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Hardware Fundamentals

 

A common computer architecture:

 

• Bus-systems carry device, address information and data (8-64bit wide)
as well as control lines in groups such as:

• arbitration, synchronization, requests, interrupts, priorities
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Hardware Fundamentals

 

The CPU

 

• CPU components relevant for this course:

• register-set, sequencer (‘normal operation’), interrupt controller, protected modes
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Hardware Fundamentals

 

Register set

 

• SR: Status / Condition codes (CC), e.g.:
privilege level, interrupt level, result of last operation

• IR: current instruction

• PC: Address of current (next) instruction

• SP: Top of stack address

• Special privileged registers, e.g.:
page table entries, memory protection maps

• Dedicated registers, e.g.:
registers which can by employed in some contexts only

• Universal registers: 
registers, which can be employed for any purpose 
(addressing, storage, index, parameters, …)

Status (SR)
or Condition codes (CC)

Register structure

Instruction (IR)

Program counter (PC)

Stack pointer (SP)

Universal registers

Special registers
(privileged, 

e.g. page table pointers)
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(mostly used in specific

addressing modes)
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Hardware Fundamentals

 

Register set

 

• Often divided into a 
privileged and non-privileged section

• Switch from non-privileged to privileged mode 
only via traps or interrupts (later in this chapter)

 

☞

 

SR, IR, PC, SP 
+ some general registers 

 

(or at least one ‘accumulator’) 

 

are found in all current processor designs

• Special and dedicated registers are 
not used in all architectures
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Hardware Fundamentals

 

Memory layout

 

• Classical usage of the 
RAM areas in most processors

• Main storage of data in 

• heap
• stack
• or local static

depends on the usage of the
programming language

Code

Main memory layout

Static variables

Stack

Heap

I/O

SP

PC
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Hardware Fundamentals

 

Stack frames

 

• Every sub-program call
leaves an entry on the stack
with all relevant information:

• parameters
• context (not in ‘C’)
• return address

• Parameters may
be removed by:

• the calling routine (‘C’)
• or the called routine

• Special architectures
support faster parameter
passing (e.g. register-bands)

Code

Main memory layout

Static variables

Stack

Heap

I/O

SP

PC SP

Parameters

Return address

Context reference

Context reference

Return address

Parameters

Context reference

Return address

Return address

Local variables

Local variables

Saved environment
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Hardware Fundamentals

 

Privileged instructions

 

Purpose: 

 

• prevent user level tasks from by-passing the operating system

• restrict access form user-level tasks to resources, which are managed by the operating system:

• Memory
• I/O
• Structures which are used to administer memory or I/O access 

(e.g. special registers, MMUs, etc.)

 

Implementation:

 

• declare some instructions privileged

• implement two (or more) protection levels in the CPU

• allow changes to a higher privilege level by means of traps/exceptions/interrupts only.
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Interrupts

 

Required mechanisms for interrupt driven programming:

 

•

 

Interrupt control

 

: grouping, encoding, prioritising, and en-/disabling interrupt sources

•

 

Context switching

 

: mechanisms for cpu-state saving and restoring + task-switching

•

 

Interrupt identification

 

: Interrupt vectors, interrupt states

 

☞

 

hardware-supported
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Asynchronism

 

Interrupts

 

Interrupt control

 

: 

… at the individual device level

… at the system interrupt controller level

… at the operating system level

 

• beyond task-level (interrupt service routines)
• communicating interrupts to task
• transforming interrupts to signals

 

… at the language level
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Interrupts

 

LM12L458

 

(National Semiconductor)

 

☞

 

only one interrupt signal line available!

 

☞

 

in order to identify the interrupt reason, an additional read cycle is required!

