Chapter 1

Overview of the course

Slide FCS1 - Overview:

Course: Fundamental Computer Science |
Course Number: 320201

Time: Tue, 8.15-9.30, Fri: 11.15-12.30
Place: Research Ill Lecture Hall

Instructor: Dr. Holger Kenn, Tel: 3112,
E-mail: h.kenn@iu-bremen.de

Web page: http://www.faculty.iu-bremen.de/course/FundCS1/

Slide Overview of the course:

e Datastructures
— Lists, Heaps, Graphs, Trees
e Algorithms

— Sorting and Searching
— Algorithm Design and Analysis

— Graph Algorithms, Dynamic Programming, Number-Theosdti&lgorithms,
String Matching, Computational Geometry,. . . (if we find timee)

This script is based on the textbook to the course:
Cormen Leiserson Rivest Stoll: Introduction to algoritfesond Edition, McGraw-Hill/MIT
Press

Other sources are lecture notes of Torben Hagerup’s Letatenstrukturen und Algo-
rithmen” of the Fall semester '96 at the Universitat des Baaes and the lecture notes of
the lecture "Algorithmen und Komplexitat” by Christine Rébd Stefan Schirra of the Fall
semester '92 also at the Universitat des Saarlandes.

1.1 Introduction

Computer science consists of several fields. Each field tmiemswer specific questions
such as:

Computer Architecture: How to build computers?

Operating Systems: How to share the ressources of a single computer for mulisles?
Computer Networks: How to connect computers?

Theory of Complexity: What can be computed? And what cannot?

Artificial Intelligence: How to solve problems that we do not really understand, eng. u
derstanding language, programming robots for an unknowina@mment . ..

Software Engineering: How to cope with the complexity of large-scale software syst?

“Social” computer science: What is the impact of computer use on individuals and soci-
ety?

In this lecture, we will try to find some answers to this quasti

Datastructures and Algorithms: How to use computers efficiently?

There are many interdependencies between the differeds fidl computer science, e.g.
Datastructures and Algorithms uses the model of a competeivdd from Computer Ar-
chitecture, Operating Systems, Computer Networks andidii Intelligence use Algo-
rithms ...

For this lecture, we will use some simple answers for the rotfuestions in computer
science:

Computer Architecture: We assume a simple computer architecture.

Operating Systems: We assume that our computer is only running our program, we as
sume that input and output to our program is somehow takenafar

Computer Networks: We do not use network connections.
Artificial Intelligence: We only cover probles that we think are well-understood.
Software Engineering: We only write simple programs.

“Social” computer science: Computers are good!

1.2 Fundamentals

A simple example for a problem that can be solved by a compais®rting. Let's say we
have the following numbers:

528,3,2,7,3,1,9

These numbers are to be sorted so that they form a sequerttat sloet next number is not
smaller than the last one. Intuitively, you will probablyesthat the corresponding sorted
sequence is the following:

1,2,3,3,5,7,8,9

But unfortunately, such an intuitive approach does not worla computer and your intu-
ition won't work for 100000 numbers either. Therefore, wedéo come up with a more
structured approach. That should take into account thabbwetalways want to sort these
eight numbers, maybe not eight numbers, maybe not even rerbbewe want to sort.
We have to differenciate between tharting problemand a specifiitnstanceof the sorting
problem. An instance is defined by the specific input, e.g8(8, 2, 7, 3, 1, 9). So we had
to deal with an instance of the sorting problem in our firstregke. In this lecture, we may
use the problem name both for the problem itself and for &tinces, but the meaning will
usually be obvious. With an instance, we usually can depweessimple numbers that can
tell us wether it is an “easy” or a “hard” instance. One examplthe size of the instance,
for the sorting problem, this is the size of the input , in case eight.

We can define the sorting problem more formally in the follogwvay:
Definition 1 Thesorting problenof instance size is the problem defines as follows:

Input: A sequence of objects ay, as,...,a, >

Output: A SeqUencel a, (1), aq(2), - - - » do(n) > Of the input sequence such that,) <
ag(2) < -+ < ag(n) > ando being a permutation of, ..., n

Sometimes, we're not really interested in the output segei®at only in the permutation
g.

Now after we have defined the problem, what is the way to soléh a computer?

Independent of computers, the theory of algorithms is olde ferm originates from the
9th century in the arabic world. A famous mathematician &f tentury was Abu Abdallah
Muhammad Ibn Musa al Khwarizmi (780-850, the times of Califdrun al-Rasid) who
wote several books. The most famous one is the Kitab al-raghafi hisab al-gabr wa al-
mugabala which was the first algebra book, it introduced faaaii variables, equations and
it used the indian base-10 numeral system with zero. The htsakcontains a collection
of indian calculation methods.

This book was brought to europe and translated various timése 12th century. It is

the source of the common believe that the base-10 numetahsysas an arabic invention
although it was in fact invented in india. One of the latinnskations by Gherardo di
Cremona (1114-1187) was called "Dixit Algorismi".

Figure 1.1: Abu Abdallah Muhammad Ibn Musa al Khwarizmi (7&8D)

What is analgorithm?

By using our problem definition, we can say that an algorith@méomputational procedure
that transforms the problem input into the problem output. adgorithm that creates the
right solution for every instance of a problem is said tocberect We say that a correct
algorithmsolvesa computational problem.

An incorrect algorithm may not halt at all and produce no atir produce an incorrect
solution. Contrary to common intuition, incorrect algbrits can be used for many appli-
cations as long as their error rate can be controlled.

In this lecture, we will use thpseudocodelf you are familiar with any procedural pro-
gramming language such as Pascal or C, you will probably haygoblem understanding
the algorithms.

An example for an algorithm solving the sorting problem iewh as Algorithm 1.

Algorithm 1 Insertion-Sort
1: for j «— 2to length[A]do

2. key— A[j]

3. {Insert A[j] into the sorted sequenc1...;j — 1].}
4 i—j-1

5. while i>0and A[i] > key do

6: Ali+1] — A[i]

7 i —i-1

8: end while

9 A[i+1] «— key

10: end for

1.3 Analyzing algorithms

Analyzing an algorithm means predicting its ressource eis&gssources can be memory
requirements, communication bandwith or the use of spdeidtes such as graphic render
hardware, but in most cases, we're interested in the cortipngdtime that it takes for the
algorithm to produce its output.

Before we can analyze an algorithm, we have to have some asism$ on the compu-
tational hardware the algorithm will be executed on. In feisture, we will generally
assume a simple one-processor Van-Neumann-like architealiedrandom access ma-
chine(RAM). In the RAM, instructions are executed sequencially withemy concurrency
or parallelism, we assume no cacheing of data or instrustma a uniform main memory
access time. Occasionally, we will look at different arebitires such as special-purpose
hardware or parallel architectures.

Even analyzing simple algorithms can be quite challengiwgliving discrete combina-
torics, probability theory, algebraic and analytic deityer

1.3.1 Analysis of Insertion Sort

To find out computational time the Algorithm 1 uses, we firsiuase that each line of the
algorithm takes a constant time to be executed on the RAMjrtebeingc; . .. ¢19. For
the lines 3,8 and 10, we will assumg= cg = ¢19 = 0.

As we can easily see, the runtime of this algorithm dependts amput sizen = length[A].
For eachj = 2,...,n, we define; to be the number of times the test of the while loop in
line 5 is executed for that value ¢f

To understand the algorithm, it is helpful to definlap invariant

At the start of each iteration of thfeor loop, of lines 1-10, the subarrag[l...j — 1]
consists of the elements originally i1 ... ; — 1], but in sorted order.

InsertionSort(A) cost times
1: for j <+ 2to length[A]do 1 n
2. key«— A[j] C2 n—1
3: {Insert A[j] into the sorted sequencH1...5 — 1].} c3=0 n—2
4 i—j-1 C4 n—1
5. while i >0 and A[i] > key do cs Yooty
6 Afi+1] — AJi] Co Sty = 1)
7. i—i-1 cr > oty —1)
8. end while cs=0 n-—1
9 A[i+1] « key Cy n—1
10: end for cio=0 n

The total runtime for an input size is

T(n) = ant+cmh—1)+aunh-1) —|—C5th +
j=2

n

C@Zt(]—l +C7Zt(]—1 +cg(n—1)

Jj=2 Jj=2

This equation describes the runtime, but it is not very hakidycan now analyze different
types of input and predict the runtime. Let’s first find thest-caseunning time. If the
sequence is already sorted, the equation simplifies to

Tn) = an+cmh—-1)+caun—-1)+c(n—1)+co(n—1)

since lines 6 and 7 are never executed. This equation cangressed in the form of a
linear equation in the form afn + b for some constanis andb.

What about thevorst cas@ This occurs if the array is sorted in reverse order.

With
= 1
Z n+) 1
j=2
and
- n(n+1)
ISR
j=2
we get the worst case running time to be
n(n—1
T(n) = Cln+02(n—l)+c4(n—1)+c5(¥_1)+
C6(M) N 07(M) teo(n— 1)
2 2
- (& > (O
(2+2+2) +(’1+CQ—|—C4—|—2 5 2+an

—(ca+ca+ 5+)

and this is a quadratic function of the foum? 4 bn + ¢

There is a third case that is sometimes analyzed, the sed@lerage caseuntime. It

is often as bad as the average case. For example, if we askat@it each subarray
sequence on average about half of the sequence is greatet tfjathe while loop has to
search through about half the sequencese- j/2. By analyzing this case the same way
we analyzed the other cases, we will find that it also leadsgoaalratic function. In the
average case analysis, the problem is to precisely defirm/érage case, i.e. the likeliness
that a certain instance of the problem occurs.

