)

1: return A[1]

HEAPEXTRACTMAX (A)

1: if HEAP-SIZE[A] < 1 then
2: error “heap undeflow”
3: end if
4: max← A[1]
5: A[1]← A[HEAP-SIZE[A]]
6: HEAP-SIZE[A]← HEAP-SIZE[A]− 1
7: MAX -HEAPIFY(A, 1)
8: return max

HEAPINCREASEKEY (A, i, key)

1: if key < A[i] then
2: error “new key is smaller than current key”
3: end if
4: A[i]← key
5: while i > 1 andA[PARENT(i)] < A[i] do
6: EXCHANGE A[i]↔ A[PARENT(i)]

13

7: i← PARENT(i)
8: end while

MAX HEAPINSERT(A, key)

1: HEAP-SIZE[A]← HEAP-SIZE[A] + 1
2: A[HEAP-SIZE[A]]← −∞
3: HEAPINCREASEKEY (A, HEAP-SIZE[A], key)

The runtimes of the functions areΘ(1) for HEAPMAXIMUM , O(lg n) for HEAPEXTRACT-
M IN, HEAPINCREASEKEY and MAX HEAPINSERT.

1.6 Quicksort

Quicksort is based on divide and conquer like mergesort, butit uses a different scheme to
divide the sequence and it rearranges the partial sequencesin such a way that combining
them is even easier than in Mergesort.

The divide step separates the initial sequence into two sub-sequences that are chosen based
on apivot element. Every element smaller (ore equal) than the pivot element belongs to the
left sequence, every element larger than the pivot element belongs to the right sequence,
the elements are thus exchanged accordingly. This can be done inO(n) time withn being
the length of the sequence.

Then, Quicksort is called again for the sub-sequences.

QUICKSORT (A, p, r)

1: if p < r then
2: q ← PARTITION(A, p, r)
3: QUICKSORT(A, p, q − 1)
4: QUICKSORT(A, q + 1, r)
5: end if

1.6.1 Analysis of Quicksort

Worst Case analysis

T (n) = max
0≤q≤n−1

(T (q) + T (n− q − 1)) + Θ(n)

Guessing thatT (n) ≤ cn2 for somec.

T (n) ≤ max
0≤q≤n−1

(cq2 + c(n− q − 1)2) + Θ(n)

= c max
0≤q≤n−1

(q2 + (n− q − 1)2) + Θ(n)

q2 − (n− q − 1)2 achives a maximum over0 ≤ q ≤ n− 1 at the endpoints. This gives us
max0≤q≤n−1(q

2 + (n− q − 1)2) ≤ (n− 1)2 = n2 − 2n + 1.

14

T (n) ≤ cn2 − c(2n− 1) + Θ(n)

≤ cn2

1.6.2 randomized quicksort

RANDOMIZEDQUICKSORT (A, p, r)

1: if p < r then
2: q ← RANDOMIZEDPARTITION(A, p, r)
3: RANDOMIZEDQUICKSORT(A, p, q − 1)
4: RANDOMIZEDQUICKSORT(A, q + 1, r)
5: end if

RANDOMIZEDPARTITION (A, p, r)

1: i← Random(p, r)
2: exchangeA[r]↔ A[i]
3: return PARTITION(A, p, r)

PARTITION (A, p, r)

1: x← A[r]
2: i← p− 1
3: for j ← p to r − 1 do
4: if A[j] ≤ x then
5: i← i + 1
6: exchangeA[i]↔ A[j]
7: end if
8: end for
9: exchangeA[i + 1]↔ A[r]

10: return i + 1

Lemma 1 Let X be the number of comparisions performed in line 4 ofPartitionover the
entire execution ofQUICKSORT on ann-element array. Then the running time ofQUICK-
SORT is O(n + X).

Let z1, z2, . . . , zn be the elements of arrayA so thatZi is theith smallest element.Zij =
{zi, zi+1, . . . , zj} is the set of elements betweenzi andzj , inclusive.

We define

Xij = I{zi is compared tozj}

on the complete run of the algorithm. Since each pair is compared at most once, we can
calclulate the total number of comparisions

X =

n−1
∑

i=1

n
∑

j=i+1

Xij

In expectations:

15

E[X] = E





n−1
∑

i=1

n
∑

j=i+1

Xij





=

n−1
∑

i=1

n
∑

j=i+1

E [Xij]

=
n−1
∑

i=1

n
∑

j=i+1

Pr{zi is compared tozj}

Now we just have to calculatePr{zi is compared tozj}. Two elements are only compared
if one of the two is chosen as a pivot element:

Pr{zi is compared tozj} = Pr{zi or zj is first chosen as a pivot element fromZij}

= Pr{zi is first chosen as a pivot element fromZij}+

Pr{zj is first chosen as a pivot element fromZij}

=
1

j − i + 1
+

1

j − i + 1

=
2

j − i + 1

E[X] =

n−1
∑

i=1

n
∑

j=i+1

2

j − i + 1

with k = j − i

E[X] =

n−1
∑

i=1

n−i
∑

k=1

2

k + 1

<

n−1
∑

i=1

n
∑

k=1

2

k

=

n−1
∑

i=1

O(lg n)

= O(n lg n)

Theorem 2 Any comparision-based sort algorithm requiresΩ(n lg n) comparisions in the
worst case.

Corollary 1 Heapsort and Mergesort are asymptotically optimal comparision sorts.

16

1.7 Sorting without comparing

1.7.1 Counting Sort

Counting sortassumes that each of the n input elements is an integer in the range0 to k for
some integerk. When k = O(n), the sort runs inΘ(n) time.

COUNTINGSORT(A,B,k)

1: for i← 0 to k do
2: C[i]← 0
3: end for
4: for j ← 1 to length[A] do
5: C[A[j]]← C[A[j]] + 1
6: end for
7: for i← 1 to k do
8: C[i]← C[i] + C[i− 1]
9: end for

10: for j ← length[A] downto 1 do
11: B[C[A[j]]]← A[j]
12: C[A[j]]← C[A[j]]− 1
13: end for

Counting sort runs inΘ(k + n) time. Usually, we havek = O(n), then Counting sort runs
in Θ(n) time.

Definition 6 A stablesorting algorithm preserves the input order of equal input vlaues in
its output.

1.7.2 Radix Sort

RADIX SORT(A,D)

1: for i← 1 to d do
2: use a stable sort to sort arrayA on digit i.
3: end for

1.7.3 Bucket Sort

Bucket Sort assumes that the input values are created by a random process that uniformily
distributes them over[0, 1)

BUCKETSORT(A)

1: n← length[A]
2: for i← 1 ton do
3: insertA[i] into list B[bnA[i]c]
4: end for
5: for i← 0 ton− 1 do
6: sort listB[i] with insertion sort
7: concatenate the listsB[0], B[1], . . . , B[n− 1] together in order
8: end for

17

1.8 Medians and Order Statistics

Definition 7 Theith order statisticof a set ofn elements is theith smallest element. The
minimum is the first order statistic, themaximumis thenth order statistic.

Themedianfor an odd number of elements in the set is theith order statistic withi =
(n + 1)/2.

The lower medianfor an even number of elements in the set is theith order statistic with
i = b(n + 1)/2c.

Theupper medianfor an even number of elements in the set is theith order statistic with
i = d(n + 1)/2e.

Theselection problemis defined formally as:

Input: A setA of n (distinct) numbers and a numberi, with 1 ≤ i ≤ n.

Output: The elementx ∈ A that is larger than exactlyi− 1 other elements ofA.

If we use the term median of a set without knowing the number ofelements, we use the
lower median for sets with an even number of elements.

Obviously, the selection problem can be solved inO(n lg n) time by sorting the numbers
and selecting theith element in the sequence. But there are better algorithms.

1.8.1 Minimum and Maximum

M INIMUM (A)

1: min← A[1]
2: for i← 2 to length[A] do
3: if min > A[i] then
4: min← A[i]
5: end if
6: end for
7: return min

Both the upper and lower bound aren− 1 comparisions.