Interrupt signal
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A/D, D/A & Interfaces

 

LM12L458

 

12-Bit + sign, 8 channel, A/D converter, controller and interface

 

Controller features

 

:

• Programmable acquisition times and conversion rates

• 32-word conversion FIFO

• Self-calibration and diagnostic mode

• 8- or 16-bit wide data bus microprocessor or DSP

 

Typ. applications:
• Data Logging
• Process Control
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LM12L458

 

 – accessible registers
A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 01) Don�t Care >/< Sign Limit #1

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 10) Don�t Care >/< Sign Limit #2

1 1 1

1 0 0 0 Configuration R/W
Don�t Care DIAG

Test RAM I/O Auto Chan Stand- Full Auto- Reset Start

Register = 0 Pointer Sel Zeroec Mask by CAL Zero

Interrupt Enable R/W Number of Conversions Sequencer INT7 Don�t INT5 INT4 INT3 INT2 INT1 INT0

1 0 0 1 Register in Conversion FIFO Address to Care

to Generate INT2 Generate INT1

Address

R Actual Number of of INST7 �0� INST5 INST4 INST3 INST2 INST1 INST0

1 0 1 0 Interrupt Status Conversion Results Sequencer

Register in Conversion FIFO Instruction

being

Executed

1 0 1 1 Timer R/W Timer Preset High Byte Timer Preset Low Byte

Register

1 1 0 0 Conversion R Address Sign Conversion Conversion Data: LSBs

FIFO or Sign Data: MSBs

1 1 0 1 Limit Status R Limit #2: Status Limit #1: Status

Register
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LM12L458

 

 – instruction RAM

 

every entry in the 

 

instruction RAM

 

 consists of:

•

 

Loop (1bit): indicates the last instruction and branches to the first one.

• Pause (1bit): halts the sequencer before this instruction.

• ,  (2*3bit): select the input channels (000 selects ground in )

• Sync (1bit): wait for an external sync. signal before this instruction.

• Timer (1bit): wait for a preset 16-bit counter delay before this instruction.

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 01) Don�t Care >/< Sign Limit #1

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 10) Don�t Care >/< Sign Limit #2

1 1 1

VIN+ VIN- VIN-
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LM12L458 – instruction RAM

every entry in the instruction RAM consists of (cont.):

•  (1bit): selects the resolution (8 bit + sign or 12 bit + sign).

• Watchdog (1bit): activates comparisons with two programmed limits.

• Acquisition time ( ) (4bit): the converter takes  cycles (12bit mode) or
 cycles (8bit mode) to sample to input. Depends on the input resistance:

 for 12 bit conversions.

• Limits (including sign and comparator): used for Watchdog operation.

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 01) Don�t Care >/< Sign Limit #1

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 10) Don�t Care >/< Sign Limit #2

1 1 1

8/12

D 9 2D+
2 2D+
D 0.45 RS kΩ[ ] fCLK MHz[ ]⋅ ⋅≈



© 2003 Uwe R. Zimmer, International University Bremen Page 106 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

LM12L458 – instruction RAM

type ChannelPlus  is (Ch0, Ch1, Ch2, Ch3, Ch4, Ch5, Ch6, Ch7);
type ChannelMinus is (Gnd, Ch1, Ch2, Ch3, Ch4, Ch5, Ch6, Ch7);
type Resolutions  is (TwelveBit, EightBit);
type Aquisition_D is new Integer range 0..15; -- 9+2D (12bit), 2+2D (8bit)

for ChannelPlus  use (Ch0 => 0, Ch1 => 1, Ch2 => 2, Ch3 => 3,
                      Ch4 => 4, Ch5 => 5, Ch6 => 6, Ch7 => 7);
for ChannelMinus use (Gnd => 0, Ch1 => 1, Ch2 => 2, Ch3 => 3,
                      Ch4 => 4, Ch5 => 5, Ch6 => 6, Ch7 => 7);
for Resolutions  use (TwelveBit => 0, EightBit => 1);

type Instruction is record
        EndOfLoop, Pause, Sync, Timer, Watchdog : Boolean;
        Vplus                                   : ChannelPlus;
        Vminus                                  : ChannelMinus;
        Resolution                              : Resolutions;
        AquisitionTime                          : Aquisition_D;
     end record;