1.4 Algorithm Design Techniques

What we used in the insertion sort algorithm was the so-d¢#lerementabpproach. Hav-
ing sorted one subarray of length- 1 we inserted another element to it, thus creating a
sorted subarray of length There are other approaches that will be sketched here, live wi
see applications of these techniques later on.

1.4.1 divide-and-conquer

By recursivlydividing the input into several sub-problems, these careldeced to trivial
cases that can be solved in a single step. Then, the resthis sfib-problems are combined
to form a solution. One example of this approach isnierge sorialgorithm: It divides
the input sequence in halves, reapplies itself to the hadmelscombines the two sorted
halves into a single sorted sequence. Since the sub-sezgiare sorted, mergesort only
has to compare the first element of each sequence and puli@ldwer one of the two.
Mergesort is an old algorithm that dates back to the time ofchaard stack. Its greatest
advantage is that it can be used even with minimal memory.

The main task of mergesort is done by the Merge procedurdabks as follows:

MERGE(A,p,q,)

tnp—q—p+1

ng «—1r—gq

: create Array<[1...n1 + 1] andR[1...ny + 1]

: for i <+ 1ton, do
Lii] — Alp+i—1]

end for

: for j +— 1tonsy do

R[j] — Alg +)

: end for

: Ling +1] «— 0

i Rlng 4+ 1] « o0

1

e NGO RhwdR

[S
w N kO

g1

:for k<~ ptor do

if L[i] < R[j] then
A[K] « L[i]
t—1+1

else
A[K] < R[j]
J—J+1

end if

: end for

NNNRE R R R R
NEPE O OXNDO A

Mergesort itself is then quite simple:

MERGESORT(A,p,r)

1. if p < rthen

2 q—|(p+7)/2]

3: MERGESORTA,p,q)

4. MERGESORTA,q+ 1,7)
5. MERGEA,p,q,r)

6: end if

1.4.2 Asymptotic notation

Definition 2 For a given functiory(n), we denote by (g(n)) the set of functions

O(g(n)) = {f(n):3cl>0,c2>0andny > 0 such that
0 <e1g(n) < f(n) < cag(n)¥n = no}.

We say thay(n) is anasymptotically tight bountbr f(n).

Definition 3 For a given functiory(n), we denote by (g(n)) the set of functions

O(g(n)) = {f(n):3e>0andny > 0 such that
0< f(n) <cg(n)vn > ne}.

We say thay(n) is anasymptotically upper bourfdr f(n).

Definition 4 For a given functiory(n), we denote bf2(g(n)) the set of functions

Q(g(n)) = {f(n):3Je>0andny > 0 such that
0<cg(n) < f(n)¥n >ng}.

We say thay(n) is anasymptotically lower bountbr f(n).

Other interesting properties of asymptotic notation:

Transitivity:

Reflexivity:
f(n) =06(f(n))
f(n) =0(f(n))
f(n) =Q(f(n
Symmetry:

Transpose symmetry:

1.4.3 Other useful mathematical notations

Floor andCeiling:

ForreR:z—1<|z]<z<[z]<z+1

Logarithms Like In denotes the natural logarithimg, , we introducdg = log,,.

Modular arithmetic
Fora € Zandn € N :amodn =a — |a/n|n

a is calledremainderor residueof the quotient:/n.
If (¢ mod n) = (b mod n) we writea = b (mod n).
Functional iteration

Frm) { F(FED(n)) ifi>0
Iterated logarithm

lg*(n) = min{i >0:1gW(n) < 1}

Fibonacci numbers

FrbF = 0
F, =1
F, = F_1+Fi—2fori>2

Fibonacci Numbers are related to pelden ratiog and its conjugate.

o — 1+;ﬂ5)
5 = 1—§ﬂ5)
(bi_qgi

Fi =
V()

1.4.4 Runtime of mergesort

The MERGEprocedure runs i®(n) time, wheren = r — p + 1. The lines 1-3 and 10-13
take constant time. Ther loop of lines 4-9 také (n; + ny) = O(n) time and there are
n iterations of the for loop of lines 14-22 of which each onesakonstant time.

MERGESORTItself runs in@(n 1gn) time. In order to see that, we have to solve the recur-
rence

c if n=20
Tn) = { 2T (n/2)+cn ifn>0

10

It can be shown thdf'(n) = O(nlgn) but here, only an intuitive idea is sketched. Let's
assume for simplicity that n is a power of two.BERGESORTrecursively divides the prob-
lems inton subproblems of size 1. The depth of recursiolgis. At each recursion level,
the algorithm need®(n) time and this happens fog » recursion levels.

1.5 Heapsort

Heapsortis a sorting algorithm that sorts i(n lg n) time, but sorts in place, i.e. does not
make copies of the data. Heapsort makes use of a datastreetiedheap

The binary heap datastructure is an array object that imgiesnsome form of a binary
tree. For that array, we have to remember not dahyth[A] but alsoheap-sizpd] which
may not be equal, i.e. no element pasheap-siz]| is part of the heap although it may
be a valid array element.

Given the indexi of a node, RRENT(i) is the parent node, £FT(i) is the left child,
RIGHT(i) is the right child.

The implementation of these functions is as follows:

PARENT(i)
return |i/2]

LEFT(i)
return 2z

RIGHT(i)
return 2; +1

Heaps can be organizedmin-heapsand asmax-heaps
For a max-heap:

A[PARENT(Z)] > Ali]

For a min-heap:
A[PARENT(7)] < A[i]
Heapsort consists of the following procedures:

MAX-HEAPIFY (A,i)
1: | « LEFT[4
2: r — RIGHT[i]
3: if [< heap-sizpd] andA[l] > A[i] then
4. largest <1
5: else

6: largest «— i

7. end if

8: if r < heap-siz] andA[r] > Allargest] then

11

9: largest < r

10: end if

11: if largest # i then

12: exchanged[i] — A[largest]
13: MAX-HEAPIFY (A, largest)
14: end if

BuILD-MAX-HEAP (A,i)

1: HEAP-SIZE[A] < length[A]

2: for i — |length[A]/2]| downtol do
3 MAX-HEAPIFY (4,1)

4: end for

HEAPSORT(A)

: BUILD-MAX-HEAP(A)

: for i < length[A] downto2 do
exchanged[1] « Al
HEAP-SIZE[A] <« HEAP-SIZE[A] — 1
MAX-HEAPIFY(A, 1)

: end for

What are those three procedures doing?

MAX-HEAPIFY creates a heap from two existing heaps rootedertT(:) and RGHT(z)
and an additional element[i]. The additional element is inserted into the root and sinks
down the heap until it reaches a final position and the hegpaptpis re-established.

The running time of M\x-HEAPIFY on a subtree of size rooted at given nodeéis the
O(n) time to rearrange the three top elements plus the runtimesf MEeaApPIFy of the
changed subtree. The changed subtree has at mos2iside The runtime of MaX-
HEAPIFY is then

T(n) < T(2n/3)+06(1)
To solve this recurrence, we can apply thaster theorem
Theorem 1 (Master Theorem) Leta > 1 andb > 1 be constants, lef(n) be a function
and let7'(n) be defined on the nonnegative integers by the recurrence
T(n) = aT(n/b)+f(n)
where we interpret./b to mean eithetn/b] or [n/b]. ThenT'(n) can be bounded asymp-
totically as follows.
1. If f(n) = O (n'°&» =) for some constant > 0 thenT'(n) = © (n'°&+2).
2. If f(n) = © (n'°& @) thenT'(n) = © (n'°%:*Ign).

3. If f(n) = Q (n'°&»2=<) for some constant > 0 and ifaf(n/b) < cf(n) for some
constant: < 4 and all sufficiently large:, thenT'(n) = ©(f(n)).

12

1.5.1 Other useful applications of Heapsoprt: Priority Quaies

Definition 5 (Priority queue) A priority queuds a data structure for maintaining a st

of

elements, each associated with a value calegd A max-priority-queuesupports the

following operations:

1. INSERT(S, z) inserts the elementinto the setS. The operation could be written as
S — Su{z}.

2. MaxiMuMm (S) returns the element &f with the largest key.
3. EXTRACTMAX (S) removes and returns the elementSofvith the largest key.

4. INCREASEKEY(S, z, k) increases the value of elemeris key to thge new valuk,
which is assumed to be at least as larger&scurrent key value.

A min-priority-queuesupports the following operations:

Th

1. INSERT(S, z) inserts the element into the setS. The operation could be written as
S — Su{z}.

2. MINIMUM (S) returns the element &f with the smallest key.
3. EXTRACTMIN(S) removes and returns the elementSofvith the smallest key.

4. DECREASEKEY(S, z, k) decreases the value of elemef# key to thge new value
which is assumed to be at least as smalka&scurrent key value.

e following procedures implement a max-priority-queyeumsing procedures from

HEAPSORT

HEAPMAXIMUM (A)

1

: return A[1]

HEAPEXTRACTMAX (A)

. if HEAP-SIZE[A] < 1then

error “heap undeflow”

1
2
3: end if
4:
5
6
7
8

max — A[l]

: A[1] < A[HEAP-SIZE[A]]

: HEAP-SIZE[A] < HEAP-SIZE[A] — 1
: MAX-HEAPIFY(A,1)

: return max

HEAPINCREASEKEY (A, i, key)

w N R

»

if key < A[i] then

error “new key is smaller than current key
- end if
Ali] « key
: while i > 1 and A[PARENT(4)] < A[i] do
EXCHANGE A[i] <« A[PARENT(%)]

13

7: i« PARENT(7)
8: end while

MAXHEAPINSERT (A4, key)
1: HEAP-SIZE[A] < HEAP-SIZE[A] + 1
2: A[HEAP-SIZE[A]] + —o0
3: HEAPINCREASEKEY (A, HEAP-SIZE[A], key)

The runtimes of the functions a€¥1) for HEAPMAxIMUM , O(lg n) for HEAPEXTRACT-
MIN, HEAPINCREASEKEY and MAX HEAPINSERT.