It is sufficient to do3bn/2c comparisions instead of2n− 2 do find both the minimum and
the maximum. The trick is to work with pairs of elements. First compare two elements
with eachother, then the larger one with the current maximumand the smaller one with the
current minimum, so three comparisions for every two elements.

1.8.2 Selection in expected linear time

RANDOMIZEDSELECT(A, p, r, i)

1: if p = r then
2: return A[p]
3: end if

18

4: q ←RANDOMIZEDPARTITION(A, p, r)
5: k ← q − p + 1
6: if i = k then
7: return A[q]
8: else
9: if i < k then

10: return RANDOMIZEDSELECT(A, p, q − 1, i)
11: else
12: return RANDOMIZEDSELECT(A, q + 1, r, i− k)
13: end if
14: end if

For RANDOMIZEDSELECT, T (n) = O(n) on average. Therefore, any order statistic in-
cluding the median can be determined on average in linear time.

1.8.3 Selection in worst-case linear time

SELECT

1. Divide then elements of the input array intobn/5c groups of 5 elements each and at
most one group made up of the remainingn mod 5 elements.

2. Find the median of each of thedn/5e groups by sorting the elements of each group
and then picking the median,i.e. element 3 from the sorted list.

3. Use SELECT recursively to find the medianx of thedn/5emedians found in step 2.

4. Partition the input array around the median-of-mediansx. Let k be one more than
the elements of the low side of the partition so thatx is thekth smallest element and
there aren− k elements on the high side of the partition.

5. if i = k then returnx. Otherwise, use SELECT recursively to find theith smallest
element in one of the partitions. Fori < k, continue with the low side, fori > k
continue with the high side.

At least half of the medians found in step 2 are greater than the median-of-mediansx. Thus,
at least half of thedn/5e groups contribute three elements that are greater thanx except
two groups (the one containing x and the modulo group at the end, we will substract them).

3

(⌈

1

2

⌈n

5

⌉

⌉

− 2

)

≥
3n

10
− 6

In the worst case, SELECT is called on at most7n/10 + 6 elements in step 5. Therefore,
we can now develop a recurrence for the runtime of SELECT.

T (n) =

{

Θ(1) if n ≤ 140
T (dn/5e) + T (7n/10 + 6) + O(n) if n > 140

19

Forn > 140

T (n) = T (dn/5e) + T (7n/10 + 6) + O(n)

≤ cdn/5e+ c(7n/10 + 6) + an

≤ cn/5 + c + 7cn/10 + 6c + an

= 9cn/10 + 7c + an

= cn + (−cn/10 + 7c + an)

This is≤ cn if (−cn/10 + 7c + an) ≤ 0 which is the case forn > 140 andc ≥ 20a.

The worst case runming time of SELECT is therefore linear.

For a discussion of SELECT, see CLRS Chapter 9.3 and Mehlhorn, Datastructures And
Efficient Algorithms, Vol1, Sorting and Searching, ChapterII.4

20

• Proofs about algorithms:

– Correctness

∗ Tool: Loop invariant

– Runtime

∗ best case

∗ worst case

∗ average case

• Types of algorithms

– iterative: proof of loop invariants

– recursive (divide-and-conquer): recurrences

– recurrences: solved by substitution or master theorem

• Sorting Algorithms

– Comparision-based sort
Algorithm best case runtime worst case runtime average case runtime

INSERTIONSORT O(n) O(n2) O(n2)
MERGESORT Θ(n lg n)
HEAPSORT O(n lg n)
QUICKSORT O(n) O(n2) O(n lg n)

– Lower Bound for comparision-based sort:Ω(n lg n)

– Non-comparision-based sort
Algorithm worst case runtime expected runtime

COUNTINGSORT Θ(k + n)
RADIX SORT Θ(d(n + k))
BUCKETSORT O(n2) Θ(n)

• Medians and Order Statistics

– Minimum, Maximum run inn− 1 comparisions.

– Combined Minimum and Maximum runs in3bn/2c comparisions.

– RANDOMIZEDSELECT runs in expected linear time.

– SELECT runs in worst-case linear time.

21

Chapter 2

datastructures

Sets are as fundamental to computer science as they are to mathematics. Unlike in math-
ematics where sets are unchanging, algorithms can manipulate sets, they can create new
sets, add elements, remove elements and so on. Therefore, wecall such setsdynamicand
we have to find a way for algorithms to handle sets in a computer.

A dynamic set that supports the operationsinsert, deleteand test membershipis called
a dictionary. There are other dynamic sets that implement different operations such as
the min-max-heap datastructure. Depending on the needed operations, dynamic sets are
implemented differently.

Each element of a set is represented by an object in memory whose fields can be examined
and manipulated if we have a pointer to this object. Some setsassume one identifying field
of the object calledkey. If all keys are different, we can use the dynamic set as a set of key
values. The object may containsatellite datain some of its fileds, that is application specific
data that is carried around with the object but is not used in any way by the implementation
of the dynamic set. It also has fields that are manipulated by the implementation, those
fields contain pointers to other objects, array indeces or additional data. Some dynamic
sets operate on key values from a totally ordered set such as real numbers or words under
an alphabet and a lexical order. A total order allows us to speak of a "next element" by
order or a "maximum element".

Typical operations on dynamic sets are:

SEARCH(S, k) Given a setS and a keyk, this query returns a pointerx to an object inS
so thatkey[x] = k or NIL if no such object exists inS.

INSERT(S, x) This operation adds an elementx to S, i.e. S ← S ∪ {x}.

DELETE(S, x) This operation removes an elementx to S, i.e. S ← S \ {x}.

M INIMUM (S) This operation returns a pointer to the element of a totaly ordered setS with
the smallest key.

MAXIMUM (S) This operation returns a pointer to the element of a totaly ordered setS
with the largest key.

SUCCESSOR(S, x) This operation returns the element of a totaly ordered setS with the
next larger key than elementx.

22

PREDECESSOR(S, x) This operation returns the element of a totaly ordered setS with the
next smaller key than elementx.

The SUCCESSORand PREDECESSORqueries are often extendet for sets with nondistinct
keys so that a call to MINIMUM with consecutive calls to SUCCESSORenumerates the
elements of the set. The execution time of the operations is usually given as a function of
the size of the set that it is applied to.

2.1 Elementary datastructures

A stackis a dynamic set datastructure that implements alast-in,first-out(LIFO) policy. The
only element that can be deleted from a stack is the one most recently inserted. Aqueue
is a dynamic set datastructure that implements afirst-in,first-out(FIFO) policy. The only
element that can be deleted from the queue is the one that has been in the queue the longest
time.

Arrays can be used to implement both queue and stack.

2.1.1 stacks

For a stack, the INSERT operation is often called PUSH, the DELETE operation is then
called POP.

The stack is implemented by using an integer calledstack pointer. In our example, we use
top[S] for the stack pointer of stackS.

The following code implements PUSH, POP and STACKEMPTY that returnsTRUE if the
stack does not contain any elements.

STACKEMPTY(S)

1: if top[S] = 0 then
2: return TRUE

3: else
4: return FALSE

5: end if

PUSH(S, x)

1: top[S]← top[S] + 1
2: S[top[S]]← x

POP(S)

1: if STACKEMPTY(S) then
2: error ”Stack Underflow”
3: else
4: top[S]← top[S]− 1
5: return S[top[S] + 1]
6: end if

Each of these operation takesO(1) time.

23

2.1.2 queues

For a queue, the INSERToperation is often called ENQUEUE, the DELETE operation is then
called DEQUEUE.

Unlike the stack, the queue needs two additional pointers, aheadpointer and atail pointer.
The tail is where elements are enqueued, the head is where they are dequeued.

The following functions implement a queue with at most n-1 elements.

