

1

Introduction

Uwe R. Zimmer – International University Bremen

© 2003 Uwe R. Zimmer, International University Bremen Page 14 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

References for this chapter

[Silberschatz01]

Abraham Silberschatz, Peter Bear Galvin,
Greg Gagne

Operating System Concepts

John Wiley & Sons, Inc., 2001

[Stallings2001]

William Stallings

Operating Systems

Prentice Hall, 2001

[Tanenbaum97]

Andrew S. Tanenbaum, Albert S. Woodhull

Operating Systems: Design and Implementation

Prentice Hall, 1997

[Tanenbaum95]

Andrew S. Tanenbaum

Distributed Operating Systems

Prentice Hall, 1995

all references and some links are available on the course page

© 2003 Uwe R. Zimmer, International University Bremen Page 15 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

What are operating system based on?

Hardware environments / configurations:

• stand-alone, universal, single-processor machines

• symmetrical multiprocessor-machines

• local distributed systems

• open, web-based systems

• dedicated/embedded computing

What is the common ground for operating systems?

What is an operating system?

© 2003 Uwe R. Zimmer, International University Bremen Page 16 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

What is an operating system?

1. A virtual machine!

… offering a more comfortable, robust, reliable, flexible … machine

Hardware

OS

Tasks

Typ. general OS

Hardware
RT-OS

Tasks

Typ. real-time system

Hardware

Tasks

Typ. embedded system

run-time
environment

© 2003 Uwe R. Zimmer, International University Bremen Page 17 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

What is an operating system?

2. A resource manager!

… dealing with all sorts of devices and coordinating access

Operating systems deal with

• processors,

• memory

• mass storage

• communication channels

• devices
(timers, special purpose processors, interfaces, …)

☞

and many tasks/processes/programs, which are applying for access to these resources

© 2003 Uwe R. Zimmer, International University Bremen Page 18 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

What is an operating system?

Is there a standard set of features for an operating system?

☞

no

,
the term ‘operating systems’ covers 4KB kernels,
as well as 1GB installations of general purpose OSs.

Is there a minimal set of features?

☞

almost

,

memory management

,

process management

 and

inter-process communication/synchronization

will be considered essential in most systems.

Is there always an explicit operating system?

☞

no

,
some languages and development systems operate with stand-alone run-time-environments.

© 2003 Uwe R. Zimmer, International University Bremen Page 19 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

The evolution of operating systems

• in the beginning: single user, single program, single task, serial processing

☞

no OS

• 50s: System monitors / batch processing

☞

 the monitor ordered the sequence of jobs and triggered their sequential execution

• 50s-60s: Advanced system monitors / batch processing:

☞

 the monitor is handling interrupts and timers

☞

 first support for memory protection

☞

 first implementations of privileged instructions (accessible by the monitor only).

• early 60s: Multiprogramming systems:

☞

 employ the long device I/O delays for switches to other, runable programs

• early 60s: Multiprogramming, time-sharing systems:

☞

 assign time-slices to each program and switch regularly

• early 70s: Multitasking systems – multiple developments resulting in UNIX (besides others)

• early 80s: single user, single tasking systems, with emphasis on user interface (MacOS) or APIs.
MS-DOS, CP/M, MacOS and others first employed ‘small scale’ CPUs (personal computers).

• mid-80s: Distributed/multiprocessor operating systems - modern UNIX systems (SYSV, BSD)

© 2003 Uwe R. Zimmer, International University Bremen Page 20 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

The evolution of communication systems

• 1901: first wireless data transmission (Morse-code from ships to shore)

• ‘56: first transmission of data through phone-lines

• ‘62: first transmission of data via satellites (Telstar)

• ‘69: ARPA-net (predecessor of the current internet)

• 80s: introduction of fast local networks (LANs): ethernet, token-ring

• 90s: mass introduction of wireless networks (LAN and WAN)

Currently: standard consumer computers come with

• High speed network connectors (e.g. GB-ethernet)
• Wireless LAN (e.g. IEEE802.11)
• Local device bus-system (e.g. firewire)
• Wireless local device network (e.g. bluetooth)
• Infrared communication (e.g. IrDA)
• Modem

© 2003 Uwe R. Zimmer, International University Bremen Page 21 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Types of current operating systems

Personal computing systems and workstations:

• late 70s: Workstations starting by porting UNIX or VMS to ‘smaller’ computers.

• 80s: PCs starting with almost none of the classical OS-features and services,
but with an user-interface (MacOS) and simple device drivers (MS-DOS)

☞

last 20 years: evolving and expanding into current general purpose OSs:

• Solaris (based on SVR4, BSD, and SunOS)
• LINUX (open source UNIX re-implementation for x86 processors and others)
• current Windows (proprietary, partly based on Windows NT, which is ‘related’ to VMS)
• MacOS X (Mach kernel with BSD Unix and an proprietary user-interface)

• Multiprocessing is supported by all these OSs to some extend.