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1
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LM12L458 – instruction RAM

Units_Per_Word : constant Integer := Word_Size / Storage_Unit;

for Instruction use record
       EndOfLoop      at 0*Units_Per_Word range  0.. 0;
       Pause          at 0*Units_Per_Word range  1.. 1;
       Vplus          at 0*Units_Per_Word range  2.. 4;
       Vminus         at 0*Units_Per_Word range  5.. 7;
       Sync           at 0*Units_Per_Word range  8.. 8;
       Timer          at 0*Units_Per_Word range  9.. 9;
       Resolution     at 0*Units_Per_Word range 10..10;
       Watchdog       at 0*Units_Per_Word range 11..11;
       AquisitionTime at 0*Units_Per_Word range 12..15;
    end record;

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1
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LM12L458 – instruction RAM

for Instruction'Size      use 16; -- Bits
for Instruction'Alignment use 2;  -- Storage_Units (Bytes)
for Instruction'Bit_Order use High_Order_First;

type Instructions is array (0..7) of Instruction;
   pragma Pack (Instructions);

ADC_Instructions : Instructions;
for ADC_Instructions'Address use To_Address (16#0000132D#);

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1
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LM12L458 – instruction RAM

ADC_Instructions (0) := (EndOfLoop      => False,
                         Pause          => False,
                         Vplus          => Ch0,
                         Vminus         => Gnd,
                         Sync           => True,
                         Timer          => False,
                         Resolution     => EightBit,
                         Watchdog       => False,
                         AquisitionTime => 10);

ADC_Instructions (1) := (EndOfLoop      => True,  -- last instruction
                         Pause          => False,
                         Vplus          => Ch1,
                         Vminus         => Ch2,
                         Sync           => False,
                         Timer          => False,
                         Resolution     => TwelveBit,
                         Watchdog       => False,
                         AquisitionTime => 0);

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1
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LM12L458 – instruction RAM

Data structures in ‘C’:
enum ChannelPlus  {Ch0=0, Ch1, Ch2, Ch3, Ch4, Ch5, Ch6, Ch7};
enum ChannelMinus {Gnd=0, Ch1, Ch2, Ch3, Ch4, Ch5, Ch6, Ch7};
enum Resolutions  {TwelveBit=0, EightBit};

struct {
   unsigned int EndOfLoop      : 1;
   unsigned int Pause          : 1;
   ChannelPlus  Vplus          : 3;
   ChannelMinus Vminus         : 3;
   unsigned int Sync           : 1;
   unsigned int Timer          : 1;
   Resolutions  Resolution     : 1;
   unsigned int Watchdog       : 1;
   unsigned int AquisitionTime : 4;
} Instruction;

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1
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LM12L458 – instruction RAM

Data structures in ‘C’:
struct {
   unsigned int EndOfLoop      : 1;
   unsigned int Pause          : 1;
   ChannelPlus  Vplus          : 3;
   ChannelMinus Vminus         : 3;
   unsigned int Sync           : 1;
   unsigned int Timer          : 1;
   Resolutions  Resolution     : 1;
   unsigned int Watchdog       : 1;
   unsigned int AquisitionTime : 4;
} Instruction;   

Instruction    InstructionsA[8];
InstructionsA *Instructions;
Instructions = 0x0000132D;

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1
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LM12L458 – instruction RAM

Data structures in ‘C’:
*Instructions (0).EndOfLoop      = 0;
*Instructions (0).Pause          = 0;
*Instructions (0).Vplus          = Ch0;
*Instructions (0).Vminus         = Gnd;
*Instructions (0).Sync           = 1;
*Instructions (0).Timer          = 0;
*Instructions (0).Resolution     = EightBit;
*Instructions (0).Watchdog       = 0;
*Instructions (0).AquisitionTime = 10;

If this works, you were lucky two times: 

• The compiler implemented the struct-fields in the intended places and order.