ENQUEUE(Q, x)

1: Q[tail[Q]]← x
2: if tail[Q] = length[Q] then
3: tail[Q]← 1
4: else
5: tail[Q]← tail[Q] + 1
6: end if

DEQUEUE(Q)

1: x← Q[head[Q]]
2: if head[Q] = length[Q] then
3: head[Q]← 1
4: else
5: head[Q]← head[Q] + 1
6: end if
7: return x

2.1.3 Linked lists

In a linked list, the elements are arranged in a linear order but unlike in thearray, the order
is not created by the linearity of the array index but by chaining the elements together, i.e.
by following a pointer, we can go from one element to another element. Adoubly linked
list L has two pointers,prev andnext for each element. For an elementx, prev[x] points
to the predecessor ofx andnext[x] points to the successor. For the first element (the head
of the list which has no predecessor) we use the valueNIL for prev. For the last element
(the tail of the list which has no successor), we use the valueNIL for next. head[L] points
to the first element of the list. Asingly linked listis a list without theprev ponter in the
elements. If a list issorted, the linear order of the list corresponds to the linear orderof
keys stored in the elements of the list, usually, the head of the list contains the minimum
element and the tail of the list contains the maximum element. In acircular list, theprev
pointer of the head element points to the tail of the list and the next pointer of the tail
element points to the head of the list. Unless otherwise stated, we assume our lists to be
doubly linked and unsorted.

We can search the list for a specific element:

L ISTSEARCH(L, k)

1: x← head[L]
2: while x 6= NIL andkey[x] 6= k do
3: x← next[x]
4: end while
5: return x

24

We can insert an element into the list:

L ISTINSERT(L, x)

1: next[x]← head[L]
2: if head[L] 6= NIL then
3: prev[head[L]]← x
4: end if
5: head[L]← x
6: prev[x]← NIL

We can delete an element from the list:

L ISTDELETE(L, x)

1: if prev[x] 6= NIL then
2: next[prev[x]]← next[x]
3: else
4: head[L]← next[x]
5: end if
6: if next[x] 6= NIL then
7: prev[next[x]]← prev[x]
8: end if

In order to make our life simpler (by avoiding all these if-statements that reflect the list
boundary handling) we introduce asentinellist element that we add to the endpoints of the
list. This element is callednil[L] like the pointer value but also has the fieldsprev and
next, so thatprev[nil] andnext[nil] have a well-defined meaning. This turns a regular
doubly-linked list into a circular, doubly linked list witha sentinel in which thenil sentinel
is placed before the head and after the tail element. Sincenext[nil[L]] = head[L] we can
eliminate thehead[L] pointer and use the nil element instead. An empty list consists only
of thenil[L] element pointing to itself with theprev andnext pointers.

L ISTSEARCH’ (L, k)

1: x← next[nil[L]]
2: while x 6= nil[L] andkey[x] 6= k do
3: x← next[x]
4: end while
5: return x

L ISTDELETE’ (L, k)

1: next[prev[x]]← next[x]
2: prev[next[x]]← prev[x]

L ISTINSERT’ (L, x)

1: next[x]← next[nil[L]]
2: prev[next[nil[L]]]← x
3: next[nil[L]]← x
4: prev[x]← nil[L]

2.1.4 Memory management with lists

We can use lists to manage the memory of the computer.

25

ALLOCATEOBJECT()

if free = NIL then
error ”out of memory”

else
x← free
free← next[x]
return x

end if

FREEOBJECT(x)

next[x]← free
free← x

2.2 Hashing and Hash Tables

2.2.1 Direct adressing

Assuming a dynamic set in which each element has a keyk drawn from the universe
{0, 1, . . . , m − 1}. Then we can use adirect-address tableT [0 · · · − 1] in which each
slot corresponds to exactly one keyk ∈ U . If we assume that no two elements inU have
the same keyk, we can simply store the elements (or pointers to the elements) of U in T .
When no element of keyk exists, we storeNIL in T [k].

DIRECTADRESSSEARCH(T,K)

return T [k]

DIRECTADRESSINSERT(T,X)

T [key[x]]← x

DIRECTADRESSDELETE(T,K)

T [k]←NIL

2.2.2 Hashing as a technique for datastructures

Direct-adress tables habe a huge drawback: if|U | is large, a large table has to be used. It
can also be very inefficient: If|U | is large but the set to be stored is small, then a lot of
space is wasted since for each elementnot in U , a NIL value is stored. Hashing requires
much less storageΘ(|K|) but on average onlyO(1) time for all operations, if the hash
function is easy to compute, i.e. inO(1) time (and memory space).

Direct adressing guaranteesO(1) time in the worst case, but uses O(|U |) memory space.

h : U → {0, 1, . . . , m− 1} is ahash functionthat maps the universeU into the hash table
T [0, 1, . . . , m− 1] of m slots.

If two elements ofU hash to the same slot, this is acollision.

This is may happen if|U | > m which is usually the case. (otherwise we could have stayed
with direct adressing in the first place.) However, we try to avoid it so that if we store a set

26

with less or equalk elements, there should be few collisions. But we have to prepare for
colisions. One solution is to store a list in each slot.

In order to resolve colisions, we can usecollision resolution by chaining.

CHAINEDHASHSEARCH(T,K)

search for an element with keyk in list T [h(k)] and return it.

CHAINEDHASHINSERT(T,X)

Insertx in the head of listT [h(key[x])].

CHAINEDHASHDELETE(T,X)

Deletex from list T [h(key[x])]

Analysis of hashing with chaining:

Given a hash tableT with m slots andn elements stored, we define aload factorα = n/m.
It gives the average number of elements stored in a chain.

The worst-case behavior of hashing with chaining is terrible, but simple to analyse: Let’s
assume that all elements are in a single slot, so the delete and search operations takeΘ(n)
time.

We assume a uniform distribution of the hash values over the slots for the elements in
the set, i.e. for the elements it is equally likely that they are hashed into every slot. This
assumption is calledsimple uniform hashing.

The length of the listT [j] is denoted bynj so thatn =
∑m−1

j=0 nj .

Theorem 3 In a hash table in which colisions are resolved by chaining, a(successful or
unsuccessful) search takes expected timeΘ(1+α), under the assumption of simple uniform
hashing.

Proof in CLR, page 229

2.2.3 Hash functions

A good hash function satisfies the assumption of simple uniform hashing. Unfortunately,
to check this property, the input (or the distribution of theinput overU) must be known.

It is usually straight-forward to interpret any input as a numerical value, e.g. for strings,
these can be interpreted as strings of 8-bit values and thesecan easily be transformed into
a single value.

The division method uses a hash function of the typeh(k) = k mod m.

When using this method, some values ofm are usually avoided. For example m should
not be a power of two since the modulo operation just cuts off the most-significant bits of
k. For words, that might lead to the situation that words are distributed according to their
ending and some endings are much more likely than others. (Hint: list all the words that
end on "xzy"...)

Usually, a prime not too close to a power of two is a good choice.

27

The multiplication method uses a hash function of the typeh(k) = bm((kA) mod 1)c
with 0 < A < 1.

An advantage of the multiplication method is that the choiceof m is not critical, so we
can chose the size of the hash table independent of the hash function. We usually chose
m = 2p since this simplifies the implementation.

We choseA to be a fraction of the forms/2w with s is an integer of the range0 < s < 2w.
We first multiplyk with w-bit integers and get a2w bit valuer12

w + r0 wherer1 is the
high-order word of the value andr2 is the low-order word of the value. The desiredp-bit
hash value consists of thep most-significant bits ofr0.

Knuth suggests that a good value forA is about(
√

(5)− 1)/2, so forA = s/2w, s andw
should be chosen accordingly.

There is an example in CLR (Page 232) that gives an example calculation.

2.2.4 Universal Hashing

For each hash function, we can usually chose a set of elementsof U that give the same hash
function. Therefore, if we use this set as an input, these elements will all be hashed into the
same slot, leading to worst-case behavior.

Therefore, we chose a hash function (independent of the input values) randomly (but fixed
for the runtime of our algorithm) in order to get a good performance on the average (input)
case.