• None of these OSs is very suitable for embedded systems, also trials have been performed.

• All of these OSs are not suitable at all for distributed or real-time systems.

© 2003 Uwe R. Zimmer, International University Bremen Page 22 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Types of current operating systems

Parallel operating systems

• support for a large number of processors, either:

• symmetrical:
each CPU has a full copy of the operating system

or
• asymmetrical:

only one CPU carries the full operating system,
the others are operated by small operating system stubs to transfer code or tasks.

© 2003 Uwe R. Zimmer, International University Bremen Page 23 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Types of current operating systems

Distributed operating systems

• all CPUs carry a small kernel operating system for communication services.

• all other OS-services are distributed over available CPUs

• services may migrate

• services can be multiplied in order to

• guarantee availability (hot stand-by)
• or to increase throughput (heavy duty servers)

© 2003 Uwe R. Zimmer, International University Bremen Page 24 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Types of current operating systems

Real-time operating systems

• Fast context switches?

☞

 should be fast anyway

• Small size?

☞

 should be small anyway

• Quick responds to external interrupts?

☞

 not ‘quick’, but predictable

• Multitasking?

☞ real time systems are often multitasking systems

• ‘low level’ programming interfaces? ☞ needed in many operating systems

• Interprocess communication tools? ☞ needed in almost all operating systems

• High processor utilization? ☞ fault tolerance builds on redundancy!

© 2003 Uwe R. Zimmer, International University Bremen Page 25 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Types of current operating systems

Real-time operating systems requesting …

☞ the logical correctness of the results as well as

☞ the correctness of the time, when the results are delivered

☞ Predictability!
(not performance!)

☞ All results are to be delivered just-in-time – not too early, not too late.

Timing constraints are specified in many different ways …
… often as a response to ‘external’ events ☞ reactive systems

© 2003 Uwe R. Zimmer, International University Bremen Page 26 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Types of current operating systems

Embedded operating systems
• usually real-time systems, often hard real-time systems

• very small footprint (often a few KBs)

• none or limited user-interaction

☞ 90-95% of all processors are working here!

© 2003 Uwe R. Zimmer, International University Bremen Page 27 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Roots of current commercial operating systems

Basic
methods, algorithms, terminologies

(50s to mid 80s)

Advanced topics,
Current research

projects

Current general
purpose OSs

Dedicated operating systems
(real-time, embedded, distributed)

© 2003 Uwe R. Zimmer, International University Bremen Page 28 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Typical structures of operating systems

‘Monolithic’ or ‘the big mess’
• non-portable

• hard to maintain

• lacks reliability

• all services are in the kernel (on the same privilege level)

☞ may reach very high efficiency

e.g. most early UNIX implementations (70s),
MS-DOS (80s), Windows (basically all versions besides NT and NT-based editions),
MacOS (until version 9),

Hardware

OS

Tasks

Monolithic

APIs

© 2003 Uwe R. Zimmer, International University Bremen Page 29 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Typical structures of operating systems

‘Monolithic & modular’
• Modules can be platform independent

• Easier to maintain and to develop

• Reliability is increased

• all services are still in the kernel (on the same privilege level)

☞ may reach very high efficiency

e.g. current LINUX versions

Hardware

OS

Tasks

Modular

APIs

M1 M1 Mn…

© 2003 Uwe R. Zimmer, International University Bremen Page 30 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Typical structures of operating systems

‘Monolithic & layered’
• easily portable

• significantly easier to maintain

• crashing layers do not necessarily stop the whole OS

• possibly reduced efficiency through many interfaces

• rigorous implementation of the stacked virtual machine perspective
on OSs

e.g. some current UNIX implementations (e.g. Solaris) to a certain degree,
many research OSs (e.g. ‘THE system’, Dijkstra ‘68)

Hardware

Tasks

Layered

M0

M1

Mn
OS

APIs

…

layers

© 2003 Uwe R. Zimmer, International University Bremen Page 31 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Typical structures of operating systems

‘µkernels and virtual machines’
• µkernel implements essential

process, memory, and message handling

• all ‘higher’ services are dealt with outside the
kernel ☞ no threat for the kernel stability

• significantly easier to maintain

• multiple OSs can be executed at the same time

• µkernel is highly hardware dependent
☞ only the µkernel need to be ported.