• The bit ordering in your device is the way the compiler assumed it.

don’t!
A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1
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LM12L458 – instruction RAM

☞  Macro-Assembler style programming:
In order to produce portable code in ‘C’, it is necessary to set bits manually:

unsigned int setbits (unsigned int *r, 
                      unsigned int n,          /* set n bits     */
                      unsigned int p,          /* at position p  */
                      unsigned int x)          /* to bitstring x */
{
   unsigned int mask;

   mask  = ~(~0 << n);
   *r   &= ~(mask << p);
   *r   |= (x & mask) << p;
   return (*r);
}

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1
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Asynchronism

Interrupts
Interrupt control: 

… at the individual device level

… at the system interrupt controller level

… at the operating system level
• beyond task-level (interrupt service routines)
• communicating interrupts to task
• transforming interrupts to signals

… at the language level
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Asynchronism

Interrupt service routines
(available only in some OSs, e.g. VxWorks)

Purpose:
• Allow full access to the interrupt controller (interrupt vectors, priorities).

• Change to an interrupt service routine in a predictable amount of time.

☞ Cannot operate on the level of threads or tasks!

☞ Limitations regarding the accessibility of some OS-facilities (task level system calls).
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Asynchronism

Interrupt service routines
(available only in some OSs, e.g. VxWorks)

Some VxWorks OS entries:

these calls are employed by the language run-time environment or used directly from ‘C’-code

intConnect Connect a routine to an interrupt vector

intLevelSet Set the interrupt mask level

intLock Disable interrupts (besides NMI)

intUnlock Enable interrupts

intVecBaseSet Set the interrupt vector base address

intVecBaseGet Get the interrupt vector base address

intVecSet Set an interrupt vector

intVecGet Get an interrupt vector
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Asynchronism

Interrupt service routines
(available only in some OSs, e.g. VxWorks)

Minimal hardware support (supplied by the cpu):

save essential CPU registers (IP, condition flags)
jump to the vectorized interrupt service routine

Minimal wrapper (supplied by the operating system):

save remaining CPU registers (or switch to another register set)
save stack-frame

--> execute user level interrupts service code

restore stack-frame
restore CPU registers (or switch back to the former register set)
restore IP
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Asynchronism

Interrupt service routines
(available only in some OSs, e.g. VxWorks)

Interrupt service routine to task communication methods:
• Shared memory and ring buffers: 

most low level communication scheme (should be avoided)

• Semaphore: trigger a semaphore, where a task has been blocked before.

• Monitors: 
free a task, which is blocked at a monitor entry (standard Ada-method: protected object).

• Message queues: Send messages to a task (if queue is not full).

• Pipes: Write to a pipe (if pipe is not full).

• Signals: indicate an asynchronous task switch to the scheduler
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Asynchronism

Interrupt service routines
(available only in some OSs, e.g. VxWorks)

Interrupt service routine to task communication methods:
• Shared memory and ring buffers: 

most low level communication scheme (should be avoided)

• Semaphore: trigger a semaphore, where a task has been blocked before.

• Monitors: 
free a task, which is blocked at a monitor entry (standard Ada-method: protected object).

• Message queues: Send messages to a task (if queue is not full).

• Pipes: Write to a pipe (if pipe is not full).