LetH be a finite collection of hash functions that map a given universeU of keys into the
range{0, 1, . . . , m − 1}. Such a collection is calleduniversalif for each pair of distinct
keysk, l ∈ U , the number of hash functions for whichh(k) = h(l) is at most|H|/m.

If we chose a hash function fromH randomly, the chance of a collision between two distinct
keysk andl is at most1/m.

An example of a universal class of hash functions can be constructed as follows: Let the
functionsha,b be defined as

ha,b = ((ak + b) mod p) mod m (2.1)

andp being a prime number and sufficiently large (so that for everypossible value ofk,
0 < k < p− 1).

We assume that the universe of keys is larger than the number of slots (otherwiese we would
not have to hash) so we can say thatp > m.

For example: we havep = 17, m = 6, we haveh3,4(8) = 5

Then, the family of all such hash functions is

Hp,m = {ha,b : a ∈ Z
∗
p andb ∈ Zp (2.2)

with Zp = 0, 1, . . . , p− 1 andZ
∗
p = 1, . . . , p− 1.

|Hp,m| = p(p− 1) wherem can be chosen freely.

Theorem 4 The classHp,m of has functions is universal.

28

Proof in CLR, page 235

2.2.5 Other ways to resolve collisions

By usingopen adressing, all values are stored in the table. For that, we do need more than
one slot where a key could be stored. To do this, we extend our hash function:

h : U × {0, 1, . . . , m− 1} → {0, 1, . . . , m− 1}

Now, if we insert something, weprobeseveral slots for free space and insert the element
into the first free one. Consequently, if we search for an element, weprobe each possible
slot until we find aNIL value.

Theprobe sequence〈h(k, 0), h(k, 1), . . . , h(k, m− 1)〉 is a permutation of〈0, 1, . . . , m−
1〉.

By this, every slot is probed exactly once and eventually, the complete hash table is filled.
If no NIL value is found afterm probes, the hash table is indeed full and we return an error.

HASHINSERT(T,k)

i← 0
repeat

j ← h(k, i)
if T [j] = NIL then

T [j]← k
return j

else
i← i + 1

end if
until i = m
error "hash table overflow"

HASHSEARCH(T,k)

i← 0
repeat

j ← h(k, i)
if T [j] = k then

return j
else

i← i + 1
end if

until T [j] =NIL or i = m
return NIL

Unfortunately, deleting is not so simple with open adressing since the saerch routine ends
at the firstNIL value encountered, but there may be elements stored "behind" that if this
NIL has been written by a HASHDELETE operation. One solution is to use another special
valueDELETED and make sure that no regular key has that value.

For our analysis of open adressing, we are assuming that eachkey has equally likely one
of them! possible probe sequences. This assumption is calleduniform hashing.

Uniform hasing is a generalisation of simple uniform hasing. We’re not only assuming

29

uniformity for the first hash value but for the sequence of hash values needed by the probe
sequence. True uniform hasing is hard to implement, but there are good approximations.

In order to create theh(k, i) functions, we can use aauxiliary hash functionh′. This
method is calledlinear probing

h(k, i) = (h′(k) + i) mod m

The slots probed areT [h′(k)], T [h′(k) + 1], . . . , T [m− 1], T [0], . . . , T [h′(k)− 1].

This algorithm suffers from so-calledprimary clustering: Long runs of occupied slots build
up, increasing the average search time. This happens since an empty slot preceded by i full
slots gets filled in the next step with probability(i + 1)/m.

Instead of running linearily, we can usequadratic probing

h(k, i) = (h′(k) + c1i + c2i
2) mod m

wherec1 andc2 are auxiliary constants.

This works much better, but in order to make use of the full hash table (by makeing sure
that the probe sequence is a permutation of1 . . .m− 1), we have to use special values for
m, c1 andc2.

An even better approach isdouble hashingwhere we use two auxiliary hash functions.

h(k, i) = (h1(k) + ih2(k)) mod m

This works much better, the step value for probing is determined by the original key value.
Since two hash functions are used, the step value can be different for two keysk1 6= k2

with h1(k1) = h1(k2), since this does not implyh2(k1) = h2(k2).

In order to cover all slots of the hash table, the value ofh2 has to be relatively prime tom.
In order to make sure that this is the case, we can makem a power of two and choseh2 so
that it always produces odd numbers. Another approach is to chosem prime and to make
h2 always produce an integer less thanm:

h1(k) = k mod m

h2(k) = 1 + (k mod m′)

wherem′ is chosen slightly less thanm.

Theorem 5 Given an open-address hash table with load factorα = n/m < 1, the ex-
pected number of probes in an unsuccessful search is at most1/(1−α), assuming uniform
hashing.

Corollary 2 Inserting an element into an open-address hash table with load factorα re-
quires at most1/(1− α) probes on average, assuming uniform hashing.

Theorem 6 Given an open-address hash table with load factorα < 1, the expected num-
ber of probes in a successful search is at most

1

α
ln

1

1− α

30

assuming uniform hashing and assuming that each key in the table is equally likely to be
searched for.

Proofs in CLR, Page 241-244

2.3 Binary Search Trees

A binary search tree is a binary tree in which the keys are stored according to thebinary
search tree property:

Let x be a node in a binary search tree. Ify is a node in the left subtree ofx thenkey[y] ≤
key[x], if y is a node in the right subtree ofx thenkey[y] ≥ key[x].

One tree node has the fieldskey, p for parent,left andright along with possible satellite
data.

INORDERTREEWALK (x)

if x 6= NIL then
INORDERTREEWALK (left[x])
print key[x]
INORDERTREEWALK (right[x])

end if

Theorem 7 If x is the root of ann-node subtree, then the callINORDERTREEWALK (x)
takesΘ(n) time.

Proof in CLR, Page 255

The TREESEARCH function looks for the element with keyk in the subtree that is rooted
by x.

TREESEARCH(x, k)

if x =NIL or k = key[x] then
return x

end if
if k < key[x] then

return TREESEARCH(left[x], k)
else

return TREESEARCH(right[x], k)
end if

Obviously, it is also possible to write an iterative versionof the function.

ITERATIVETREESEARCH(x, k)

while x 6=NIL andk 6= key[x] do
if k < key[x] then

x← left[x]
else

x← right[x]
end if

31

end while
return x

By going always left, it is possible to find the minimum element of the tree.

TREEM INIMUM (x)

while left[x] 6= NIL do
x← left[x]

end while
return x

By going always right, it is possible to find the maximum element of the tree.

TREEMAXIMUM (x)

while right[x] 6= NIL do
x← right[x]

end while
return x

The Successor function identifies the element with the next bigger key. It can be used to
iterate over the tree in increasing key values.

TREESUCCESSOR(x)

if right[x] 6=NIL then
return TREEM INIMUM (right[x])

end if
y ← p[x]
while y 6=NIL andx = right[y] do

x← y
y ← p[y]

end while
return y

Insertion is similar to search: first the algorithm does ”as if” it would be searching for
an element with a similar key, thereby finding the right spot for the insertion. Then it
rearranges the pointers.

The insertion procedure receives a pointer to a pre-initialized nodez with key[z] = v,
left[z] =NIL , right[z] =NIL and additional satellite data.

TREEINSERT(T, z)

y ←NIL

x← root[T]
while x 6=NIL do

y ← x
if key[z] < key[x] then

x← left[x]
else

x← right[x]
end if

end while
p[z]← y
if y =NIL then

root[T]← z

32

else
if key[z] < key[y] then

left[y]← z
else

right[y]← z
end if

end if

Deletion is purely rearranging the pointers. There are multiple cases to be handled, there-
fore the function looks rather complicated.

The procedure receives a pointer to the nodez that is to be deleted.

It returns a pointer to the node removed so that this node can be reused by putting it into a
free list.