• possibly reduced efficiency through increased
communications

e.g. wide spread concept: as early as the CP/M, VM/370 (‘79)
or as recent as MacOS X (mach kernel + BSD unix)

Hardware

µkernel, virtual machine

µkernel

Tasks

M0

M1

Mn
OS

APIs

…

layersOS

Tasks

APIs

M1 M1 Mn…OS

Tasks

APIs

© 2003 Uwe R. Zimmer, International University Bremen Page 32 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Typical structures of operating systems

‘µkernels and client-server models’
• µkernel implements essential

process, memory, and message handling

• all ‘higher’ services are user-level servers

• kernel ensures the reliable message passing
between clients and servers

• highly modular and flexible

• servers can be redundant and easily replaced

• possibly reduced efficiency through increased
communications

e.g. current µkernel research projects

Hardware

µkernel, client server structure

µkernel

service mservice 1task 1 task n

© 2003 Uwe R. Zimmer, International University Bremen Page 33 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Typical structures of operating systems

‘µkernels and distributed systems’
• µkernel implements essential

process, memory, and message handling

• all ‘higher’ services are user-level servers

• kernel ensures the reliable message passing
between clients and servers:
locally and via a communication system

• highly modular and flexible

• servers can be redundant and easily replaced

• possibly reduced efficiency through increased
communications

e.g. Java machines, distributed real-time operat-
ing systems + current distributed OSs research projects

µkernel, distributed systems

task 1 task n service 1

µkernel µkernel

service m

µkernel

Hardware

Network

© 2003 Uwe R. Zimmer, International University Bremen Page 34 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Basic programming styles

• Imperative (sequential) ☞ Ada, JAVA, Eiffel, C…

• Functional (recursive) ☞ Lisp, OCaml, …

• Declarative (logic) ☞ Prolog, …

• Data-flow machines ☞ Lustre, Signal, …

• (hierarchical) Finite state machines ☞ synchronous languages: Esterel, syncEifel, synERJY, …

Programming styles alternatives
Imperative ↔ Functional ↔ Declarative ↔ Data-flow ↔ Finite state machines

Static ↔ Dynamic
 Modular ↔ Concurrent ↔ Distributed

Synchronous ↔ Continuous time
Control oriented ↔ Data oriented

© 2003 Uwe R. Zimmer, International University Bremen Page 35 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Programming styles

What makes a language suitable for operating systems?

• Precise expressions on machine level ☞ address physical memory + I/O

• Concurrency ☞ support for tasking/threading

• Distribution ☞ support for message passing or rpc

• Reliability ☞ detect errors at compile-time or in the run-time environment

• Large systems ☞ scalable, modular, or object-oriented + separate compilation

• Predictability
☞ no operations which will lead to unforeseeable timing behaviours (e.g. garbage collection)

© 2003 Uwe R. Zimmer, International University Bremen Page 36 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Programming styles

Languages considered in this course

• C/C++ (for the lab-assignments)

• Ada95 (for your understanding)

• JAVA (for some distribution and object orientated features)

• POSIX (as the IEEE standard for (UNIX-) OS interfaces)

… others in places

© 2003 Uwe R. Zimmer, International University Bremen Page 37 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Ada95 is a standardized (ISO/IEC 8652:1995(E)) ‘general purpose’ language
with core language primitives for

• strong typing, separate compilation (specification and implementation),
object-orientation,

• concurrency, monitors, rpcs, timeouts, scheduling, priority ceiling locks

• strong run-time environments

… and standardized language-annexes for

• additional real-time features, distributed programming,
system-level programming, numeric, informations systems,
safety and security issues.

© 2003 Uwe R. Zimmer, International University Bremen Page 38 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

A crash course
… refreshing:

• specification and implementation (body) parts, basic types

• exceptions

• information hiding in specifications (‘private’)

• generic programming

• class-wide programming (‘tagged types’)

• monitors and synchronisation (‘protected’, ‘entries’, ‘selects’, ‘accepts’)

• abstract types and dispatching

© 2003 Uwe R. Zimmer, International University Bremen Page 39 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Basics
… introducing:

• specification and implementation (body) parts

• constants

• some basic types (integer specifics)

• some type attributes

• parameter specification

© 2003 Uwe R. Zimmer, International University Bremen Page 40 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A simple queue specification

package Queue_Pack_Simple is

 QueueSize : constant Positive := 10;
 type Element is new Positive range 1_000..40_000;
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_Type is record
 Top, Free : Marker := Marker'First;
 Elements : List;
 end record;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

end Queue_Pack_Simple;

© 2003 Uwe R. Zimmer, International University Bremen Page 41 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A simple queue implementation

package body Queue_Pack_Simple is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 end Dequeue;

end Queue_Pack_Simple;