• Signals: indicate an asynchronous task switch to the scheduler

☞ in all of the above: the interrupt service routines cannot block!
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Asynchronism

Interrupts ➪  ‘Signals’
Interrupt control: 

… at the individual device level

… at the system interrupt controller level

… at the operating system level
• beyond task-level (interrupt service routines)
• communicating interrupts to task
• transforming interrupts to signals

… at the language level
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Asynchronism

Interrupts ➪  ‘Signals’

Some characteristics of signals:
• Involve a full task-switch operation

☞ Hard to predict timing behaviour 

• Limited information about the interrupt-source 

• Traditionally used to ‘kill’ processes

• Concept stems from a time before thread models,
therefore the signal-to-thread propagation is implementation dependent and sometimes tricky.
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Asynchronism

Interrupts ➪  ‘Signals’
Some common UNIX OS entries:

POSIX 1003.1b BSD-UNIX

signal (…) signal (…) Specify the handler associated with a signal

sigaction (…) sigvec (…) Examine or set the signal handler for a signal

kill (…) kill (…) Send a signal (overwrite all other pending signals)

sigqueue (…) N/A Send a queued signal

sigsuspend (…) pause (…) Wait for a signal

sigwaitinfo (…)
sigtimedwait (…)

Wait for a signal, but do not involve the handler

sigemptyset (…)
sigsetmask (…)

Manipulate and 
set the mask of blocked signals

sigprocmask (…)
sigblock (…) Add to a set of blocked signals
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Asynchronism

Interrupts ➪  ‘Signals’

• Signals are originally process-level synchronization methods (‘kill’) and have been expanded to
be used for everything from hardware-interrupts and timers to asynchronous task messaging.

☞ Signals are passed through a global task-scheduler.

☞ in many OSs: unpredictable ‘work-arounds’ for missing direct hardware interrupt propagation.

☞ make sure that you understand the attached strings in your OS,
before employing any signals.
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Asynchronism

Interrupts
Interrupt control: 

… at the individual device level

… at the system interrupt controller level

… at the operating system level
• beyond task-level (interrupt service routines)
• communicating interrupts to task
• transforming interrupts to signals

… at the language level
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Asynchronism

Exception/Trap/Interrupt indication
Four cases of modern exception indication:

raised:
from:

run-time 
environment

task

synchronously run-time exceptions exceptions or traps

asynchronously interrupts / signals
asynchronous transfer 

of control
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Asynchronism

Exception/Trap/Interrupt indication
Ada95:

raised:
from:

run-time 
environment

task

synchronously exceptions

asynchronously interrupt/signal 
handler

asynchronous transfer 
of control
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Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

   type Interrupt_ID          is implementation-defined;
   type Parameterless_Handler is access protected procedure;

   function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
   function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

   function  Current_Handler  (Interrupt : Interrupt_ID) 
                                        return Parameterless_Handler;
   procedure Attach_Handler   (New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
                               New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Detach_Handler   (Interrupt   : in  Interrupt_ID);

   function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;
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Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

   type Interrupt_ID          is implementation-defined;
   type Parameterless_Handler is access protected procedure;

   function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
   function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

   function  Current_Handler  (Interrupt : Interrupt_ID) 
                                        return Parameterless_Handler;
   procedure Attach_Handler   (New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
                               New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Detach_Handler   (Interrupt   : in  Interrupt_ID);

   function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;

Protected procedures need to qualify as 
an interrupt handler:

1. use pragma Interrupt_Handler

2. let the compiler evaluate the suitability
of the routine as an interrupt handler.
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Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

   type Interrupt_ID          is implementation-defined;
   type Parameterless_Handler is access protected procedure;

   function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
   function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

   function  Current_Handler  (Interrupt : Interrupt_ID) 
                                        return Parameterless_Handler;
   procedure Attach_Handler   (New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
                               New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Detach_Handler   (Interrupt   : in  Interrupt_ID);

   function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;

Protected procedures can also be 
attached statically to an interrupt:

use pragma 
Interrupt_Handler_Attach
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Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

   type Interrupt_ID          is implementation-defined;
   type Parameterless_Handler is access protected procedure;

   function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
   function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

   function  Current_Handler  (Interrupt : Interrupt_ID) 
                                        return Parameterless_Handler;
   procedure Attach_Handler   (New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
                               New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Detach_Handler   (Interrupt   : in  Interrupt_ID);

   function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;

The mechanism to invoke an interrupt handler may be different 
from calling a protected procedure from a task.