TREEDELETE(T, z)

if left[z] =NIL or right[z] =NIL then
y ← z

else
y ←TREESUCCESSOR(z)

end if
if left[y] 6=NIL then

x← left[y]
else

x← right[y]
end if
if x 6=NIL then

p[x]← p[y]
end if
if p[y] =NIL then

root[T]← x
else

if y = left[p[y]] then
left[p[y]]← x

else
right[p[y]]← x

end if
end if
if x 6= y then

key[z]← key[y]
copyy’s satellite data into z

end if
return y

33

2.4 Red-Black Trees

The problem with binary search trees is that their depth is only limited by the amount
of nodes in the tree. Since the depth is the determining factor for the runtime of most
operations, we want to keep it as small as possible, i.e. logarithmic in the number of
elements stored. One way to assure this is to check the lengthof every path from a node
to the root and making sure that this path never grows too much, i.e. if a path becomes too
long, we have to re-arrange the elements in the tree so that the length of the path is limited.

A binary search tree is a red-black tree if it satisfies the following red-black properties:

1. Every node is either red or black

2. The root is black

3. Every leaf (NIL) is black

4. if a node is red, then both children are black

5. For each node, all paths from the node to descendant leavescontain the same number
of black nodes.

We call the number of black nodes on any path from a nodex down to the leaf theblack-
heightof the node, denotedbh(x).

Lemma 2 A red-black tree withn internal nodes has height at most2(lg(n + 1)).

Running TREEINSERT and TREEDELETE takeO(lg n) time, but unfortunately, the tree
produced by them may not be a red-black tree anymore. In orderto maintain the red-black
properties, we may have to change some pointers and change the color of some nodes.

A rotationchanges the pointer structure of a tree so that the red-blackproperties are met.

When doing a left rotation on a nodex, we assume that its right child is notnil[T].

The following procedure assumes thatright[x] 6= nil[T] and that the root’s parent isnil[t].

LEFTROTATE(T, x)

y ← right[x]
right[x]← left[y]
p[left[y]]← x
p[y]← p[x]
if p[x] = nil[T] then

root[T]← y
else

if x = left[p[x]] then
left[p[x]]← y

else
right[p[x]]← y

end if
end if
left[y]← x
p[x]← y

34

RBINSERT(T, z)

y ← nil[T]
x← root[T]
while x 6= nil[T] do

y ← x

if key[z] < key[x] then
x← left[x]

else
x← right[x]

end if
end while
p[z]← y

if y = nil[T] then
root[T]← z

else
if key[z] < key[y] then

left[y]← z

else
right[y]← z

end if
end if
left[z]← nil[T]
right[z]← nil[T]
color[z]←RED

RBINSERTFIXUP(T, z)

35

RBINSERTFIXUP(T, z)

while color[p[z]] =RED do
if p[z]=left[p[p[z]]] then

y ← right[p[p[z]]]
if color[y] =RED then

color[p[z]]←BLACK

color[y]←BLACK

color[p[p[z]]]←RED

z ← p[p[z]]
else

if z = right[p[z]] then
z ← p[z]
LEFTROTATE(T, z)

end if
color[p[z]]←BLACK

color[p[p[z]]]←RED

RIGHTROTATE(T, p[p[z]])
end if

else
(same asthen clause with ”right” and ”left” exchanged)

end if
end while
color[root[T]]←BLACK

36

RBDELETE(T, z)

if left[z] = nil[T] or right[z] = nil[t] then
y ← z

else
y ←TREESUCCESSOR(z)

end if
if left[y] 6= nil[T] then

x← left[y]
else

x← right[y]
end if
p[x]← p[y]
if p[y] = nil[T] then

root[T]← x

else
if y = left[p[y]] then

left[p[y]]← x

else
right[p[y]]← x

end if
end if
if x 6= y then

key[z]← key[y]
copyy’s satellite data into z

end if
if color[y] =BLACK then

RBDELETEFIXUP(T, x)
end if
return y

37

RBDELETEFIXUP(T, z)

while x 6= root[T] andcolor[x] =BLACK do
if x=left[p[x]] then

w ← right[p[x]]
if color[w] =RED then

color[w]←BLACK

color[p[x]]←RED

LEFTROTATE(T, p[x])
w ← right[p[x]]

end if
if color[left[w]] =BLACK andcolor[right[w]] = BLACK then

color[w]←RED

x← p[x]
else

if color[right[w]] =BLACK then
color[left[w]]←BLACK

color[w]←RED

RIGHTROTATE(T, w)
w ← right[p[x]]

end if
color[w]← color[p[x]]
color[p[x]]←BLACK

color[right[w]]←BLACK

LEFTROTATE(T, p[x])
x← root[T]

end if
else

(same asthen clause with ”right” and ”left” exchanged)
end if

end while
color[x]←BLACK

38

Chapter 3

Advanced Design and Analysis
Techniques

• Dynamic Programming

• Greedy Algorithms

• Amortized Analysis

3.1 Dynamic Programming(DP)

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom-up fashion.

4. Construct an optimal solution from the computed information.

DP Example: Assembly-Line Scheduling:

• A factory with two assembly linesS1, S2, each one havingn stations.

• Stations(S1,n) and(S2,n) do the same thing but possibly need different time. Addi-
tional entry and exit times for the two lines aree1, e2, x1, x2.

• Station(Si, n) needsai,j time for assembly.

• Transition time(Si,n)→ (Si,n+1) can be neglected

• Transition time(S1,n)→ (S2,n+1) = t1, n and Transition time(S2,n)→ (S1,n+1) =
t2, n cannot be neglected.

• Problem: Find the sequence of stations for a “rush order”, i.e. an assembly that takes
minimal time.

A first idea:

39

• It takesO(n) time to compute the time for one given path.

• There are2n possible ways, so compute the time for all of them and then chose the
fastest one.

• Bad idea ifn is large.

A Better idea...DP (Step 1)

• An optimal path trough Station(S1,j) for j = 1 is easy to compute.

• An optimal path trough Station(S1,j) for j > 1 can be created in two ways: Either
through station(S1,j−1) or through(S2,j−1).

• If the path was through(S1,j−1), then the path through(S1,j) is the time of the path
through(S1,j−1) + a1,j .

• If the path was through(S2,j−1), then the path through(S1,j) is the time of the path
through(S2,j−1) + t2, j − 1 + a1,j .

• Idea: An optimal solution consists of optimal sub-solutions.

DP (Step 2):

• Idea: An optimal solution consists of optimal sub-solutions.

• Define the optimal solution recursively.

• fi[j] is the fastest time to get thorugh StationSi,j

• f∗ = min(f1[n] + x1, f2[n] + x2)

• f1[1] = e1 + a1,1

• f2[1] = e2 + a2,1

• f1[j] = min(f1[j − 1] + a1,j , f2[j − 1] + t2,j−1 + a1, j for j > 1

• f2[j] = min(f2[j − 1] + a2,j , f1[j − 1] + t1,j−1 + a2, j for j > 1

• Now we could write a recursive function to computef∗.

• Problem: Still exponential runtime!

FASTESTWAY(a, t, e, x, n) (1)

f1[1]← e1 + a1,1

f2[1]← e2 + a2,1

for j ← 2 to n do
if f1[j − 1] + a1,j ≤ f2[j − 1] + t2,j−1 + a1,j then

f1[j]← f1[j − 1] + a1,j

l1[j]← 1
else

f1[j]← f2[j − 1] + t2,j−1 + a1,j

l1[j]← 2
end if

40

if f2[j − 1] + a2,j ≤ f1[j − 1] + t1,j−1 + a2,j then
f2[j]← f2[j − 1] + a2,j

l2[j]← 2
else

f2[j]← f1[j − 1] + t1,j−1 + a2,j

l2[j]← 1
end if

end for

FASTESTWAY(a, t, e, x, n) (2)

if f1[n] + x1 ≤ f2[n] + x2 then
f∗ ← f1[n] + x1

l∗ ← 1
else

f∗ ← f2[n] + x2

l∗ ← 2
end if

PRINTSTATIONS(l, n):

i← l∗
print “line “ i “, station” n
for j ← n downto 2 do

i← li[j]
print “line “ i “, station” j-1

end for

Other applications of DP:

• Matrix-Chain-Multiplication

• Longest Common Subsequence

3.2 Greedy algorithms

• Determine the optimal substructure of the problem.