© 2003 Uwe R. Zimmer, International University Bremen Page 42 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A simple queue test program

with Queue_Pack_Simple; use Queue_Pack_Simple;

procedure Queue_Test_Simple is

 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (2000, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce an unpredictable result!
end Queue_Test_Simple;

© 2003 Uwe R. Zimmer, International University Bremen Page 43 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Exceptions
… introducing:

• exception handling

• enumeration types

• functional type attributes

© 2003 Uwe R. Zimmer, International University Bremen Page 44 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A queue specification with proper exceptions

package Queue_Pack_Exceptions is

 QueueSize : constant Integer := 10;
 type Element is (Up, Down, Spin, Turn);
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 Queueoverflow, Queueunderflow : exception;

end Queue_Pack_Exceptions;

© 2003 Uwe R. Zimmer, International University Bremen Page 45 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A queue implementations with proper exceptions

package body Queue_Pack_Exceptions is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Marker'Pred (Queue.Free);
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Marker'Pred (Queue.Top);
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

end Queue_Pack_Exceptions;

© 2003 Uwe R. Zimmer, International University Bremen Page 46 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A queue test program with proper exceptions

with Queue_Pack_Exceptions; use Queue_Pack_Exceptions;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Exceptions is

 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (Turn, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
 when Queueunderflow => Put ("Queue underflow");
 when Queueoverflow => Put ("Queue overflow");

end Queue_Test_Exceptions;

© 2003 Uwe R. Zimmer, International University Bremen Page 47 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Information hiding (private parts)
… introducing:

• private ☞ assignments and comparisons are allowed

• limited private ☞ entity cannot be assigned or compared

© 2003 Uwe R. Zimmer, International University Bremen Page 48 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A queue specification with proper information hiding

package Queue_Pack_Private is

 QueueSize : constant Integer := 10;
 type Element is new Positive range 1..1000;
 type Queue_Type is limited private;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 Queueoverflow, Queueunderflow : exception;

private
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;
end Queue_Pack_Private;

© 2003 Uwe R. Zimmer, International University Bremen Page 49 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A queue implementation with proper information hiding

package body Queue_Pack_Private is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

end Queue_Pack_Private;

identical

© 2003 Uwe R. Zimmer, International University Bremen Page 50 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A queue test program with proper information hiding

with Queue_Pack_Private; use Queue_Pack_Private;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Private is

 Queue, Queue_Copy : Queue_Type;
 Item : Element;

begin
 Queue_Copy := Queue;
 -- compiler-error: left hand of assignment must not be limited type
 Enqueue (Item => 1, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
 when Queueunderflow => Put ("Queue underflow");
 when Queueoverflow => Put ("Queue overflow");
end Queue_Test_Private;

© 2003 Uwe R. Zimmer, International University Bremen Page 51 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Generic packages
… introducing:

• specification of generic packages

• instantiation of generic packages

© 2003 Uwe R. Zimmer, International University Bremen Page 52 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A generic queue specification

generic
 type Element is private;

package Queue_Pack_Generic is

 QueueSize: constant Integer := 10;
 type Queue_Type is limited private;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 Queueoverflow, Queueunderflow : exception;

private
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;
end Queue_Pack_Generic;

© 2003 Uwe R. Zimmer, International University Bremen Page 53 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A generic queue implementation
package body Queue_Pack_Generic is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

end Queue_Pack_Generic;

identical

© 2003 Uwe R. Zimmer, International University Bremen Page 54 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A generic queue test program

with Queue_Pack_Generic;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Generic is

 package Queue_Pack_Positive is
 new Queue_Pack_Generic (Element => Positive);
 use Queue_Pack_Positive;

 Queue : Queue_Type;
 Item : Positive;

begin
 Enqueue (Item => 1, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
 when Queueunderflow => Put ("Queue underflow");
 when Queueoverflow => Put ("Queue overflow");
end Queue_Test_Generic;

© 2003 Uwe R. Zimmer, International University Bremen Page 55 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Object oriented programming I
… introducing:

• tagged types ☞ the Ada-way to say that this type can be extended

• derivation of tagged types

• method overwriting

• usage of parent entities

© 2003 Uwe R. Zimmer, International University Bremen Page 56 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

An open queue base class specification

package Queue_Pack_Object_Base is

 QueueSize : constant Integer := 10;
 type Element is new Positive range 1..1000;
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is tagged record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 Queueoverflow, Queueunderflow : exception;

end Queue_Pack_Object_Base;

© 2003 Uwe R. Zimmer, International University Bremen Page 57 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

