
Fundamental Computer Science I Midterm
Course Fundamental Computer Science, Dr. Holger Kenn
e-mail: h.kenn@iu-bremen.de, tel.:+49 421 200 3112

Name:

Matriculation Number:

INSTRUCTIONS: Readall the problems carefully before you start working. The
number of points given for a problem are a rough indication ofits difficulty or the time
it takes to write them down. Start with the simple problems. Most problems can be
answered in a few lines of text or equations. Don’t get stuck with the algorithm writing
tasks, first try to get an idea how the algorithm works and sketch it for yourself in plain
text. Leave the detailed writing of the longer algorithms until the end.

1.) Algorithms and Recursions

The logistic difference equation is defined through the following recur-
rence:

u
n+1 = αu

n
(1− u

n
) for n ≥ 1

a) Give a recursive function LDE(n, u0, α) that computesu
n
.(1P)

b) Give a recurrence that describes the runtime of LDE(n) for n ≥ 1.
(1P)

c) Give an non-recursive function NEWLDE(n, u0 , α) that also computes
u

n
by enumeratingu1 . . . u

n
. Give its runtime in asymptotic notation.

(3P)

a) LDE(n, u0, α)

if n = 0 then
return u0

else
v← LDE(n − 1, u0, α)
return α · v · (1− v)

1



end if

b)T (i) = T (i− 1) + O(1)

c) LDENEW(i)
v ← u0

for i← 1 to n do
v ← α · v · (1− v)

end for
return v

LDENEW runs inΘ(n) time.

1P: Iterative Solution solving somehow; 1P: correct algorithm; 1P: run-
time

2



2. Heaps

Given the arrayA = (37, 26, 39, 14, 16, 4, 40)

a) Is this a max heap? Give all violations of the heap property.(1P)

b) What is the content ofA after the execution of BUILD MAX HEAP(A)
? On what elements MAX HEAPIFY is called? Which elements are com-
pared or exchanged? Give the sequence of compares and exchanges.
(3P)

c) What is the content ofA after HEAPINCREASEKEY(A, 6, 41)? Which
elements are compared or exchanged? Give the sequence of compares
and exchanges. Use the output of part b, not the original content ofA.
(3P)

a) no: 40 larger than 39, 39 larger than 37

0.5P for correct; -0.5 for incorrect answers

b) 40 26 39 14 16 4 37

Comparisons: MAX -HEAPIFY (A[3]) 39? > 40
39? > 4 - EXCHANGE 40↔ 39

MAX -HEAPIFY (A[2]) 26? > 14
26? > 16 - don’t exchange

MAX -HEAPIFY (A[1]) 37? > 26
37? > 40 - EXCHANGE A[1] ↔ A[3]

MAX -HEAPIFY (A[3]) 37? > 4
37? > 40 - EXCHANGE A[3] ↔ A[7]

A = [40, 26, 39, 14, 16, 4, 37]

-0.5P per error

c)

A = [41, 26, 40, 14, 16, 39, 37]

CompareA[6]? > A[3] - EXCHANGE A[6]↔ A[3]
CompareA[3]? > A[1] - EXCHANGE A[3]↔ A[1]

3



3. Sorting

a) Illustrate the operation of RADIX SORT with the following hexadeci-
mal numbers:

9D3,634,295,194,B4,965,2C5,747,303,C

Give a list of the numbers after each step of the algorithm.(3P)

b) Assuming that there are less symbols in the set the digits are chosen
from, than there are numbers in the input sequence, what is the asymp-
totic worst-case runtime of RADIX SORT? Prove your answer. (2P)

c) What is the lower bound for comparision-based sorting? Why is the
asymptotic worst-case runtime ofΘ(n) for COUNTINGSORT no contra-
diction to this? (1P)

a)

start 1 2 end
9D3 9D3 303 C
634 303 C B4
295 634 634 194
194 194 747 295
B4 B4 965 2C5

965 295 194 303
2C5 965 295 634
747 2C5 B4 747
303 747 2C5 965

C C 9D3 9D3

-0.5P per error

b) Let n be the number of numbers in the input set andk the number of
symbols in the set the digits are chosen from (the alphabet).