• Develop a recursive solution.

• Prove that at any stage of the recursion, one of the optimal choices is the greedy
choice. Thus, it is alway safe to make the greedy choice.

• Show that all but one of the subproblems created by making thegreedy choice are
empty.

• Develop a recursive algorithm that implements the greedy strategy.

• Convert the recursive algorithm into an iterative algorithm.

The Activity Selection Problem:

41

• Given: A number ofn activities and for each activity its start timesi and end time
fi.

• Problem: Find the maximal subset of activities that are compatible with eachother,
i.e. that do not take place in parallel.

Definitions:

• Def: Sij = {ak ∈ S : fi ≤ Sk ≤ fk ≤ sj}

• f0 additional activity that ends before any other starts.

• fn+1 additional activity that starts after any other ends.

• f0 ≤ f1 ≤ · · · ≤ fn ≤ fn+1, i.e. sorted according to the finishing times.

• Aij : Optimal solution forSij

Recursive solution:

• Aij = Aik ∪ {ak} ∪Akj if the optimal solution containsak.

• c[i, j] = c[i, k] + c[k, j] + 1

c[i, j] =

{

0 if Sij = ∅
max

i<k<j
{c[i, k] + c[[k, j] + 1 if Sij 6= ∅

RECURSIVEACTIVITY SELECTOR(s, f, i, j)

m← i + 1
while m < j andsm < fi do

m← m + 1
end while
if m < j then

return {am}∪RECURSIVEACTIVITY SELECTOR(s, f, m, j)
else

return ∅
end if

GREEDYACTIVITY SELECTOR(s, f, i, j)

n← length[s]
A← {a1}
i← 1
for m← 2 to n do

if sm ≥ fi then
A← A ∪ am

i← m
end if

end for
return A

42

Other applications of greedy:

• fractional Knapsack

• not 0-1-Knapsack: Greedy choice can lead to suboptimal results.

3.3 Amortized Analysis

• Idea: Sum up the time needed for a sequence of operations and calculate the individ-
ual operation time by averaging over the sequence.

• Rationale: In some algorithms more time is needed for a single operation, but the
following operations will benefit.

• three techniques: Aggregate Analysis, Accounting Method and Potential Method.

• two simple examples: a stack and a binary counter

Stack:

• Normal PUSH and POP operations that takeO(1) time

• New MULTI POP operation:
MULTI POP(S,k)

while not STACKEMPTYS andk 6= 0 do
POP(S)
k ← k − 1

end while

INCREMENT(A)

i← 0
while i < length[A] andA[i] = 1 do

A[i]← 0
i← i + 1

end while
if i < length[A] then

A[i]← 1
end if

Aggregate Analysis:

• Stack: The worst-case runtime of the MULTIPOP operation isO(n), so a sequence
of n stack operations have worst-case runtime ofO(n2)

• Aggregate Analysis shows that any sequence ofn operations can at most takeO(n)
time.

• Binary Counter: A naive analysis shows that an increment operation can takeO(k)
worst-case on ak-bit binary counter, thusn operations can take up toO(kn) time.

• Aggregate Analysis shows thatn increment operations at most takeO(n) time.

43

Accounting and Potential Methods:

• Accounting Method: Keep track of the “expenses” of the operations and charge more
to certain operations. Then use the charged ammount on otheroperations

• Potential Method: Define a potential function for the datastructure. The cost of an
operation is then its runtime plus the change in potential.Operations that lower the
potential therefore have a lower cost, operations that raise the potential have higher
cost.

44

Chapter 4

graph algorithms

4.1 definitions

Definition 8 A directed graphor digraphG is a pair (V, E) whereV is a finite set andE
is a binary relation onV . V is calledvertex setof G and its elements are calledvertices.
The setE is callededge setof G an its elements are callededges.

In a directed graph we say that an edge(u, v) is incident from or leavesv and is incident to
or entersu. It is possible to have self-loops, i.e.(v, v).

Definition 9 In anundirected graphG = (V, E), the edge set consists of unordered pairs,
i.e. an edge is a set{u, v} whereu, v ∈ V andu 6= v.

In an undirected graph we say that(u, v) is incident onu andv.

If there is an edge(u, v) in G, we say thatv is adjacent tou, in undirected graphs, this
adjacency relation is symmetric.

The binary relationE can be represented as a collection (i.e. a list) of pairs or asa function
from V to its power setP (V) (i.e. as a matrix).

The degree of a vertex in an undirected graph is the number of edges incident on it. A
vertex whose degree is 0 is called isolated. In a directed graph, the out-degree of a vertex
is the number of edges leaving the vertex and the in-degree isthe number of edges entering
the vertex.

A path of lengthk from a vertexu to a vertexu′ in a GraphG = (V, E) is a sequence
〈v0, v1, v2, . . . , vk〉 of vertices such thatu = v0 andu′ = vk and (vi−1, vi) ∈ E for
i = 1, 2, . . . , k. The path contains the verticesvi and the edges(vi−1, vi).

A subpath of pathp = 〈v0, v1, . . . , vk〉 is a consecutive sub-sequence of vertices, i.e. for
any0 ≤ i ≤ j ≤ k the path〈vi, vi+1, . . . , vj〉 is a subpath ofp.

In a directed graph, a pathp = 〈v0, v1, . . . , vk〉 forms a cycle ifv0 = vk. The cycle is
simple ofv1, . . . , vk are distinct. A directed graph with no self-cycles is calledsimple. A
graph with no cycles is called acyclic.

45

An undirected graph is connected if evey pair of vertices is connected by a path. The con-
nected components of a graph are the equivalence classes of vertices under the relation ”is
reachable from”. An undirected graph is connected if and only if it has only one connected
component.

A directed graph is strongly connected if every two verticesare reachable from eachother.
The strongly connected components of a directed graph are the equivalence classes under
the relation ”are mutually reachable”.

Two graphsG = (V, E) and G′ = (V ′, E′) are isomorphic if there exists a bijection
f : V ← V ′ such that(u, v) ∈ E if and only if (f(u), f(v)) ∈ E′. A graphG′ = (V ′, E′)
is a subgraph ofG = (V, E) if V ⊆ V ′ andE ⊆ E′. Given a setV ′ ⊆ V the subgraph of
G induced byV ′ is the graphG′ = (V ′, E′) whereE′ = {(u, v) ∈ E : u, v ∈ V ′}.

Special graphs:

1. A complete graph is an undirected graph in which every pairfor vertices is adjacent.

2. An undirected bipartite graph is an undirected graphG = (V, E) in whichV can be
partitioned into two setsV1 andV2 such that(u, v) ∈ E implies eitheru ∈ V1 and
v ∈ V2 or u ∈ V2 andv ∈ V1.

3. A directed bipartite graph is a directed graphG = (V, E) in which V can be parti-
tioned into two setsV1 andV2 such that(u, v) ∈ E impliesu ∈ V1 andv ∈ V2.

4. An acyclic undirected graph is a forrest

5. A connected acyclic undirected graph is a tree

6. A directed acyclic graph is a dag.

4.2 Breadth First Search

BFS(G, x)

for each vertexu ∈ V [G]− {s} do
color[u]← WHITE

d[u]←∞
π[u]←NIL

end for
color[s] =GRAY

d[s]← 0
π[s]←NIL

Q← ∅
ENQUEUE(Q, s)
while Q 6= ∅ do

u←DEQUEUE(Q)
for eachv ∈ Adj[u] do

if color[v] =WHITE then
color[v] =GRAY

d[v]← d[u] + 1
π[v]← u
ENQUEUE(Q, v)

end if

46

end for
color[v] =BLACK

end while

Definition 10 Let G = (V, E) be a graph ands, v ∈ V two vertices. Theshortest path
distanceδ(x, v) from s to v is the minimum number of edges in a path froms to v. If there
is no path froms to v, thenδ(s, v) = ∞. A path of lengthδ(s, v) is a shortest pathfrom s
to v.