An open queue base class implementation

package body Queue_Pack_Object_Base is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

end Queue_Pack_Object_Base;

identical

© 2003 Uwe R. Zimmer, International University Bremen Page 58 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A derived open queue class specification

with Queue_Pack_Object_Base; use Queue_Pack_Object_Base;

package Queue_Pack_Object is

 type Ext_Queue_Type is new Queue_Type with record
 Reader : Marker := Marker'First;
 Reader_State : Queue_State := Empty;
 end record;

 procedure Enqueue (Item: in Element; Queue: in out Ext_Queue_Type);
 procedure Read_Queue (Item: out Element; Queue: in out Ext_Queue_Type);

end Queue_Pack_Object;

© 2003 Uwe R. Zimmer, International University Bremen Page 59 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A derived open queue class implementation

package body Queue_Pack_Object is

 procedure Enqueue (Item: in Element; Queue: in out Ext_Queue_Type) is
 begin
 Enqueue (Item, Queue_Type (Queue));
 Queue.Reader_State := Filled;
 end Enqueue;

 procedure Read_Queue (Item: out Element; Queue: in out Ext_Queue_Type) is
 begin
 if Queue.Reader_State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Reader);
 Queue.Reader := Queue.Reader - 1;
 if Queue.Reader = Queue.Free then Queue.Reader_State := Empty; end if;
 end Read_Queue;

end Queue_Pack_Object;

© 2003 Uwe R. Zimmer, International University Bremen Page 60 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

An open class test program

with Queue_Pack_Object_Base; use Queue_Pack_Object_Base;
with Queue_Pack_Object; use Queue_Pack_Object;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Object is

 Queue : Ext_Queue_Type;
 Item : Element;

begin
 Enqueue (Item => 1, Queue => Queue);
 Read_Queue (Item, Queue);
 Enqueue (Item => 5, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
 when Queueunderflow => Put ("Queue underflow");
 when Queueoverflow => Put ("Queue overflow");
end Queue_Test_Object;

© 2003 Uwe R. Zimmer, International University Bremen Page 61 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Object oriented programming II
… introducing:

• private tagged types

• objects which are protected against their children also

© 2003 Uwe R. Zimmer, International University Bremen Page 62 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

An encapsulated queue base class specification

package Queue_Pack_Object_Base_Private is

 QueueSize : constant Integer := 10;
 type Element is new Positive range 1..1000;
 type Queue_Type is tagged limited private;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 Queueoverflow, Queueunderflow : exception;

private
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is tagged limited record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;

end Queue_Pack_Object_Base_Private;

© 2003 Uwe R. Zimmer, International University Bremen Page 63 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

An encapsulated queue base class implementation

package body Queue_Pack_Object_Base_Private is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

end Queue_Pack_Object_Base_Private;

identical

© 2003 Uwe R. Zimmer, International University Bremen Page 64 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A derived encapsulated queue class specification

with Queue_Pack_Object_Base_Private; use Queue_Pack_Object_Base_Private;

package Queue_Pack_Object_Private is

 type Ext_Queue_Type is new Queue_Type with private;
 subtype Depth_Type is Positive range 1..QueueSize;

 procedure Look_Ahead (Item: out Element;
 Depth: in Depth_Type; Queue: in out Ext_Queue_Type);

private
 type Ext_Queue_Type is new Queue_Type with null record;

end Queue_Pack_Object_Private;

© 2003 Uwe R. Zimmer, International University Bremen Page 65 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A derived encapsulated queue class implementation

package body Queue_Pack_Object_Private is

 procedure Look_Ahead (Item: out Element;
 Depth: in Depth_Type; Queue: in out Ext_Queue_Type) is

 Storage : Queue_Type;
 ShuffleItem : Element;

 begin
 for I in 1..Depth - 1 loop
 Dequeue (ShuffleItem, Queue);
 Enqueue (ShuffleItem, Storage);
 end loop;
 Dequeue (Item, Queue);
 Enqueue (Item, Storage);
(…)

© 2003 Uwe R. Zimmer, International University Bremen Page 66 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

(…)

 Read_The_Rest:
 begin
 for I in 1..QueueSize - Depth loop
 Dequeue (ShuffleItem, Queue);
 Enqueue (ShuffleItem, Storage);
 end loop;
 exception
 when Queueunderflow => null; -- read the rest is done
 end Read_The_Rest;
 Restore_The_Queue:
 begin
 for I in 1..QueueSize loop
 Dequeue (ShuffleItem, Storage);
 Enqueue (ShuffleItem, Queue);
 end loop;
 exception
 when Queueunderflow => null; -- restore is done
 end Restore_The_Queue;

 end Look_Ahead;

end Queue_Pack_Object_Private;

bad

© 2003 Uwe R. Zimmer, International University Bremen Page 67 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