1.6 Quicksort

Quicksort is based on divide and conquer like mergesortit luses a different scheme to
divide the sequence and it rearranges the partial sequansash a way that combining
them is even easier than in Mergesort.

The divide step separates the initial sequence into twassgjprences that are chosen based
on apivot elementEvery element smaller (ore equal) than the pivot elemeoigs to the

left sequence, every element larger than the pivot elemgons to the right sequence,
the elements are thus exchanged accordingly. This can beid6h(n) time with n being

the length of the sequence.

Then, Quicksort is called again for the sub-sequences.

QUICKSORT (A, p,)
1. if p < rthen
2: q <« PARTITION(A, p,7)
3: QUICKSORT(4,p,q — 1)
4: QUICKSORT(A,q+1,7)
5. end if

1.6.1 Analysis of Quicksort

Worst Case analysis

T(n) = max (T(q)+T(n—q—1))+06O(n)

0<g¢<n—1
Guessing thal'(n) < cn? for somec.

2 o 2
T(n) < Ogglgffl(cq +c(n—q—1)°)+06(n)

2 12
cogr;lgfl(q +(n—q—1)°)+6(n)

q*> — (n — ¢ — 1)? achives a maximum ovér< ¢ < n — 1 at the endpoints. This gives us
maxo<g<n-1(¢> + (n—q¢—1)?) < (n—1)2=n?-2n+ 1.

14

en?® —c(2n — 1) + O(n)

CTL2

IAIA

1.6.2 randomized quicksort

RANDOMIZEDQUICKSORT (A, p,)
1. if p < rthen
2: ¢+ RANDOMIZEDPARTITION(A, p,r)
3: RANDOMIZEDQUICKSORT(A,p,q — 1)
4. RANDOMIZEDQUICKSORT(A,q + 1,7)
5. end if

RANDOMIZEDPARTITION (A, p, 1)
1: ¢ < Random(p,r)
2: exchanged[r] < Ali]
3: return PARTITION(A, p,)

PARTITION (A, p,7)
1. x — Alr

cie—p—1

:for j«—ptor—1do

if A[j] <z then
1—1+1
exchanged[i] « A[j]

end if

. end for

. exchanged[i + 1] < Alr]

sreturn ¢+ 1

=
o

Lemma 1 Let X be the number of comparisions performed in line Raftitionover the
entire execution oQUICKSORT on ann-element array. Then the running time@&1Ck-
SORTiIS O(n + X).

Letz1, 22, ..., 2, be the elements of array so thatZ; is theith smallest elementZ;; =
{#i,zi+1, ..., zj} is the set of elements betweenandz;, inclusive.
We define

X;; = I{z; iscomparedta;}

on the complete run of the algorithm. Since each pair is coatpat most once, we can
calclulate the total number of comparisions

n—

x - 5

1 n
1 5=t

Xij
+1

In expectations:

15

Now we just have to calculater{ z; is compared ta; }. Two elements are only compared
if one of the two is chosen as a pivot element:

Pr{z; iscomparedta;} = Pr{z; orz; isfirst chosen as a pivot element frazy }
= Pr{z; isfirst chosen as a pivot element frazp; } +

Pr{z; is first chosen as a pivot element frafy, }
1 1

B ETES R TS
B 2
g+l

n—1 n D)
EX] = Y > P

i=1 j=i+1

Theorem 2 Any comparision-based sort algorithm requife&: 1g n) comparisions in the
worst case.

Corollary 1 Heapsort and Mergesort are asymptotically optimal comgiari sorts.

16

1.7 Sorting without comparing

1.7.1 Counting Sort

Counting sortassumes that each of the n input elements is an integer iatiged to for
some integek. When k = O(n), the sort runs i@(n) time.

COUNTINGSORT(A,B,K)

:fori—0tok do

Cli] <0

: end for

for j «— 1tolength[A] do
ClA[j]] < CIA[j]] + 1

end for

- fori«— 1tokdo

Cli] < C[i] + C[i — 1]

: end for

: for j « length[A] downto 1 do

BIC[A[j]]] < Alj]

ClA[j]] < ClAG] - 1

: end for

=

©eNOO R WD

[S T
W N PO

Counting sort runs i® (k + n) time. Usually, we havé = O(n), then Counting sort runs
in ©(n) time.

Definition 6 A stablesorting algorithm preserves the input order of equal inpiates in
its output.

1.7.2 Radix Sort

RADIX SORT(A,D)
1. for i+ 1toddo
2: use a stable sort to sort arrdyon digit:.
3: end for

1.7.3 Bucket Sort

Bucket Sort assumes that the input values are created bylamaprocess that uniformily
distributes them ovelp), 1)

BUCKETSORT(A)

n «— length[A]

. for i — 1ton do

insertA[:] into list B[|nAl#]]]

: end for

: for i — Oton — 1 do

sort list B[:] with insertion sort

concatenate the list8[0], B[1], ..., B[n — 1] together in order
: end for

17

1.8 Medians and Order Statistics

Definition 7 Thesth order statistiof a set ofn elements is théth smallest element. The
minimumis the first order statistic, thmaximumis thenth order statistic.

Themedianfor an odd number of elements in the set is ttieorder statistic withi =
(n+1)/2.

Thelower mediarfor an even number of elements in the set isitheorder statistic with
i=|(n+1)/2].

Theupper mediarior an even number of elements in the set isitheorder statistic with
i=[(n+1)/2].

Theselection problenis defined formally as:
Input: A setd of n (distinct) numbers and a numbgmwith1 < i < n.

Output: The element € A thatis larger than exactly — 1 other elements of.

If we use the term median of a set without knowing the numbexlements, we use the
lower median for sets with an even number of elements.

Obviously, the selection problem can be solvedifn lg n) time by sorting the numbers
and selecting théh element in the sequence. But there are better algorithms.

1.8.1 Minimum and Maximum

MINIMUM (A)

min — A[l]

: for i — 2to length[A] do

if min > A[i] then
min «— Ali]

end if

: end for

return min

NoasrwDNRE

Both the upper and lower bound are- 1 comparisions.

It is sufficient to do3|n/2] comparisions instead @f — 2 do find both the minimum and
the maximum. The trick is to work with pairs of elements. Egempare two elements
with eachother, then the larger one with the current maxiranththe smaller one with the
current minimum, so three comparisions for every two eldsien

1.8.2 Selection in expected linear time

RANDOMIZEDSELECT(A, p,7,1%)
1: if p =rthen
2: return Afp]
3: end if

18

4: ¢ —RANDOMIZEDPARTITION(A, p,7)
5 k—q—p+1

6: if i = k then

7. return Alq]

8: else

9: ifi< kthen

10: return RANDOMIZEDSELECT(A, p,q — 1,14)

11: else

12: return RANDOMIZEDSELECT(A, ¢+ 1,r,i — k)
13: endif

14: end if

For RANDOMIZEDSELECT, T'(n) = O(n) on average. Therefore, any order statistic in-
cluding the median can be determined on average in linea: tim

1.8.3 Selection in worst-case linear time
SELECT

1. Divide then elements of the input array infe/5 | groups of 5 elements each and at
most one group made up of the remainingmod 5 elements.

2. Find the median of each of tHe /5| groups by sorting the elements of each group
and then picking the median,i.e. element 3 from the sorttd li

3. Use ELECTrecursively to find the median of the [n/5] medians found in step 2.

4. Partition the input array around the median-of-medianket & be one more than
the elements of the low side of the partition so thé thekth smallest element and
there aren — k elements on the high side of the partition.

5. if i = k then returnz. Otherwise, use 8 ECT recursively to find théth smallest
element in one of the partitions. For< k, continue with the low side, for > &
continue with the high side.

At least half of the medians found in step 2 are greater thamiidian-of-medians Thus,
at least half of thgn /5] groups contribute three elements that are greater thexcept
two groups (the one containing x and the modulo group at tdewe will substract them).

([351]-2) = F-o

In the worst case, B ECT is called on at mosin/10 + 6 elements in step 5. Therefore,
we can now develop a recurrence for the runtime BIEECT.

[e if n <140
T(n) = { T([n/5]) +T(7n/10+6) + O(n) if n > 140

19

Forn > 140

=
2
I

T([n/5])+T(Tn/10+4 6) + O(n)
c[n/5] + ¢(7n/10 + 6) + an
en/5+ ¢+ Ten/10 4 6¢+ an

= 9cn/10+4 7c+ an

en + (—en/10+ Te + an)

IN N

Thisis< en if (—en/10+ 7¢ + an) < 0 which is the case for, > 140 andc > 20a.
The worst case runming time oESECT is therefore linear.

For a discussion of 8. ECT, see CLRS Chapter 9.3 and Mehlhorn, Datastructures And
Efficient Algorithms, Vol1, Sorting and Searching, Chaptet

20

e Proofs about algorithms:

— Correctness
x Tool: Loop invariant
— Runtime

* best case
* Worst case
* average case

e Types of algorithms

— iterative: proof of loop invariants
— recursive (divide-and-conquer): recurrences
— recurrences: solved by substitution or master theorem

e Sorting Algorithms

— Comparision-based sort

| Algorithm | best case runtim¢ worst case runtime average case runtime
INSERTIONSORT O(n) O(n?) O(n?)
MERGESORT O(nlgn)
HEAPSORT O(nlgn)
QUICKSORT O(n) O(n?) O(nlgn)

— Lower Bound for comparision-based séxtn 1gn)
— Non-comparision-based sort

| Algorithm | worst case runtime expected runtime
COUNTINGSORT O(k +n)
RADIX SORT O(d(n +k))
BUCKETSORT O(n?) O(n)

e Medians and Order Statistics

— Minimum, Maximum run inn — 1 comparisions.