Implementation advice: Whenever possible, the implementation 
should allow interrupt handlers to be called directly by the hardware.
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Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

   type Interrupt_ID          is implementation-defined;
   type Parameterless_Handler is access protected procedure;

   function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
   function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

   function  Current_Handler  (Interrupt : Interrupt_ID) 
                                        return Parameterless_Handler;
   procedure Attach_Handler   (New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
                               New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Detach_Handler   (Interrupt   : in  Interrupt_ID);

   function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;

Metrics: The implementation shall document the worst case over-
head for an interrupt handler invocation (in clock cycles).
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Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

   type Interrupt_ID          is implementation-defined;
   type Parameterless_Handler is access protected procedure;

   function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
   function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

   function  Current_Handler  (Interrupt : Interrupt_ID) 
                                        return Parameterless_Handler;
   procedure Attach_Handler   (New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
                               New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Detach_Handler   (Interrupt   : in  Interrupt_ID);

   function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;

Direct access to the invocation address: 
May be used to connect task-entries to interrupts 
☞  risky! — use with special care.
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What is an operating system?

3. A virtual machine, which is handling exceptions!

Tasks

Hardware

OS

Typ. general OS

TasksTasksTasks
Traps / Exceptions RTI

Interrupts

Interrupt service routines
Signals (task switch)
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Hardware Fundamentals

A common computer architecture:

• Memory:

• Hierarchy, Caching, Mapping

CPUIn
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ac

eSequencer

ALU

Registers

Control
Address

Data

Memory I/O
Interface

Memory I/O
Interface

......
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Hardware Fundamentals

Memory sizes and access times: (typical workstation)

Basic memory hierarchy

CPU

Register set

Level 1 cache

Level 2 cache

Main memory

Disks

< 1 ns

< 1-2 ns

< 4 ns

< 8 ns> 256 MB

> 512 KB

> 64 KB

> 1 KB

< 8 ms> 60 GB

Typical memory sizes Typical access times
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Hardware Fundamentals

Main memory layout:

Basic memory hierarchy

CPU

Register set

Level 1 cache

Level 2 cache

I/O

Disks

< 1 ns

< 1-2 ns

< 4 ns> 512 KB

> 64 KB

> 1 KB

< 8 ms> 60 GB

Typical memory sizes Typical access times

ROM RAM RAM V-RAM I/O
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Hardware Fundamentals

Caching
• Introduce a intermediate memory (cache), 

which is:

• faster than the original memory
• organized in ‘cache lines’
• addressed via tags and a 

fast matching hardware
(e.g. associative memory)

Caché is actually French, meaning ‘hidden’, 
hence the cache memory is supposed to be ‘invisible’ to the 

user (the ‘shadow memory’). 
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Tag

Cache line
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Hardware Fundamentals

Cache misses
Memory read requests to cells, which are not 
currently stored in the cache, result in:

1. transfer of the full cache line into an empty
of replaceable cache entry.

2. transfer of the data directly from the main
memory to the requester.
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Cache miss
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Hardware Fundamentals

Cache hits
Memory read requests to cells, which are cur-
rently stored in the cache, result in:

• transfer of the requested data from the 
cache memory to the requester.

• no access to the main memory
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Hardware Fundamentals

Cache write through
Write requests to cells, which are currently 
stored in the cache, result in:

1. update of the cache entry

2. update of the main memory cell
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Cache write through
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Hardware Fundamentals

Cache, delayed writes
Write requests to cells, which are currently 
stored in the cache, result in:

1. update of the cache entry

2. transfer of the full cache line 
(or the ‘touched’ entries)
at a later point in time.

☞ Critical in multi-processor 
/ shared memory environments!
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Hardware Fundamentals

Caching considerations
• Caches (two-level memories) are meant 

to maximize the throughput – not the predictability of a system.