An encapsulated class test program

with Queue_Pack_Object_Base_Private; use Queue_Pack_Object_Base_Private;
with Queue_Pack_Object_Private; use Queue_Pack_Object_Private;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Object_Private is

 Queue : Ext_Queue_Type;
 Item : Element;

begin
 Enqueue (Item => 1, Queue => Queue);
 Enqueue (Item => 1, Queue => Queue);
 Look_Ahead (Item => Item, Depth => 2, Queue => Queue);
 Enqueue (Item => 5, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
 when Queueunderflow => Put ("Queue underflow");
 when Queueoverflow => Put ("Queue overflow");
end Queue_Test_Object_Private;

© 2003 Uwe R. Zimmer, International University Bremen Page 68 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Tasks & Monitors
… introducing:

• protected types

• tasks (definition, instantiation and termination)

• task synchronisation

• entry guards

• entry calls

• accept and selected accept statements

© 2003 Uwe R. Zimmer, International University Bremen Page 69 of 432 (chapter 1: to 89)

A protected queue specification

Package Queue_Pack_Protected is

 QueueSize : constant Integer := 10;
 subtype Element is Character;
 type Queue_Type is limited private;

 Protected type Protected_Queue is

 entry Enqueue (Item: in Element);
 entry Dequeue (Item: out Element);

 private
 Queue : Queue_Type;

 end Protected_Queue;

private
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;
end Queue_Pack_Protected;

© 2003 Uwe R. Zimmer, International University Bremen Page 70 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A protected queue implementation

package body Queue_Pack_Protected is

 protected body Protected_Queue is

 entry Enqueue (Item: in Element) when
 Queue.State = Empty or Queue.Top /= Queue.Free is
 begin
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 entry Dequeue (Item: out Element) when
 Queue.State = Filled is
 begin
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

 end Protected_Queue;
end Queue_Pack_Protected;

© 2003 Uwe R. Zimmer, International University Bremen Page 71 of 432 (chapter 1: to 89)

A multitasking protected queue test program

with Queue_Pack_Protected; use Queue_Pack_Protected;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Protected is

 Queue : Protected_Queue;

 task Producer is entry shutdown; end Producer;
 task Consumer is end Consumer;

 task body Producer is
 Item : Element;
 Got_It : Boolean;
 begin
 loop
 select
 accept shutdown; exit; -- main task loop
 else
 Get_Immediate (Item, Got_It);
 if Got_It then
 Queue.Enqueue (Item); -- task might be blocked here!
 else
 delay 0.1; --sec.
 end if;
 end select;
 end loop;
 end Producer;

(…)

© 2003 Uwe R. Zimmer, International University Bremen Page 72 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A multitasking protected queue test program (cont.)

(…)

 task body Consumer is
 Item : Element;
 begin
 loop
 Queue.Dequeue (Item); -- task might be blocked here!
 Put ("Received: "); Put (Item); Put_Line ("!");
 if Item = 'q' then
 Put_Line ("Shutting down producer"); Producer.Shutdown;
 Put_Line ("Shutting down consumer"); exit; -- main task loop
 end if;
 end loop;
 end Consumer;

begin
 null;
end Queue_Test_Protected;

© 2003 Uwe R. Zimmer, International University Bremen Page 73 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Abstract types & dispatching
… introducing:

• abstract tagged types

• abstract subroutines

• concrete implementation of abstract types

• dispatching to different packages, tasks, and partitions
according to concrete types

© 2003 Uwe R. Zimmer, International University Bremen Page 74 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

An abstract queue specification

package Queue_Pack_Abstract is

 subtype Element is Character;
 type Queue_Type is abstract tagged limited private;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 abstract;
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 abstract;

private
 type Queue_Type is abstract tagged limited null record;
end Queue_Pack_Abstract;

© 2003 Uwe R. Zimmer, International University Bremen Page 75 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A concrete queue specification

with Queue_Pack_Abstract; use Queue_Pack_Abstract;

package Queue_Pack_Concrete is

 QueueSize : constant Integer := 10;
 type Real_Queue is new Queue_Type with private;

 procedure Enqueue (Item: in Element; Queue: in out Real_Queue);
 procedure Dequeue (Item: out Element; Queue: in out Real_Queue);

 Queueoverflow, Queueunderflow : exception;

private
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Real_Queue is new Queue_Type with record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;
end Queue_Pack_Concrete;

© 2003 Uwe R. Zimmer, International University Bremen Page 76 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A concrete queue implementation

package body Queue_Pack_Concrete is

 procedure Enqueue (Item: in Element; Queue: in out Real_Queue) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Real_Queue) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

end Queue_Pack_Concrete;