— Combined Minimum and Maximum runs 8{n/2| comparisions.
— RANDOMIZEDSELECT runs in expected linear time.

— SELECT runs in worst-case linear time.

21

Chapter 2

datastructures

Sets are as fundamental to computer science as they aretemmsttcs. Unlike in math-
ematics where sets are unchanging, algorithms can matepsgss, they can create new
sets, add elements, remove elements and so on. Therefooallvgeich setslynamicand
we have to find a way for algorithms to handle sets in a computer

A dynamic set that supports the operationsert, deleteand test membershifs called

a dictionary. There are other dynamic sets that implement differentaifmers such as
the min-max-heap datastructure. Depending on the needmdtams, dynamic sets are
implemented differently.

Each element of a set is represented by an object in memorgenfedds can be examined
and manipulated if we have a pointer to this object. Someassisme one identifying field
of the object calledey If all keys are different, we can use the dynamic set as afdetyo
values. The object may contasatellite datan some of its fileds, that is application specific
data that is carried around with the object but is not usedynseay by the implementation
of the dynamic set. It also has fields that are manipulatechbyirhplementation, those
fields contain pointers to other objects, array indeces ditiadal data. Some dynamic
sets operate on key values from a totally ordered set suakehaumbers or words under
an alphabet and a lexical order. A total order allows us takpd a "next element" by
order or a "maximum element".

Typical operations on dynamic sets are:

SEARCH(S, k) Given a setS and a keyk, this query returns a pointerto an object inS
so thatkey[x] = k or NIL if no such object exists ifS.

INSERT(S, z) This operation adds an elemento S, i.e. S «— S U {z}.
DELETE(S, z) This operation removes an elemenb S, i.e. S «— S\ {z}.

MINIMUM (S) This operation returns a pointer to the element of a totaleed sef with
the smallest key.

MaxiMuMm (S) This operation returns a pointer to the element of a totatieed setS
with the largest key.

SUCCESSORS,) This operation returns the element of a totaly orderedSseith the
next larger key than element

22

PREDECESSORS, z) This operation returns the element of a totaly ordered'seith the
next smaller key than element

The Successorand RREDECESSORqueries are often extendet for sets with nondistinct
keys so that a call to MilMuM with consecutive calls to ScCEsSSORenumerates the
elements of the set. The execution time of the operationstially given as a function of
the size of the set that it is applied to.

2.1 Elementary datastructures

A stackis a dynamic set datastructure that implemerigstin,first-out(LIFO) policy. The
only element that can be deleted from a stack is the one mositlg inserted. Aqueue
is a dynamic set datastructure that implemenfiss&in,first-out(FIFO) policy. The only
element that can be deleted from the queue is the one thatkasibthe queue the longest
time.

Arrays can be used to implement both queue and stack.

2.1.1 stacks

For a stack, theNSERT operation is often called 0sH, the DELETE operation is then
called Pop.

The stack is implemented by using an integer cadiisgtk pointer In our example, we use
top[S] for the stack pointer of stack.

The following code implementsU&H, PoP and SACKEMPTY that returnsTRUE if the
stack does not contain any elements.

STACKEMPTY(.S)

if top[S] = 0 then
return TRUE

: else

return FALSE

: end if

=

arwn

PUSH(S, x)
1: top[S] < top[S] +1
2: S[top[S]] — =

PoP(S)

1: if STACKEMPTY(S) then
error "Stack Underflow”
. else
top[S] — top[S] — 1
return S[top[S] + 1]

- end if

o gk wN

Each of these operation takég1) time.

23

2.1.2 queues

For a queue, theNlsERTOperation is often called¥QUEUE, the DELETE operation is then
called DEQUEUE

Unlike the stack, the queue needs two additional pointereaapointer and dail pointer.
The tail is where elements are enqueued, the head is wherartheequeued.

The following functions implement a queue with at most ndne¢nts.

ENQUEUE(Q, x)

1: Qtail|Q]] « x
2: if tail[Q] = length[Q)] then
3 tail|Q] — 1
4: else
5 tail|Q] « tail[Q] + 1
6: end if
DEQUEUEQ)
1. & — Qlhead[Q)]]
2: if head[Q] = length[Q)] then
3 head[@] — 1
4: else
5. head[Q] < head[Q] + 1
6: end if
7: return =z

2.1.3 Linked lists

In alinked list, the elements are arranged in a linear order but unlike iatte, the order
is not created by the linearity of the array index but by chmjrihe elements together, i.e.
by following a pointer, we can go from one element to anottement. Adoubly linked
list L has two pointergyrev andnext for each element. For an elementprev|x] points
to the predecessor afandnext[x] points to the successor. For the first element (the head
of the list which has no predecessor) we use the valugor prev. For the last element
(the tail of the list which has no successor), we use the waludor next. head[L] points
to the first element of the list. Aingly linked listis a list without theprev ponter in the
elements. If a list isorted the linear order of the list corresponds to the linear oafer
keys stored in the elements of the list, usually, the headi®list contains the minimum
element and the tail of the list contains the maximum elemiena circular list, the prev
pointer of the head element points to the tail of the list amehtext pointer of the tail
element points to the head of the list. Unless otherwisedtate assume our lists to be
doubly linked and unsorted.

We can search the list for a specific element:

LISTSEARCH(L, k)
1: x < head[L]
: while z # NIL andkey|x] # k do
x — next|x]
: end while
return x

amrMwn

24

We can insert an element into the list:

LISTINSERT(L, x)
1: next|z] — head[L)
2: if head[L] # NIL then
3. prev[head[L]] «— x
4: end if
5. head[L] + x
6: prev(z] < NIL

We can delete an element from the list:

LISTDELETE(L, x)

if prev[z] # NIL then

2: next[prev|z]] «— next(z]
3: else
4: head[L] <+ next|x]
5: end if
6

7

8

. if next[z] # NIL then
. prev[next[z]] « prev|z]
- end if

In order to make our life simpler (by avoiding all these i#t&iments that reflect the list
boundary handling) we introducesantinellist element that we add to the endpoints of the
list. This element is callea:l[L] like the pointer value but also has the fiejgdsv and
next, so thatprev[nil] andnezt[nil] have a well-defined meaning. This turns a regular
doubly-linked list into a circular, doubly linked list with sentinel in which theil sentinel

is placed before the head and after the tail element. Siacénil[L]] = head[L] we can
eliminate thehead[L] pointer and use the nil element instead. An empty list ctsisisly

of thenil[L] element pointing to itself with therev andnext pointers.

LISTSEARCH' (L, k)
1: & «— next[nil[L]]
2: while z # nil[L] andkey[z] # k do
3 x « next[x]
4: end while
5: return x

LISTDELETE' (L, k)
1: next[prev|z]] « next[z]
2: prevnext|x]] « prev|x]

LISTINSERT (L, x)
1: next[z] «— next[nil[L]]
2: prev|next[nil[L]]] —z

[
3: next[nil[L]] «—
4: prev(z] < nil[L]

2.1.4 Memory management with lists

We can use lists to manage the memory of the computer.

25

ALLOCATEOBJECT()

if free = NIL then
error "out of memory

else
x — free
free — next|x]
return x

end if

FREEOBJECT(x)

next[z] — free
free — x

2.2 Hashing and Hash Tables

2.2.1 Direct adressing

Assuming a dynamic set in which each element has aikelyawn from the universe
{0,1,...,m — 1}. Then we can use direct-address tablg’[0--- — 1] in which each
slot corresponds to exactly one kéye U. If we assume that no two elementslinhave
the same key:, we can simply store the elements (or pointers to the eleshet/ in T
When no element of ke exists, we storauiL in T'[k].

DIRECTADRESSSEARCH(T,K)
return T'[k]

DIRECTADRESINSERT(T,X)
Tlkeylz] « «

DIRECTADRESDELETE(T,K)
T[k] <NIL

2.2.2 Hashing as a technique for datastructures

Direct-adress tables habe a huge drawback|fis large, a large table has to be used. It
can also be very inefficient: U] is large but the set to be stored is small, then a lot of
space is wasted since for each elemmitin U, aNIL value is stored. Hashing requires
much less storag®(|K|) but on average onl)(1) time for all operations, if the hash
function is easy to compute, i.e. (1) time (and memory space).

Direct adressing guarante@$1) time in the worst case, but uses|Of) memory space.

h:U —{0,1,...,m — 1} is ahash functiorthat maps the univerdé into the hash table
T[0,1,...,m — 1] of m slots.

If two elements oV hash to the same slot, this igallision.

This is may happen ifU| > m which is usually the case. (otherwise we could have stayed
with direct adressing in the first place.) However, we tryvoid it so that if we store a set

26

with less or equak elements, there should be few collisions. But we have togresfor
colisions. One solution is to store a list in each slot.

In order to resolve colisions, we can usglision resolution by chaining

CHAINEDHASHSEARCH(T,K)
search for an element with keyin list T'[h(k)] and return it.

CHAINEDHASHINSERT(T,X)
Insertz in the head of list'[h(key[z])].

CHAINEDHASHDELETE(T,X)
Deletex from list T'[h(key[z])]

Analysis of hashing with chaining:

Given a hash tabl& with m slots andh elements stored, we defindoad factora = n/m.
It gives the average number of elements stored in a chain.

The worst-case behavior of hashing with chaining is tesfibut simple to analyse: Let's
assume that all elements are in a single slot, so the deldtsemnch operations tak¥(n)
time.

We assume a uniform distribution of the hash values over littis for the elements in
the set, i.e. for the elements it is equally likely that they hashed into every slot. This
assumption is callegsimple uniform hashing

The length of the listr'[j] is denoted by:; so thatn = 327" n;.

Theorem 3 In a hash table in which colisions are resolved by chainingsaccessful or
unsuccessful) search takes expected @rfie+ «), under the assumption of simple uniform
hashing.