Theorem 8 (Correctness of breadth-first search)LetG = (V, E) be a directed or undi-
rected graph, and suppose that BFS is run on G from a given source vertexs ∈ V . Then,
during its execution, BFS discovers every vertexv ∈ V that is reachable from the source
s, and upon termination,d[v] = δ(s, v) for all v ∈ V . Moreover, for any vertexv 6= s that
is reachable froms, one of the shortest paths froms to v is a shortest path froms to π(v)
followed by an edge(π[v], v).

Proof in CLR, page 535 ff.

The procedure BFS produces a breath-first tree as it searchesthe graph, this tree is repre-
sented byπ[v] in each vertex.

For a graphG = (V, E) with s ∈ V , thepredecessor subgraphof G is Gπ = (Vπ, Eπ)
with Vπ = {v ∈ V : π[v] 6=NIL} ∪ {s} andEπ = {(π[v], v) : v ∈ Vπ − {s}}.

The predecessor subgraphGπ is abreadth-first treeif Vπ consists of the vertices reachable
from s and, for allv ∈ V , there is a unique simple path froms to v in Gπ that is also a
shortest path froms to v in G.

Theorem 9 (Properties for free trees)Let G = (V, E) be an undirected graph. The fol-
lowing statements are equivalent:

1. G is a free tree.

2. Any two vertices inG are connected by a unique simple path.

3. G is connected, but if anyE ∈ E is removed, the resulting graph is not connected.

4. G is connected and|E| = |V | − 1.

5. G is acyclic and|E| = |V | − 1.

6. G is acyclic, but if one edge is added toE, the graph contains at least one cycle.

A rooted treeis a free tree in which one of the vertices is distinguished from the others. It’s
called the root.

PRINTPATH(G, s, v)

if v = s then
print s

else
if π[v] =NIL then

print No path froms to v exists

47

else
PRINTPATH(G, s, π[v])
print v

end if
end if

4.3 Depth First Search and applications

DFS(G)

for each vertexu ∈ V [G] do
color[u]← WHITE

π[u]←NIL

end for
time← 0
for eachu ∈ V [G] do

if color[u] =WHITE then
DFSVISIT(u)

end if
end for

DFSVISIT(u)

color[u] =GRAY

time← time + 1
d[u]← time
for eachv ∈ Adj[u] do

if color[v] =WHITE then
π[v]← u
DFSVISIT(v)

end if
end for
color[u] =BLACK

time← time + 1
f [u]← time

Definition 11 A topological sortof a dagG = (V, E) is a linear ordering of all its vertices
such that if(u, v) ∈ E, thenu appears in the ordering beforev.

TOPSORT(G)

call DFS(G) to compute the finishing timesf [v] for each vertexv.
As each vertex is finished, insert it into the frontof a linked list.
return the linked list of vertices

Note that TOPSORT reverses the finish list by always inserting in front.

Definition 12 Thetransposeof a directed graphG = (V, E) is the graphGT = (V, ET),
whereET = {(v, u) ∈ V × V : (u, v) ∈ E}. Thus,GT is G with all edges reversed.

Readu v as ” there exists a path fromu to v ”.

48

A SCC of a GraphG = (V, E) is a maximal set of verticesC ⊆ V such that for every pair
of verticesu, v ∈ C : u v andv u.

STRONGLYCONNECTEDCOMPONENTS(G)

DFS(G) to computef [u] for eachu ∈ V .
computeGT

call DFS(GT) but in the main loop of DFS, consider the vertices on order of decreasing
f [u].
output the vertices of each tree in the resulting depth-firstforrest as a separate SCC.

The algorithm computes thecomponent graphGSCC = (V SCC , GSCC). Suppose that the
graphG has the SCCsC1, . . . , Ck. V SCC = {v1, . . . , vk}, so one vertex for each SCC.
There is an edge(u, v) ∈ ESCC if G contains a directed edge(x, y) from somex ∈ Ci

andy ∈ Cj . That graph is a dag, otherwise at least two components wouldbe merged until
it is a dag.

4.4 Minimum Spanning Trees

• Input: A connected graphG = (V, E) and an edge weight functionw(u, v).

• Output: An acyclic subsetT ⊆ E that connects allv ∈ V and whose total weight
w(T) =

∑

(u,v)∈T w(u, v) is minimal.

Growing a MST

• Loop invariant: Prior to each iteration,A is a subset of some minimum spanning
tree.

• At each step, determine(u, v) that can be added toA without violating the loop
invariant.(u, v) is called asafe edge.

GENERIC-MST

A← ∅
while A does not form a spanning treedo

find an edge(u, v) that is safe forA
A← A ∪ {(u, v)}

end while
return A

Correctness of GENERIC-MST

• Initialization: After line 1, the setA trivially satisfies the loopminvariant.

• Maintenance: The loop in lines 2-5 maintains the invariant by adding only safe edges

• Termination: All edges that are added toA are in a minimum spanning tree subset,
so the first tree that forms a spanning tree must be a minimum spanning tree.

Idea of KRUSKAL-MST

49

• Sort all edges by weight

• Start with the least-weight-edge

• Add the edge to the MST if it connects two trees in the forrest and not two nodes in
the same tree.

• Use a Disjoint-Set datastructure to represent the trees.

Disjoint-Set Datastructures

• Operations MAKE-SET(x), UNION(x, y), FINDSET(x)

• Implementation: using lists or disjoint-set forrests

• Application example: identify connected components of a graph

DJSCONNECTEDCOMPONENTS(G)

for each vertexv ∈ V [G] do
MAKESET(v)

end for
for each edge(u, v) ∈ E[G] do

if FINDSET(u) 6= FINDSET(v) then
UNION(u, v)

end if
end for

DJSSAMECOMPONENT(u, v)

if FINDSET(u) = FINDSET(v) then
return true

else
return false

end if

Idea of KRUSKAL-MST

• Sort all edges by weight

• Start with the least-weight-edge

• Add the edge to the MST if it connects two trees in the forrest and not two nodes in
the same tree.

• Use a Disjoint-Set datastructure to represent the trees.

KRUSKAL-MST

A← ∅
for each vertexv ∈ V [G] do

MAKESET(v)
end for
sort the edges ofE by w, smallest first
for each edge(u, v) ∈ E[G] sorted byw do

if FINDSET(u) 6= FINDSET(v) then
A← A ∪ {(u, v)}

50

UNION(u, v)
end if

end for
return A

Idea of PRIM-MST

• Start with a single node

• Always add a single node to the tree

• Keep the remaining nodes in a min priority queueQ indexed by the least-weight
edge connecting that node to the tree.

• MaintainA implicitly as a predecessor subgraph tableπ[v].

PRIM-MST(1)

for each vertexu ∈ V [G] do
key[u]←∞
π[u]←NIL

end for
key[r]← 0
Q← V [G]

PRIM-MST(2)

while Q 6= ∅ do
u←EXTRACTM IN(Q)
for each vertexv ∈ Adj[u] do

if v ∈ Q andw(u, v) < key[v] then
π[u]← u
key[u]← w(u, v)

end if
end for

end while

4.5 single source shortest path

Given a weighted, directed graphG = (V, E) with weight functione : E → R mapping
edges to real-valued weights.

The weight of pathp = 〈v0, . . . , vk〉 is the sum of the weights of the edges:

w(p) =

k
∑

i=1

w(vi−1, vi)

Theshortest path weightfrom u to v is defined as

δ(u, v) =

{

min{w(p) : u pv} if there is a path fromu to v
∞ otherwise

51

A shortest pathfrom vertexu to vertexv is then defined as any pathp with w(p) = δ(u, v).