© 2003 Uwe R. Zimmer, International University Bremen Page 77 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A multitasking dispatching test program

with Queue_Pack_Abstract; use Queue_Pack_Abstract;
with Queue_Pack_Concrete; use Queue_Pack_Concrete;

procedure Queue_Test_Dispatching is

 type Queue_Class is access all Queue_Type'class;

 task Queue_Holder is -- could be on an individual partition
 entry Queue_Filled;
 end Queue_Holder;

 task Queue_User is -- could be on an individual partition
 entry Send_Queue (Remote_Queue: in Queue_Class);
 end Queue_User;
(…)

© 2003 Uwe R. Zimmer, International University Bremen Page 78 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

 task body Queue_Holder is
 Local_Queue : Queue_Class;
 Item : Element;
 begin
 Local_Queue := new Real_Queue; -- could be a different implementation!
 Queue_User.Send_Queue (Local_Queue);
 accept Queue_Filled do
 Dequeue (Item, Local_Queue.all); -- Item will be 'r'
 end Queue_Filled;
 end Queue_Holder;

 task body Queue_User is
 Local_Queue : Queue_Class;
 Item : Element;
 begin
 Local_Queue := new Real_Queue; -- could be a different implementation!
 accept Send_Queue (Remote_Queue: in Queue_Class) do
 Enqueue ('r', Remote_Queue.all); -- potentially a rpc!
 Enqueue ('l', Local_Queue.all);
 end Send_Queue;
 Queue_Holder.Queue_Filled;
 Dequeue (Item, Local_Queue.all); -- Item will be 'l'
 end Queue_User;

begin null; end Queue_Test_Dispatching;

© 2003 Uwe R. Zimmer, International University Bremen Page 79 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Ada95 language status
• Established language standard with free and

commercial compilers available for all major OSs.

• Stand-alone runtime environments for embedded systems
(some are only available commercially).

• Special (yet non-standard) extensions (i.e. language reductions and
proof systems) for extreme small footprint embedded systems or high
integrity real-time environments available ☞ Ravenscar profile systems.

☞ has been used and is in use in numberless large scale projects
(e.g. in the international space station, and in some spectacular crashes: e.g. Ariane 5)

© 2003 Uwe R. Zimmer, International University Bremen Page 80 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

POSIX

Portable Operating System Interface
for Computing Environments

• IEEE/ANSI Std 1003.1 and following

• Program Interface (API) [C Language]

• more than 30 different POSIX standards
(a system is ‘POSIX compliant’, if it implements parts of just one of them!)

© 2003 Uwe R. Zimmer, International University Bremen Page 81 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

POSIX – some of the real-time relevant standards

1003.1
12/01

OS Definition
single process, multi process, job control, signals, user groups, file system, file attributes, file
device management, file locking, device I/O, device-specific control, system database, pipes,
FIFO, …

1003.1b
10/93

Real-time
Extensions

real-time signals, priority scheduling, timers, asynchronous I/O, prioritized I/O, synchronized
I/O, file sync, mapped files, memory locking, memory protection, message passing, sema-
phore, …

1003.1c
6/95

Threads
multiple threads within a process; includes support for: thread control, thread attributes, pri-
ority scheduling, mutexes, mutex priority inheritance, mutex priority ceiling, and condition
variables

1003.1d
10/99

Additional Real-
time Extensions

new process create semantics (spawn), sporadic server scheduling, execution time monitor-
ing of processes and threads, I/O advisory information, timeouts on blocking functions, de-
vice control, and interrupt control

1003.1j
1/00

Advanced Real-
time Extensions

typed memory, nanosleep improvements, barrier synchronization, reader/writer locks, spin
locks, and persistent notification for message queues

1003.21
-/-

Distributed
Real-time

buffer management, send control blocks, asynchronous and synchronous operations,
bounded blocking, message priorities, message labels, and implementation protocols

© 2003 Uwe R. Zimmer, International University Bremen Page 82 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

POSIX – 1003.1b

Frequently employed POSIX features include:
• Timers: delivery is accomplished using POSIX signals

• Priority scheduling: fixed priority, 32 priority levels

• Real-time signals: signals with multiple levels of priority

• Semaphore: named semaphore

• Memory queues: message passing using named queues

• Shared memory: memory regions shared between multiple processes

• Memory locking: no virtual memory swapping of physical memory pages

Real-Time & Embedded SystemsOperating Systems & Networks

POSIX – support in some OSs

POSIX 1003.1
(Base POSIX)

POSIX 1003.1b
(Real-time

extensions)

POSIX 1003.1c
(Threads)

Solaris Full support Full support Full support

IRIX Conformant Full support Full support

LynxOS Conformant Full support Conformant (Version 3.1)