Proof in CLR, page 229

2.2.3 Hash functions

A good hash function satisfies the assumption of simple mmifeashing. Unfortunately,
to check this property, the input (or the distribution of thput overU) must be known.

It is usually straight-forward to interpret any input as amarical value, e.g. for strings,
these can be interpreted as strings of 8-bit values and tagseasily be transformed into
a single value.

The division method uses a hash function of the tgfle) = £ mod m.

When using this method, some valuesmefare usually avoided. For example m should
not be a power of two since the modulo operation just cutsh&ffrhost-significant bits of
k. For words, that might lead to the situation that words as&riduted according to their
ending and some endings are much more likely than othersit:(kt all the words that
end on "xzy"...)

Usually, a prime not too close to a power of two is a good choice

27

The multiplication method uses a hash function of the tyfle) = |m((kA) mod 1)]
with0 < A < 1.

An advantage of the multiplication method is that the chaiten is not critical, so we
can chose the size of the hash table independent of the hastiolu We usually chose
m = 2P since this simplifies the implementation.

We choseA to be a fraction of the form /2% with s is an integer of the range< s < 2%.
We first multiply £ with w-bit integers and get 2w bit valuer,2* + ro wherer; is the
high-order word of the value and is the low-order word of the value. The desinedbit
hash value consists of themost-significant bits of.

Knuth suggests that a good value fbiis about(/(5) — 1)/2, so forA = s/2%, s andw
should be chosen accordingly.

There is an example in CLR (Page 232) that gives an exampala&ibn.

2.2.4 Universal Hashing

For each hash function, we can usually chose a set of elemwiglitthat give the same hash
function. Therefore, if we use this set as an input, thesaehts will all be hashed into the
same slot, leading to worst-case behavior.

Therefore, we chose a hash function (independent of the ighues) randomly (but fixed
for the runtime of our algorithm) in order to get a good periance on the average (input)
case.

Let H be a finite collection of hash functions that map a given us®€ of keys into the
range{0,1,...,m — 1}. Such a collection is calledniversalif for each pair of distinct
keysk, ! € U, the number of hash functions for whiélik) = k(1) is at mos{H|/m.

If we chose a hash function frod randomly, the chance of a collision between two distinct
keysk and! is at mostl /m.

An example of a universal class of hash functions can be narist as follows: Let the
functionsh, ; be defined as

hap = ((ak+b) modp) modm (2.1)

andp being a prime number and sufficiently large (so that for eymrysible value of;,
0<k<p-—1).

We assume that the universe of keys is larger than the nurhblete (otherwiese we would
not have to hash) so we can say that m.

For example: we have = 17, m = 6, we havehs 4(8) = 5

Then, the family of all such hash functions is
Hpm = {hap:a€Zyandb € Z, (2.2)
withZ, =0,1,...,p—1andZ; =1,...,p— 1.

|Hp,m| = p(p — 1) wherem can be chosen freely.

Theorem 4 The classH,, ,,, of has functions is universal.

28

Proof in CLR, page 235

2.2.5 Other ways to resolve collisions

By usingopen adressingall values are stored in the table. For that, we do need rhare t
one slot where a key could be stored. To do this, we extendasir function:

h:Ux{0,1,...,m—1} —»{0,1,...,m —1}

Now, if we insert something, wprobeseveral slots for free space and insert the element
into the first free one. Consequently, if we search for an eld@mweprobe each possible
slot until we find anIL value.

Theprobe sequencg.(k,0), h(k,1),...,h(k,m — 1)) is a permutation of0, 1, ..., m —
1).

By this, every slot is probed exactly once and eventually,abmplete hash table is filled.
If no NIL value is found aftem probes, the hash table is indeed full and we return an error.

HASHINSERT(T,K)
10
repeat
j — h(k,i)
if T'[j] = NIL then
Tlj) < k
return j
else
t—1+1
end if
until i =m
error "hash table overflow"

HASHSEARCH(T,k)

10
repeat
j — h(k,1)
if T'[j] = k then
return j
else
1—1+1
end if
until T[j] =NIL ori=m
return NIL

Unfortunately, deleting is not so simple with open adregsimce the saerch routine ends
at the firstNIL value encountered, but there may be elements stored "Dethiadif this

NIL has been written by a AsHDELETE operation. One solution is to use another special
valueDELETED and make sure that no regular key has that value.

For our analysis of open adressing, we are assuming thatkegdmas equally likely one
of them! possible probe sequences. This assumption is cafiddrm hashing

Uniform hasing is a generalisation of simple uniform hasiMge're not only assuming

29

uniformity for the first hash value but for the sequence ohhadues needed by the probe
sequence. True uniform hasing is hard to implement, buethey good approximations.

In order to create thé(k,4) functions, we can use auxiliary hash functiom’. This
method is calledinear probing

h(k,i) = (W' (k) +1i) mod m
The slots probed ar€[r/(k)], T[W' (k) + 1],...,T[m —1],T[0], ..., T[h' (k) — 1].

This algorithm suffers from so-callgaimary clustering Long runs of occupied slots build
up, increasing the average search time. This happens sireragty slot preceded by i full
slots gets filled in the next step with probability+ 1) /m.

Instead of running linearily, we can ugeadratic probing
h(k,i) = (W (k) + c1i + c2i?) mod m
wherec; andc, are auxiliary constants.

This works much better, but in order to make use of the fulhhtable (by makeing sure
that the probe sequence is a permutatiot of m — 1), we have to use special values for
m, ¢; andcs.

An even better approachd®uble hashingvhere we use two auxiliary hash functions.
h(k,i) = (hi(k) +ih2(k)) mod m

This works much better, the step value for probing is deteeahby the original key value.
Since two hash functions are used, the step value can beedifffor two keysk; # ko
with iy (k1) = hi(k2), since this does not implys (k1) = ho(k2).

In order to cover all slots of the hash table, the valugohas to be relatively prime ta.
In order to make sure that this is the case, we can makepower of two and chode, so
that it always produces odd numbers. Another approach iedeen prime and to make
ho always produce an integer less than

hi(k) = k modm
hao(k) = 1+ (k mod m')

wherem’ is chosen slightly less than.

Theorem 5 Given an open-address hash table with load facto= n/m < 1, the ex-
pected number of probes in an unsuccessful search is atifigst-), assuming uniform
hashing.

Corollary 2 Inserting an element into an open-address hash table wiH factora re-
quires at mosi /(1 — «) probes on average, assuming uniform hashing.

Theorem 6 Given an open-address hash table with load faetor 1, the expected num-
ber of probes in a successful search is at most

1
11—«

1
—In
o

30

assuming uniform hashing and assuming that each key in thie ts equally likely to be
searched for.

Proofs in CLR, Page 241-244

2.3 Binary Search Trees

A binary search tree is a binary tree in which the keys areedtaccording to theinary
search tree property

Letz be a node in a binary search treeylis a node in the left subtree efthenkeyly] <
keylx], if y is a node in the right subtree ofthenkeyly] > key[z].

One tree node has the fielflsy, p for parent/e ft andright along with possible satellite
data.

INORDERTREEWALK (X)
if = # NIL then
INORDERTREEWALK (e ft[x])
print key|[z]
INORDERTREEWALK (right|x])
end if

Theorem 7 If z is the root of ann-node subtree, then the cdNORDERTREEWALK (z)
takesO(n) time.

Proof in CLR, Page 255

The TREESEARCH function looks for the element with kdyin the subtree that is rooted
by x.

TREESEARCH(z, k)
if & =NIL ork = key|x] then
return x
end if
if & < key[z] then
return TREESEARCH(left[x], k)
else
return TREESEARCH(right[z], k)
end if

Obviously, it is also possible to write an iterative versadfrthe function.

ITERATIVETREESEARCH(z, k)
while @ #NiL andk # key[z] do
if & < key[z] then
x — left[z]
else
x — right[z]
end if

31

end while
return x

By going always left, it is possible to find the minimum elemefithe tree.

TREEMINIMUM (X)
while left[z] # NIL do
x — left[z]
end while
return x

By going always right, it is possible to find the maximum eletaf the tree.

TREEMAXIMUM (X)
while right[z] # NIL do
x — right[z]
end while
return x

The Successor function identifies the element with the nigigds key. It can be used to
iterate over the tree in increasing key values.

TREESUCCESSOKX)

if right[z] #NIL then
return TREEMINIMUM (right|x])

end if

y — pla]

while y #NIL andz = right[y] do
Ty
y < ply

end while

return y

Insertion is similar to search: first the algorithm does "#dtiwould be searching for
an element with a similar key, thereby finding the right spmtthe insertion. Then it
rearranges the pointers.

The insertion procedure receives a pointer to a pre-imagdl nodez with key[z] = v,
left[z] =NIL, right[z] =NIL and additional satellite data.

TREEINSERT(T, 2)
Yy <—NIL
x «— root[T
while z #NIL do
ye—=x
if key[z] < key[z] then
x — left[z]
else
x — right[z]
end if
end while
plz] —y
if y =NIL then
root[T] « z

32

else
if key[z] < keyly| then

leftly] < 2
else
right[y] < z
end if
end if

Deletion is purely rearranging the pointers. There areipialtases to be handled, there-
fore the function looks rather complicated.

The procedure receives a pointer to the nodeat is to be deleted.

It returns a pointer to the node removed so that this node earused by putting it into a
free list.