• Cache performance is relying on:

• Spatial locality:
nearby memory cells are likely to be accessed soon

• Temporal locality:
recently addressed memory cells are likely to be accessed again soon

☞ The length of the cache lines are given by the relation between spatial and temporal locality

• According to some practical evaluations, 
the locality radius seems to be independent of the size of the main memory

☞  thus there is an absolute maximum cache-size, beyond which the performance is no longer
improving (memory caches of up to about 128KB are considered adequate in most cases).
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Hardware Fundamentals

More on memory locality
• Imperative programming will generate linear sequences of instructions mostly 

(☞  spatial locality).

• Functional and declarative programming turns out to generate more ‘jumpy’ code, 
but due to extensive usage of recursions it will show strong temporal locality.

• Under all programming paradigms CPU-time is often spent in relatively small loops/iterations
(☞  spatial & temporal locality)

• Languages, which are using explicit data structures (like arrays and records) 
will store this data in a compact format (☞  spatial locality).

☞ The locality assumptions will thus be justified in the vast majority of all cases 

… still it’s an heuristic.



© 2003 Uwe R. Zimmer, International University Bremen Page 144 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

A common computer architecture:

• I/O interfaces:

• devices, controllers, communication with CPU, basic device programming

CPUIn
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eSequencer

ALU

Registers

Control
Address

Data

Memory I/O
Interface

Memory I/O
Interface

......
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Hardware Fundamentals

I/O devices

☞ the essential parts of a computer system, 
which (may) make the computations meaningful.

• Some typical classes of I/O devices:

• clocks, timers
• user-interface devices
• document I/O devices (scanners, printers, …)
• audio & video equipment
• network interfaces
• mass storage devices
• all kinds of sensors and actuators in control applications
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Hardware Fundamentals

I/O controllers
• Interfacing between a local bus-system 

(system bus, peripheral bus) 
and an concrete hardware device

• Accessible from the CPU via 
control, status and data registers

• Major tasks:

• convert electrical signals
• buffer data in case of different signal speeds
• multiplexing different channels
• communicate with the external device independently of the CPU as far as possible 

☞  often up to the level of a complete embedded µcontroller
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Hardware Fundamentals

I/O interfaces via dedicated I/O-buses

• I/O protection is given by protected CPU instructions ☞  need to be done in protected mode. 

• Potentially less efficient, since all I/O operations need to be done in the OS-kernel
no obvious DMA - everything needs to be transferred via the CPU, I/O bus is processor specific

CPUIn
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eSequencer

ALU

Registers
......Memory I/O

Interface
Memory I/O

Interface

Interrupts

System bus

I/O bus
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Hardware Fundamentals

I/O interfaces via system-bus

• I/O protection requires / is identical with memory protection, DMA possibilities, expandible

• System bus can be a bottle-neck, I/O interfaces are processor dependent

CPUIn
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eSequencer

ALU

Registers
......Memory I/O

Interface
Memory I/O

Interface

Interrupts

System bus
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Hardware Fundamentals

I/O interfaces via system-bus and I/O bus controller

• I/O protection requires / is identical with memory protection, DMA possibilities, expandible

• System bus load can be reduced, I/O bus is platform independent, e.g. PCI, SCSI, …

CPUIn
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ALU

Registers
......Memory I/O

Interface
Memory I/O

Interface

I/O
bus

contr.System bus

Interrupts

I/O bus
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Hardware Fundamentals

Basic I/O device programming
• Status driven: the computer polls for information 

(used in dedicated µcontrollers and pre-scheduled hard real-time environments)

• Interrupt driven: The data generating device may issue an interrupt 
when new data had been detected / converted or when internal buffers are full

• Program controlled: The interrupts are handled by the CPU directly 
(by changing tasks, calling a procedure, raising an exception, 
free tasks on a semaphore, sending a message to a task, …)

• Program initiated: The interrupts are handled by a DMA-controller. 
No processing is performed. Depending on the DMA setup, 
cycle stealing can occur and needs to be considered for the worst case computing times.