Problems:

• Single source shortest path

• Single destination shortest path

• Single pair shortest path

• All pairs shortest path

Lemma 3 Given a weighted, directed graphG = (V, E) with weight functionw : E R,
let p = 〈v1, . . . , vk〉 be a shortest path from vertexv1 to vertexvk and for anyi andj such
that1 ≤ i ≤ j ≤ k, let pij = 〈vi, . . . , vj〉 be the subpath ofp from vi to vj . Thenpij is a
shortest path fromvi to vj .

To represent the shortest paths we use theπ[v] like in BFS, again forming a predecessor
subgraph.

The technique used by this algorithm is calledrelaxation. d[v] is calledshortest-path esti-
mate, it is a current upper bound of the shortest-path weight.

For a graphG = (V, E) with s ∈ V , thepredecessor subgraphof G is Gπ = (Vπ, Eπ)
with Vπ = {v ∈ V : π[v] 6=NIL} ∪ {s} andEπ = {(π[v], v) ∈ E : v ∈ Vπ − {s}}.

INITIALIZE SINGLESOURCE(G, s)

for each vertexv ∈ V [G] do
d[v]←∞
π[v]← NIL

end for
d[s]← 0

RELAX(u, v, w)

if d[v] > d[u] + w(u, v) then
d[v]← d[u] + w(u, v)
π[v]← u

end if

BELLMAN FORD(G, w, s)

INITIALIZE SINGLESOURCE(G, s)
for i = 1 to |V [G]| − 1 do

for each edge(u, v) ∈ E do
RELAX(u, v, w)

end for
end for
for each edge(u, v) ∈ E do

if d[v] > d[u] + w(u, v) then
return FALSE

end if
end for
return TRUE

52

BELLMAN FORD runs inO(V E).

DAGSHORTESTPATH(G, w, s)

topologically sort the vertices ofG
INITIALIZE SINGLESOURCE(G, s)
for each vertexu, taken in topologically sorted orderdo

for each vertexv ∈ Adj[u] do
RELAX(u, v, w)

end for
end for

The runtime of DAGSHORTESTPATH is Θ(V +E) since TOPSORT takesΘ(V +E), there
areV iterations of the for loop and all the iterations treat|E| edges.

If G is a dag, its predecessor subgraph formed byπ[v] is a shortest-path tree.

If we only allow non-negative edge weights, we can use Dijkstra’s Algorithm.

DIJKSTRA(G, w, s)

INITIALIZE SINGLESOURCE(G, s)
S ← ∅
Q← V [G]
while Q 6= ∅ do

u←EXTRACTM IN(Q)
S ← S ∪ {u}
for each vertexv ∈ Adj[u] do

RELAX(u, v, w)
end for

end while

The runtime of Dijkstra’s algorithm depends on the implementation of the Priority Queue.

4.6 All-Pairs Shortest Path

We can solve this problem by running a single-source shortest path algorithm|V | times.
If there are no negative edge weights, we can use Djikstra. Ifthere are, we have to use
Bellman Ford.

We represent the graph in a adjacency matrix representationof the weight function:W =
(wij) where

wij =







0 if i = j
the weight of directed edge(i, j) if i 6= j and(i, j ∈ E)
∞ if i 6= j and(i, j 6∈ E)

EXTENDEDSHORTESTPATHS(L, W)

n← rows[L]
let L′ = (l′ij) be ann× n matrix.
for i← 1 to n do

53

for j ← 1 to n do
l′ij ←∞
for k ← 1 to n do

l′ij ← min(l′ij , lik + wkj

end for
end for

end for
return L′

MATRIX MULTIPLY(A, B)

n← rows[L]
let C be ann× n matrix.
for i← 1 to n do

for j ← 1 to n do
cij ← 0
for k ← 1 to n do

cij ← cij + aik · bkj

end for
end for

end for
return C

SLOWALL PAIRSSHORTESTPATHS(W)

n← rows[W]
L(1) ←W
for m← 2 to n− 1 do

L(m)←EXTENDEDSHORTESTPATHS(L(m−1), W)
end for
return L(n−1)

FASTERALL PAIRSSHORTESTPATHS(W)

n← rows[W]
L(1) ←W
m← 1
while m < n− 1 do

L(2m)←EXTENDEDSHORTESTPATHS(L(m), L(m))
m← 2m

end while
return L(m)

If we consider the operation executed by EXTENDSHORTESTPATHS as some form of ma-
trix multiplication, our algorithm computes:

L(1) = L(0) ·W = W

L(2) = L(1) ·W = W 2

L(3) = L(2) ·W = W 3

L(4) = L(3) ·W = W 4

...

L(n−1) = L(n−2) ·W = Wn−1

One operation takesΘ(n3) time, by using the algorithm SLOWALL PAIRSSHORTESTPATHS,
the total runtime isΘ(n4).

54

d
(k)
ij =

{

wij if k = 0

min
(

d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj

)

if k ≥ 1

FLOYDWARSHALL(W)

n← rows[W]
D(0) ←W
for k ← 1 to n do

for i← 1 to n do
for j ← 1 to n do

d
(k)
ij ← min

(

d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj

)

end for
end for

end for
return D(n)

TRANSITIVECLOSURE(W)

n← |V [G]|
for i← 1 to n do

for j ← 1 to n do
if i = j or (i, j) ∈ E[G] then

t
(0)
ij ← 1

else
t
(0)
ij ← 0

end if
end for

end for
for k ← 1 to n do

for i← 1 to n do
for j ← 1 to n do

t
(k)
ij ← t

(k−1)
ij ∧

(

t
(k−1)
ik ∨ t

(k−1)
kj

)

end for
end for

end for
return T (n)

JOHNSON(G)

computeG′, whereV [G′] = V [G] ∪ {s},
E[G′] = E[G] ∪ {(s, v) : v ∈ V [G]} and
w(s, v) = 0 for all v ∈ V [G].

if BELLMAN FORD(G′, w, s) =FALSE then
print ”The input graph contains negative cycles!”

else
for each vertexv ∈ V [G′] do

seth(v) to the value ofδ(s, v) computed by BELLMAN FORD.
end for
for each edge(u, v) ∈ E[G′] do

ŵ(u, v)← w(u, v) + h(u)− h(v)
end for
for each vertexu ∈ V [G] do

run DIJKSTRA(G, ŵ, u) to computêδ(u, v) for all v ∈ V [G]

55

for each vertexv ∈ V [G] do
duv ← δ̂(u, v) + h(v)− h(u)

end for
end for

end if

4.7 Summary

Slide FCS1 Recap:

• Algorithms: iterative, recursive

• Correctness: Loop invariants, recurrrences

• Runtime: Worst-case, average-case, best-case, amortizedanalysis

• Design Techniques: iterative, divide-and-conquer, dynamic programming, greedy

Slide FCS1 Recap: datastructures:

• Simple: Lists, queues, stacks

• Simple with key: Heaps

• Dynamic Set Datastructures:

– Heaps: Chaining, Open addressing, Universal hashing

– Binary search trees: Search, Insert, Delete

– Balanced Trees: Red-Black-Trees, Treaps

Slide FCS1 Recap: datastructures:

• Augmenting datastructures

• Disjoint Sets

• Graph Datastructures: Adjacency lists, Matrix

• Minimum Spanning Trees

56

Slide FCS1 Recap: algorithms:

• Sorting: Insertion Sort, Merge Sort, Quicksort, Heapsort,Counting Sort, Radix Sort,
Bucket Sort

• Order Statistics: Min/Max, expected linear, worst-case linear

• Binary Search Trees: Search, Insert, Delete, Rotate

Slide FCS1 Recap: algorithms:

• Dynamic Programming: Assembly Line Scheduling, Matrix Chain Multiplication,
Longest Common Subsequence

• Greedy Algorithms: Activity Selection

• Graph Algorithms: DFS, BFS, TopSort, SCC, Kruskal, Prim, Bellman-Ford, Djik-
stra, Floyd-Warshall, Johnson

57