TREEDELETE(T, z)
if left[z] =NIL or right[z] =NIL then
y—=z
else
y < TREESUCCESSOKz)
end if
if left[y] #NIL then
z — left[y]
else
x — righty]
end if
if 2 #NIL then
pla] < ply]
end if
if ply] =NIL then
root[T| «— x
else
if y = left[p[y]] then
leftlply]] — «
else
right[ply]] — x
end if
end if
if x # ythen
keylz] «— key[y]
copyy’s satellite data into z
end if
return y

33

2.4 Red-Black Trees

The problem with binary search trees is that their depth Iy bmited by the amount
of nodes in the tree. Since the depth is the determining rfdotothe runtime of most
operations, we want to keep it as small as possible, i.e. rithgaic in the number of
elements stored. One way to assure this is to check the lefigery path from a node
to the root and making sure that this path never grows too mughf a path becomes too
long, we have to re-arrange the elements in the tree so thégtigth of the path is limited.

A binary search tree is a red-black tree if it satisfies thio¥ahg red-black properties

Every node is either red or black
The root is black
Every leaf (IL) is black

if a node is red, then both children are black

o 0w npoE

For each node, all paths from the node to descendant leaxé&sin the same number
of black nodes.

We call the number of black nodes on any path from a nodewn to the leaf thélack-
heightof the node, denotelth (z).

Lemma 2 A red-black tree wit internal nodes has height at ma&Xtg(n + 1)).

Running TREEINSERT and TREEDELETE take O(lgn) time, but unfortunately, the tree
produced by them may not be a red-black tree anymore. In tmdeaintain the red-black
properties, we may have to change some pointers and chamgeltr of some nodes.

A rotation changes the pointer structure of a tree so that the red-plagerties are met.
When doing a left rotation on a nodewe assume that its right child is net![T].
The following procedure assumes théjht[x] # nil[T] and that the root’s parentigi|[t].

LEFTROTATE(T, x)
y «— right[x]
right[z] — left[y]
plleftly]] < «
ply] < pla]
if plx] = nil[T] then
root[T] — y
else
if x = left[p[z]] then
leftlple]] — y
else
right[pz]] <y
end if
end if
leftly] < =
plz] —y

34

RBINSERT(T, 2)
y «— nil [T
x «— root[T|
while = # nil[T] do
y—
if keylz] < key[z] then
x «— left[x]
else
x «— right|z]
end if
end while
plz] <y
if y = nil[T] then
root[T] « z

else
if key[z] < key[y| then
leftly] « =
else
right[y] < z
end if
end if

left]z] « nil[T]
right(z] < nil[T]
color|z] «<RED
RBINSERTFIXUP(T), 2)

35

RBINSERTFIXUP(T), 2)

while color|p[z]] =RED do

if p[z]=left[p[p[z]]] then
y — right[p[p|z]]]

if color[y] =RED then

color[p[z]] «BLACK

color|y] <—BLACK
[

color(p[p[z]]] <—RED
z « plp[2]]
else
if z = right[p[z]] then
z — p[?]
LEFTROTATE(T, z)
end if

color[p[z]] «BLACK
color(p[p[z]]] <RED
RIGHTROTATE(T, p[p|[z]])
end if
else
(same ashen clause with "right” and "left” exchanged)
end if
end while
color(root|T]] «<BLACK

36

RBDELETE(T,)
if left[z] = nil[T] orright[z] = nil[t] then
Y=z
else
y < TREESUCCESSORz)
end if
if left[y] # nil[T] then
x — left[y]
else
x «— right[y]
end if
pl] < ply]
if ply] = nil[T] then
root[T)| « x
else
if y = left[ply]] then
left[plyl]] < =
else
right[ply]] — «
end if
end if
if x # ythen
keylz] — keyly]
copyy’s satellite data into z
end if
if color[y] =BLACK then
RBDELETEFIXUP(T, z)
end if
return y

37

RBDELETEFIXUP(T, 2)

while x # root[T] andcolor[z] =BLACK do
if x=left[p[x]] then
w + right[p[z]]
if color|w] =RED then
color[w] «—BLACK
color[p|x]] <RED
LEFTROTATE(T, p[z])
w « right[p[x]]
end if
if color|le ft{w]] =BLACK andcolor|right[w]] = BLACK then
color[w] «RED
@ pla]
else
if color|right[w]] =BLACK then
color|le ftjw]] «~BLACK
color|w| «RED
RIGHTROTATE(T, w)
w — right(p[z]]
end if
color[w] < color|p|x]]
color[p[z]] <—BLACK
color(right[w]] «—BLACK
LEFTROTATE(T, p|x])
x «— root[T]
end if
else
(same ashen clause with "right” and "left” exchanged)
end if
end while
color|x] «BLACK

38

Chapter 3

Advanced Design and Analysis
Techniques

e Dynamic Programming
e Greedy Algorithms

e Amortized Analysis

3.1 Dynamic Programming(DP)

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution in a bottom-upifas.

4. Construct an optimal solution from the computed infoliorat

DP Example: Assembly-Line Scheduling:

¢ A factory with two assembly lineS1, 52, each one having stations.

e Stations(S;) and(Ss,,,) do the same thing but possibly need different time. Addi-
tional entry and exit times for the two lines arg ez, z1, x2.

e Station(S;, n) needsy; ; time for assembly.
e Transition time(.S; ,) — (S;.n+1) can be neglected

e Transitiontime(S; ,) — (S2,n+1) = t1, n and Transition timéSs ,,) — (S1.p41) =
t2, n cannot be neglected.

e Problem: Find the sequence of stations for a “rush ordex” an assembly that takes
minimal time.

A first idea:

39

e It takesO(n) time to compute the time for one given path.

e There ar@™ possible ways, so compute the time for all of them and thesseiioe
fastest one.

e Badideaifnis large.
A Better idea...DP (Step 1)

¢ An optimal path trough Statio(t, ;) for j = 1 is easy to compute.

¢ An optimal path trough StatioS; ;) for j > 1 can be created in two ways: Either
through statior(S ;1) or through(Ss ;_1).

e If the path was througiS; ;_1), then the path througtb ;) is the time of the path
through(Sl,j,l) +ay,;.

o If the path was througiS, ;_1), then the path througtf ;) is the time of the path
thrOUgh(SQJ‘_l) + tQ,j -1+ aij.

e Idea: An optimal solution consists of optimal sub-solusion
DP (Step 2):

e Idea: An optimal solution consists of optimal sub-solusion

e Define the optimal solution recursively.

¢ f;[j] is the fastest time to get thorugh Statisip;

o fx =min(f1[n]+ 1, f2[n] + x2)

e fill]=e1+a11

o fo[l] =ea+az

o filjl =min(fi[j — 1] + a1, fo[f — 1 +t2 -1 +al,jforj>1
o fao[j] = min(folj — 1] +azy, filj — 1] +t1-1 +a2,jforj>1
e Now we could write a recursive function to compifte

e Problem: Still exponential runtime!
FASTESTWAY (a,t,e,x,n) (1)

fl[l] —e1 + ai
fo[l] — ea+az1
for j «— 2ton do
if filj — 1 +a1,; < fo[j — 1 +t2,5-1 + a1,5 then
[l <= Al =1+ aw,
L[j] <1
else
filil = foli =1 +t2 -1 + a1
L[j] <2
end if

40

if fg[] — 1] + ao ; < fl[] — 1] + tl,j—l + ao ; then
foli] & foli — 1] + a2,
lao[j] <2

else
faljl < fild =1+t -1 +azy
lofj] <1

end if

end for

FASTESTWAY (a,t, e, x,n) (2)

if f1 [n] + 1 < fg[n] + x5 then
fx < filn] + 21
I —1
else
fx e faln] + 22
[«— 2
end if

PRINTSTATIONS(I, n):

1 [x
print “line “i*, station” n
for j « n downto 2 do
i — L[j]
print “line “i“, station” j-1
end for

Other applications of DP:

¢ Matrix-Chain-Multiplication

e Longest Common Subsequence

3.2 Greedy algorithms

e Determine the optimal substructure of the problem.
e Develop a recursive solution.

e Prove that at any stage of the recursion, one of the optimateh is the greedy
choice. Thus, it is alway safe to make the greedy choice.

e Show that all but one of the subproblems created by makingithedy choice are
empty.

e Develop a recursive algorithm that implements the greedyesty.

e Convert the recursive algorithm into an iterative algarith

The Activity Selection Problem:

41

e Given: A number ofn activities and for each activity its start tinsg and end time

i

e Problem: Find the maximal subset of activities that are catibfe with eachother,
i.e. that do not take place in parallel.

Definitions:

o Def: S;; ={ar e S: fi < Sk < fr<s;}

e fy additional activity that ends before any other starts.

e f,41 additional activity that starts after any other ends.

o fo<fi< - < fn < far1,i.e. sorted according to the finishing times.

e A;;: Optimal solution forS;;
Recursive solution:

o A = A U{ar} U Ay if the optimal solution containgy,.

o c[i,5] = cli, k] + c[k, j] + 1

o if S, =
il = ichey LCli K]+ e[k,]+ 1 if Siy # 0

RECURSIVEACTIVITY SELECTOR(s, f, 4,)

m—i1+1
while m < j ands,, < f; do
m«—m-+1
end while
if m<j then
return {a,, }JURECURSIVEACTIVITY SELECTOR(s, f,m, j)
else
return ()
end if

GREEDYACTIVITY SELECTOR(s, f, 1, j)

n «— length[s]
A — {al}
11
for m +— 2to ndo
if s, > f;then
A— AUa,,
L—m
end if
end for
return A

42

Other applications of greedy:

¢ fractional Knapsack

e not 0-1-Knapsack: Greedy choice can lead to suboptimaltsesu

3.3 Amortized Analysis

e Idea: Sum up the time needed for a sequence of operationsbndate the individ-
ual operation time by averaging over the sequence.

¢ Rationale: In some algorithms more time is needed for a singkration, but the
following operations will benefit.