QNX
Neutrino

Full support
Partial support

(no memory locking)
Full support

Linux Full support
Partial support

(no timers,
no message queues)

Full support

VxWorks Partial support
(different process model)

Partial support
(different process model)

Supported through third
party product

© 2003 Uwe R. Zimmer, International University Bremen Page 84 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

POSIX – other languages

POSIX is a ‘C’ standard …
… but bindings to other languages are also (suggested) POSIX standards:

• Ada: 1003.5*, 1003.24 (some PAR approved only, some withdrawn)

• Fortran: 1003.9 (6/92)

• Fortran90: 1003.19 (withdrawn)

… and there are POSIX standards for task-specific POSIX profiles, e.g.:

• Super computing: 1003.10 (6/95)

• Realtime: 1003.13, 1003.13b (3/98)

- profiles 51-54: combinations of the above RT-relevant POSIX standards ☞ RT-Linux

• Embedded Systems: 1003.13a (PAR approved only)

© 2003 Uwe R. Zimmer, International University Bremen Page 85 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

POSIX – example: setting a timer

void timer_create(int num_secs, int num_nsecs)
{
 struct sigaction sa;
 struct sigevent sig_spec;
 sigset_t allsigs;
 struct itimerspec tmr_setting;
 timer_t timer_h;

 /* setup signal to respond to timer */
 sigemptyset(&sa.sa_mask);
 sa.sa_flags = SA_SIGINFO;
 sa.sa_sigaction = timer_intr;

 if (sigaction(SIGRTMIN, &sa, NULL) < 0)
 perror(‘sigaction’);

 sig_spec.sigev_notify = SIGEV_SIGNAL;
 sig_spec.sigev_signo = SIGRTMIN;

Real-Time & Embedded SystemsOperating Systems & Networks

POSIX – example: setting a timer (cont.)

 /* create timer, which uses the REALTIME clock */
 if (timer_create(CLOCK_REALTIME, &sig_spec, &timer_h) < 0)
 perror(‘timer create’);

 /* set the initial expiration and frequency of timer */
 tmr_setting.it_value.tv_sec = 1;
 tmr_setting.it_value.tv_nsec = 0;
 tmr_setting.it_interval.tv_sec = num_secs;
 tmr_setting.it_interval.tv_sec = num_nsecs;
 if (timer_settime(timer_h, 0, &tmr_setting,NULL) < 0)
 perror(‘settimer’);

 /* wait for signals */
 sigemptyset(&allsigs);
 while (1) {
 sigsuspend(&allsigs);
 }
}

/* routine that is called when timer expires */
void timer_intr(int sig, siginfo_t *extra, void *cruft)
{
 /* perform periodic processing and then exit */
}

Real-Time & Embedded SystemsOperating Systems & Networks

POSIX – example: setting a timer (cont.)

 /* create timer, which uses the REALTIME clock */
 if (timer_create(CLOCK_REALTIME, &sig_spec, &timer_h) < 0)
 perror(‘timer create’);

 /* set the initial expiration and frequency of timer */
 tmr_setting.it_value.tv_sec = 1;
 tmr_setting.it_value.tv_nsec = 0;
 tmr_setting.it_interval.tv_sec = num_secs;
 tmr_setting.it_interval.tv_sec = num_nsecs;
 if (timer_settime(timer_h, 0, &tmr_setting,NULL) < 0)
 perror(‘settimer’);

 /* wait for signals */
 sigemptyset(&allsigs);
 while (1) {
 sigsuspend(&allsigs);
 }
}

/* routine that is called when timer expires */
void timer_intr(int sig, siginfo_t *extra, void *cruft)
{
 /* perform periodic processing and then exit */
}

remember the Pearl timers?

AFTER
 30 M

IN AL
L 5 M

IN DU
RING

1 HRS
 ACTI

VATE
Help;

© 2003 Uwe R. Zimmer, International University Bremen Page 88 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Languages

Languages used in this course

Ada RT-Java C/C++ Posix

Predictability ***
(specific

run-time env.)

(OOP)

implementation
dependent

implementation
dependent

low-level interfaces *** - ** **

Concurrency *** ** --- **

Distribution ** *** --- *

Error detection
(compiler, tools)

**
(strong typing)

** --- ---

Large systems
*** ***

OOP C++ style
(no support in C)

/

© 2003 Uwe R. Zimmer, International University Bremen Page 89 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Introduction to operating systems
• Features (and non-features) of operating system

• Common grounds for operating systems

• Historical perspectives

• Types of current operating systems

• Design principles for system software (monoliths & µkernels)

• Examples of languages considered for system level programming:

• Java
• Ada95
• POSIX interfaces
• C/C++