The according to Cormen, Page 172, the runtime of RADIX SORT is
Θ(d(n + k)) with d being the number of digits in the words. Since
k < n, we can say thatd(n + k) < d(2n)

1P for correct Radix runtime, 1P for correct solution

Therefore, the runtime of RADIX SORT is thenO(dn).

c) Ω(n lg n). It is no contradiction since COUNTINGSORT is not using
comparisons to sort.

4



0.5P each

4. Medians

a) Give an algorithm that uses one of the median procedures Random-
izedSelect or Select to sort an arrayA[1..n] into an arrayB[1..n] starting
with the largest element inB[1]. (2P)

b) What worst-case runtime has your algorithm? Give a proof.How
does this runtime compare to other sorting algorithms, would you use it
for sorting? (2P)

a)

MEDIANSORT(A, B)

for i← 1to length[A] do
B[i]← SELECT(A, 1, length[A], i)

end for

1P algorithm; 1P algorithm correct;

b) The algorithm executes SELECT n times withn = length[A]. Each
call to SELECT takesO(n) time, so the algorithm runs inn ∗ O(n) =
O(n2) time.

The algorithm is worse than all other sorting algorithms, even INSER-
TIONSORT has the same worst-case runtime but at least sorts in place.

1P: runtime; 1P: comparison

5. Hashing

Given an Array of integers of length 16 i.e. with array indices 0 to 15
and a hash functionh(k, i) = ((k mod 23) + i) mod 16.

Insert the following sequence of numbers into the array, show the con-
tents of the array after each step. Use hashing with open adressing. (4P)

180 181 233 406 15 45 1171

h(180, 0) = 3 ; A[3]← 180
h(181, 0) = 4 ; A[4]← 181
h(233, 0) = 3 ; h(233, 1) = 4 ; h(233, 2) = 5 ; A[5]← 233
h(406, 0) = 15 ; A[15]← 406
h(15, 0) = 3 ; h(15, 1) = 0 ; A[0]← 15
h(45, 0) = 6 ; A[6]← 45

5



h(1171, 0) = 5 ; h(1171, 1) = 6 ; h(1171, 2) = 7 ; A[7]← 1171
Step A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]

1. 180
2. 180 181
3. 180 181 233
4. 180 181 233 406
5. 15 180 181 233 406
6. 15 180 181 233 45 406
7. 15 180 181 233 45 1171 406

0.5P per right element; 0.5P bonus for complete solution

6



6. MERGESORT with Queues

Given the following QMERGESORT procedure:

QMERGESORT(Q)

if ((tail[Q] − head[Q]) mod length[Q] = 1) then
return

end if
create queueQL

create queueQR

flag ← 0
while (head[Q] 6= tail[Q]) do

if (flag = 0) then
ENQUEUE(QL,DEQUEUE(Q))
flag ← 1

else
ENQUEUE(QR,DEQUEUE(Q))
flag ← 0

end if
end while
QMERGESORT(QL)
QMERGESORT(QR)
QMERGE(Q,QL,QR)
free queueQL

free queueQR

For a complete mergesort algorithm, the MERGEprocedure is still miss-
ing. Unfortunately, we can’t use the merge procedure we usedim MERGE-
SORT since this worked on arrays and not on queues. Therefore, you
have to write the QMERGE procedure that merges two queues and thus
forms a queue-based mergesort algorithm together with QMERGESORT.

Hint: use ENQUEUE(Q,∞) to enqueue a sentinel symbol into a queue
that is always larger than all other numbers.

This function could also be of help, but you may have to modifyit.

QEMPTY(Q)

if (tail[Q] = head[Q]) then
return true

else
return false

end if

7



(4P)

QMERGE(Q, QL, QR)

l ←DEQUEUE(QL)
r ←DEQUEUE(QR)
while (true) do

if (l < r) then
ENQUEUE(Q, l)
if QEmpty(QL)then

while not (QEMPTY(QR)) do
ENQUEUE(Q,DEQUEUE(QR))

end while
return

else
l←DEQUEUE(QL)

end if
else

ENQUEUE(Q, r)
if QEmpty(QR)then

while not (QEMPTY(QL)) do
ENQUEUE(Q,DEQUEUE(QL))

end while
return

else
r ←DEQUEUE(QR)

end if
end if

end while

explanation 1P; complete, full algorithm 4P (non-cumulative); -0.5P/-1P
for errors

8