¢ three techniques: Aggregate Analysis, Accounting MethadiRotential Method.

e two simple examples: a stack and a binary counter

Stack:

e Normal RusH and Rop operations that tak€(1) time

e New MULTIPOP operation:
MuLTIPOP(S, k)

while not STACKEMPTY.S andk # 0 do
Popr(S)
k—k—1

end while

INCREMENT(A)

10

while i < length[A] andA[i] = 1 do
A[Z] — 0
i—1+1

end while

if ¢ <length[A]then
A[Z] — 1

end if

Aggregate Analysis:

e Stack: The worst-case runtime of theuMriPoP operation isO(n), so a sequence
of n stack operations have worst-case runtime®oh?)

e Aggregate Analysis shows that any sequence operations can at most tak&n)
time.

e Binary Counter: A naive analysis shows that an incrementaiju can take) (k)
worst-case on &-bit binary counter, thus operations can take up @(kn) time.

e Aggregate Analysis shows thatincrement operations at most taié¢n) time.

43

Accounting and Potential Methods:

e Accounting Method: Keep track of the “expenses” of the opjens and charge more
to certain operations. Then use the charged ammount onayleeations

e Potential Method: Define a potential function for the datadtire. The cost of an
operation is then its runtime plus the change in potent@dr@tions that lower the

potential therefore have a lower cost, operations thag ithis potential have higher
cost.

44

Chapter 4

graph algorithms

4.1 definitions

Definition 8 A directed graplor digraphG is a pair (V, E') whereV is a finite set and¥
is a binary relation onV. V is calledvertex sebf G and its elements are callecertices
The setF is callededge sebf G an its elements are callegiges

In a directed graph we say that an edgev) is incident from or leaves and is incident to
or entersu. Itis possible to have self-loops, i.@:, v).

Definition 9 In anundirected grapl = (V, E), the edge set consists of unordered pairs,
i.e. an edge is a sdtu, v} whereu,v € V andu # v.

In an undirected graph we say that v) is incident onu anduv.

If there is an edgéu,v) in G, we say thaw is adjacent tau, in undirected graphs, this
adjacency relation is symmetric.

The binary relatior can be represented as a collection (i.e. a list) of pairs arfasction
from V to its power seP (V) (i.e. as a matrix).

The degree of a vertex in an undirected graph is the numbedgdsincident on it. A
vertex whose degree is 0 is called isolated. In a directephgithe out-degree of a vertex
is the number of edges leaving the vertex and the in-degtbe isumber of edges entering
the vertex.

A path of lengthk from a vertexu to a vertexu’ in a GraphG = (V, E) is a sequence
(vo,v1,v9,...,v;) Of vertices such that = vy andw’ = v and (v;—1,v;) € E for
1 =1,2,..., k. The path contains the verticesand the edgeg;_1, v;).

A subpath of pathh = (vg, v1,...,vx) iS @ consecutive sub-sequence of vertices, i.e. for
any0 <i < j < kthe path(v;, viy1, ..., v;) is a subpath op.

In a directed graph, a path= (vg,v1,...,v) forms a cycle ifugy = vi. The cycle is

simple ofwvy, ..., v are distinct. A directed graph with no self-cycles is caadple. A
graph with no cycles is called acyclic.

45

An undirected graph is connected if evey pair of verticeoisnected by a path. The con-
nected components of a graph are the equivalence classegiogg under the relation "is
reachable from”. An undirected graph is connected if ang diil has only one connected
component.

A directed graph is strongly connected if every two vertiaesreachable from eachother.
The strongly connected components of a directed graph areghivalence classes under
the relation "are mutually reachable”.

Two graphsG = (V,E) andG’ = (V', E’) are isomorphic if there exists a bijection
f:V « V’'suchtha(u,v) € Eifand only if (f(u), f(v)) € E'. AgraphG’' = (V', E')
isasubgraphoff = (V,E)if V C V' andE C E’. Given aseV’ C V the subgraph of
G induced byV" is the grapic’ = (V', E’) whereE’ = {(u,v) € E : u,v € V'}.

Special graphs:

1. A complete graph is an undirected graph in which everyfpaiertices is adjacent.

2. Anundirected bipartite graph is an undirected gr&ps (V, E) in whichV can be
partitioned into two set¥; andV, such that'u,v) € E implies eitheru € V; and
veVoorue Voandv € V.

3. A directed bipartite graph is a directed gra@h= (V, E') in which V' can be parti-
tioned into two setd; andV; such tha{u, v) € E impliesu € V; andv € Va.

4. An acyclic undirected graph is a forrest
5. A connected acyclic undirected graph is a tree

6. A directed acyclic graph is a dag.

4.2 Breadth First Search

BFS(G, z)
for each vertex. € V[G] — {s} do
color[u] <« WHITE

d[u] « o0
m[u] «NIL
end for
color[s] =GRAY
d[s] <0
7[s] «—NIL
Q0
ENQUEUE(Q, s)
while Q # 0 do

u «—DEQUEUEQ®)
for eachv € Adj[u] do
if color[v] =WHITE then
color[v] =GRAY
d[v] < du] +1
] —u
ENQUEUE(Q, v)
end if

46

end for
color[v] =BLACK
end while

Definition 10 LetG = (V, F) be a graph ands,v € V two vertices. Thashortest path
distance)(z, v) from s to v is the minimum number of edges in a path froto v. If there
is no path froms to v, thend (s, v) = co. A path of lengthi(s, v) is a shortest patfrom s
tov.

Theorem 8 (Correctness of breadth-first search)LetG = (V, E') be a directed or undi-
rected graph, and suppose that BFS is run on G from a giverceotgrtexs € V. Then,
during its execution, BFS discovers every vertex V that is reachable from the source
s, and upon termination][v] = d(s,v) for all v € V. Moreover, for any vertex # s that
is reachable froms, one of the shortest paths frasto v is a shortest path from to 7(v)
followed by an edgér|v], v).

Proofin CLR, page 535 ff.

The procedure BFS produces a breath-first tree as it sedtohgsaph, this tree is repre-
sented byr[v] in each vertex.

For a graphG = (V, E) with s € V, thepredecessor subgrapsf G is G, = (V, Ex)
with Vi = {v € V : n[v] #NiL} U {s} andE, = {(7[v],v) : v € Vx — {s}}.

The predecessor subgra@h is abreadth-first tredf V. consists of the vertices reachable
from s and, for allv € V, there is a unique simple path froso v in G, that is also a
shortest path fromto v in G.

Theorem 9 (Properties for free trees)Let G = (V, E') be an undirected graph. The fol-
lowing statements are equivalent:

1. Gis afree tree.
. Any two vertices id7 are connected by a unique simple path.
. G is connected, but if an¥ € FE is removed, the resulting graph is not connected.

2
3
4. G is connected anfF| = |V| — 1.
5. GisacyclicandE| = |V| — 1.

6

. G is acyclic, but if one edge is added £ the graph contains at least one cycle.

A rooted treeis a free tree in which one of the vertices is distinguishedifthe others. It's
called the root.

PRINTPATH(G, s, v)
if v =sthen
print s
else
if w[v] =NIL then
print No path froms to v exists

47

else
PRINTPATH(G, s, m[v])
printv
end if
end if

4.3 Depth First Search and applications

DFS(G)

for each vertex. € V[G] do
color[u] <« WHITE
m[u] «=NIL

end for

time «— 0

for eachu € V[G] do
if color{u] =wHITE then

DFSVISIT(u)

end if

end for

DFSVISIT(u)

color[u] =GRAY
time < time + 1
d[u] « time
for eachw € Adj[u] do
if color[v] =WHITE then
m[v] — u
DFSVISIT(v)
end if
end for
color|u] =BLACK
time < time + 1
flu] < time

Definition 11 Atopological sorbf adagG = (V, E) is a linear ordering of all its vertices
such that if(u, v) € E, thenu appears in the ordering before

TOPSORT(G)

call DFS(G) to compute the finishing timefv] for each vertex.
As each vertex is finished, insert it into the frarta linked list.
return the linked list of vertices

Note that TOPSORT reverses the finish list by always inserting in front.

Definition 12 Thetransposeof a directed graplG; = (V, E) is the graphG? = (V, ET),
whereET = {(v,u) € V x V : (u,v) € E}. Thus,GT is G with all edges reversed.

Readu ~~ v as " there exists a path fromto v .

48

A SCC of a GraplG = (V, E) is a maximal set of vertice§ C V such that for every pair
of verticesu,v € C : u ~» v andv ~ w.

STRONGLYCONNECTEDCOMPONENTYG)

DFS(G) to computef|[u] for eachu € V.
computeG”
call DFS(GT) but in the main loop of DFS, consider the vertices on ordeleafeasing

flul.

output the vertices of each tree in the resulting depthffirsest as a separate SCC.

The algorithm computes tt@mponent graplirS¢¢ = (V5¢¢ G9¢C), Suppose that the
graphG has the SCC€,...,Cr. V59C = {v1,..., v}, So one vertex for each SCC.
There is an edgéu,v) € E°CC if G contains a directed edde, y) from somex € C;
andy € C;. That graph is a dag, otherwise at least two components vimiderged until
itis a dag.

4.4 Minimum Spanning Trees

e Input: A connected grap& = (V, E') and an edge weight functian(u, v).

e Output: An acyclic subsef’ C E that connects alb € V' and whose total weight
w(T) = E(u,v)ET w(u, v) is minimal.

Growing a MST

e Loop invariant; Prior to each iteration} is a subset of some minimum spanning
tree.

e At each step, determin@:,v) that can be added td without violating the loop
invariant. (u, v) is called asafe edge

GENERIC-MST
A—10
while A does not form a spanning tree
find an edg€u, v) that is safe ford
A— AU {(u,v)}
end while
return A

Correctness of BNERIC-MST

e Initialization: After line 1, the setl trivially satisfies the loopminvariant.
e Maintenance: The loop in lines 2-5 maintains the invarigraddding only safe edges

e Termination: All edges that are addedAocare in a minimum spanning tree subset,
so the first tree that forms a spanning tree must be a minimamnspg tree.

Idea of KRUSKAL-MST

49

e Sort all edges by weight
e Start with the least-weight-edge

e Add the edge to the MST if it connects two trees in the forrestaot two nodes in
the same tree.

¢ Use a Disjoint-Set datastructure to represent the trees.
Disjoint-Set Datastructures

e Operations MKE-SET(z), UNION(z,y), FINDSET(z)
e Implementation: using lists or disjoint-set forrests

e Application example: identify connected components ofapr

DJSCGONNECTEDCOMPONENTYG)

for each vertew € V[G] do
MAKESET(v)

end for

for each edgéu, v) € E[G] do
if FINDSET(u) # FINDSET(v) then

UNION(u, v)

end if

end for

DJSSAMECOMPONENT(u, v)
if FINDSET(u) = FINDSET(v) then
return true
else
return false
end if

Idea of KRUSKAL-MST

e Sort all edges by weight
e Start with the least-weight-edge

e Add the edge to the MST if it connects two trees in the forrest @ot two nodes in
the same tree.

e Use a Disjoint-Set datastructure to represent the trees.

KRUSKAL-MST

A0

for each vertew € V[G] do
MAKESET(v)

end for

sort the edges of by w, smallest first

for each edgéu,v) € E[G] sorted byw do
if FINDSET(u) # FINDSET(v) then

A— AU{(u,v)}

50

UNION(u, v)
end if
end for
return A

Idea of RRIM-MST

e Start with a single node
¢ Always add a single node to the tree

e Keep the remaining nodes in a min priority que@leindexed by the least-weight
edge connecting that node to the tree.

e Maintain A implicitly as a predecessor subgraph table].

PRIM-MST(1)
for each vertex. € V[G] do
keylu] « oo
m[u] «NIL
end for
key[r] < 0
Q — V[G]

PRIM-MST(2)
while Q # 0 do
u «—EXTRACTMIN(Q)
for each vertexw € Adj[u] do
if v e Q andw(u,v) < key[v] then
mu] —u
keylu] «— w(u,v)
end if
end for
end while

4.5 single source shortest path

Given a weighted, directed grajgh = (V, E) with weight functione : E — R mapping
edges to real-valued weights.

The weight of pathy = (v, ..., vi) is the sum of the weights of the edges:

w(p) = Z w(vi—1,v;)

=1

Theshortest path weighHtom « to v is defined as

S(u,v) = min{w(p) : u~Pv} if thereis a path from: to v
wu= 00 otherwise

51

A shortest pattirom vertexu to vertexv is then defined as any patiwith w(p) = §(u, v).

Problems:

e Single source shortest path
e Single destination shortest path
e Single pair shortest path

e All pairs shortest path

Lemma 3 Given a weighted, directed gragh = (V, E) with weight functionw : £ ~ R,
letp = (vy,...,vx) be a shortest path from vertex to vertexv;, and for anyi andj such
thatl <i < j <k, letp;; = (v,...,v;) be the subpath gf fromv; to v;. Thenp;; is a
shortest path from; to v;.

To represent the shortest paths we usenth like in BFS, again forming a predecessor
subgraph.

The technique used by this algorithm is caltethxation d[v] is calledshortest-path esti-
mate it is a current upper bound of the shortest-path weight.

For a graphG = (V, E) with s € V, thepredecessor subgraptf G is G, = (V, Ex)
with Vy = {v e V : w[v] #NIL} U {s} andE; = {(n[v],v) € E:v € Vx — {s}}.

INITIALIZE SINGLESOURCE(G, s)

for each vertew € V[G] do
d[v] «— oo
m[v] — NIL

end for

d[s] <0

BELLMAN FORD(G, w, s)

INITIALIZE SINGLESOURCEG, s)
for i=1to|VI[G]| —1do
for each edgéu,v) € E do
RELAX (u, v, w)
end for
end for
for each edgéu, v) € E do
if d[v] > du] + w(u,v) then
return FALSE
end if
end for
return TRUE

52

BELLMAN FORD runs inO(V E).

DAGSHORTESTPATH (G, w, s)

topologically sort the vertices @F
INITIALIZE SINGLESOURCE(G, $)
for each vertex, taken in topologically sorted orddp
for each vertex € Adj[u] do
RELAX (u, v, w)
end for
end for

The runtime of \GSHORTESTPATH is ©(V + E) since TOPSORT takesO(V + E), there
areV iterations of the for loop and all the iterations tr¢&f edges.

If G is a dag, its predecessor subgraph formed by is a shortest-path tree.
If we only allow non-negative edge weights, we can use DigstAlgorithm.

DIIKSTRA(G, w, s)
INITIALIZE SINGLESOURCEG, s)
S—10
Q < V|[G]
while Q # 0 do
u —EXTRACTMIN(Q)
S — Su{u}
for each vertew € Adj[u] do
RELAX (u, v, w)
end for
end while

The runtime of Dijkstra’s algorithm depends on the impletagaon of the Priority Queue.

4.6 All-Pairs Shortest Path

We can solve this problem by running a single-source shopt algorithm|V| times.
If there are no negative edge weights, we can use Djikstr¢ghelfe are, we have to use
Bellman Ford.

We represent the graph in a adjacency matrix representattitre weight functionW =
(w;;) where

0 ifi=j
wi; = the weight of directed edge, j) if i # jand(i,j € E)
00 if i #jand(i,j ¢ E)

EXTENDEDSHORTESTPATHS(L, W)
n «— rows|L]
let L' = (I};) be ann x n matrix.
for i — 1ton do

53

for j «— 1ton do
Il — o0
fork— 1ton do
lgj — min(lgj, ik, + W
end for
end for
end for
return L'

MATRIXMULTIPLY (A, B)
n «— rows|L]
let C' be ann x n matrix.
fori« 1ton do
for j «— 1ton do
Cij < 0
fork— 1ton do
Cij « Cij + Qsk - bij
end for
end for
end for
return C

SLOWALL PAIRSSHORTESTPATHS(V)
n — rows[W]
LD — W
for m «— 2ton —1do
L(m) «+EXTENDEDSHORTESTPATHS(L(™~1) W)
end for
return L~

FASTERALL PAIRSSHORTESTPATHS(W)

n — rows[W]

LD W

m«—1

whilem <n —1do
L(2m) <« EXTENDEDSHORTESTPATHS(L (™) L(™))
m «— 2m

end while

return L(™)

If we consider the operation executed by EENDSHORTESTPATHS as some form of ma-
trix multiplication, our algorithm computes:

LW = 1O w=w

L? — W.w=mw?

L® = L@ .w=mw3

LW = L®.w=w*
L(’n—l) — L(TL—Q) . W —_ Wn—l

One operation taked(n?) time, by using the algorithmi®WA LL PAIRSSHORTESTPATHS,
the total runtime i9(n*).

54

at = ’ (k—1) (k-1 (k—1
min (dij_),dik_)—i-dkj_)) ifk>1

FLOYDWARSHALL (W)
n — rows[W]
DO — W
for k — 1ton do
fori«— 1ton do
for j «— 1ton do
d — min (a0, a7+)
end for
end for
end for
return D(™)

TRANSITIVECLOSURE(W)
n — |V[G]|
fori« 1ton do
for j «— 1ton do
if i =jor(i,j) € E[G] then
tz(.?) — 1
else
tl(-?) —0
end if
end for
end for
fork—1ton do
fort«< 1ton do
for j «— 1ton do

£ 5D A (tg,’j*” v t;’;*”)
end for
end for
end for

return 7(™)

JOHNSON(G)
computeG’, whereV[G'] = V[G] U {s},
E|G'] = E[G]U{(s,v) : v € V[G]} and
w(s,v) =0forallv € V[G].
if BELLMAN FORD(G', w, s) =FALSE then
print "The input graph contains negative cycles!”
else
for each vertex € V[G'] do
seth(v) to the value oB (s, v) computed by BLLMAN FORD.
end for
for each edgéu,v) € E[G’] do
w(u,v) — w(u,v) + h(u) — h(v)
end for
for each vertex; € V[G] do
run DIJKSTRA(G, i, u) to computed(u, v) for all v € V[G]

55

for each vertex € V[G] do
dyy — 6(u,v) + h(v) — h(u)
end for
end for
end if

4.7 Summary

Slide FCS1 Recap:

e Algorithms: iterative, recursive

Correctness: Loop invariants, recurrrences

Runtime: Worst-case, average-case, best-case, amaatizadygsis

Design Techniques: iterative, divide-and-conquer, dyiogmmogramming, greedy

Slide FCS1 Recap: datastructures:

e Simple: Lists, queues, stacks
e Simple with key: Heaps
e Dynamic Set Datastructures:

— Heaps: Chaining, Open addressing, Universal hashing
— Binary search trees: Search, Insert, Delete
— Balanced Trees: Red-Black-Trees, Treaps

Slide FCS1 Recap: datastructures:

Augmenting datastructures

Disjoint Sets

Graph Datastructures: Adjacency lists, Matrix

Minimum Spanning Trees

56

Slide FCS1 Recap: algorithms:

e Sorting: Insertion Sort, Merge Sort, Quicksort, Heapgoaiinting Sort, Radix Sort,
Bucket Sort

e Order Statistics: Min/Max, expected linear, worst-casedir

e Binary Search Trees: Search, Insert, Delete, Rotate

Slide FCS1 Recap: algorithms:

e Dynamic Programming: Assembly Line Scheduling, Matrix @h&lultiplication,
Longest Common Subsequence

e Greedy Algorithms: Activity Selection

e Graph Algorithms: DFS, BFS, TopSort, SCC, Kruskal, Priml|lfBan-Ford, Djik-
stra, Floyd-Warshall, Johnson

57