• Channel program controlled: The interrupts are handled by a dedicated channel
device. The data is transferred and processed. Optional memory-based communication
with the CPU. ☞  the channel controller is usually itself a dedicated µengine / µcontroller.
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Hardware Fundamentals

Concurrency is an intrinsic feature of real architectures!

☞ Operating systems need to take care of all asynchronous and concurrent resources.

☞ Concurrency and synchronization are fundamentals of operating systems design!
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µControllers

MC68HC05
• Clock: max. 2.1MHz internal (4.2MHz external)

• Registers: PC, SP (16 bit); Accu, Index, CC (8 bit)

• RAM: 176bytes

• ROM: 5936bytes

• EEPROM: 256bytes

• Power saving modes (stop, wait, slow)

• Serial: 46-76800 baud (at 2.4576MHz)

• Parallel I/O: 3*8bit; Parallel in: 1*8bit

• Timers: 1*16bit

• A/D: 8 channels, 8bit

• PWM: 2 generators

P
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P
or

t B
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P
or

t C

PC0
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PC2/ECLK

PC3

PC4
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16-bit
programmable

timer

P
or

t D

PD0/AN0

PD1/AN1

PD2/AN2

PD3/AN3

PD4/AN4

PD5/AN5

PD6/AN6

PD7/AN7

Oscillator

176 bytes
RAM

COP watchdog
RESET

IRQ

VDD

VSS

OSC1

OSC2

M68HC05
CPU

SCI
A/D converter

PLM

TCAP1

TCAP2

TCMP1

TCMP2

VRH

VRL

RDI

SCLK

TDO

VPP1

256 bytes
EEPROM

Charge pump

÷ 2 / ÷ 32

PLMA D/A

PLMB D/A

8-bit

432 bytes

User ROM
5950 bytes

self check ROM

(including 14 bytes
User vectors)
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MAIN BRCLR 6,TSR,MAIN ;Loop here till Output Compare flag set
LDA OCMP+1 ;Low byte of Output Compare register
ADD #$D4 ;Add 
STA TEMPA ;Save till high half calculated
LDA OCMP ;High byte of Output Compare register
ADC #$30 ;Add  (+carry)
STA OCMP ;Update high byte of Output Compare register
LDA TEMPA ;Get low half of updated value
STA OCMP+1 ;Update low half and reset Output Compare flag
LDA TIC ;Get current TIC value
INCA ;TIC := TIC + 1
STA TIC ;Update TIC
CMP #20 ;20th TIC?, 1 second passed?
BLO NOSEC ;If not, skip next clear
CLR TIC ;Clear TIC on 20th

NOSEC EQU *
JSR TIME ;Update time-of-day & day-of-week
JSR KYPAD ;Check/service keypad
JSR A2D ;Check Temp Sensors
JSR HVAC ;Update Heat/Air Cond Outputs
JSR LCD ;Update LCD display
BRA MAIN ;End of main loop

∆tl 50ms 4µs⁄( )mod28 $D4= =

∆th 50ms 4µs⁄( )div28 $30= =
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µControllers

MPC565
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µControllers MPC565

• -40º - +125ºC, power dissipation: 0.8 - 1.12W

• CPU: PowerPC core (incl. FPU & BBC), 40/56MHz

• Memory: flash: 1M, static: 36K, 32 32-bit registers

• Time processing units: 3 (via dual-ported RAM)

• Timers: 22 channels (PWM & RTC supported)

• A/D convertors: 40 channels, 10bit, 250kHz

• Can-bus: 3 TOUCAN modules

• Serial: 2 interfaces

• Interrupt controller: 48 sources on 32 levels

• Data link controller: 
SAE J1850 class B communications module

• Real-time embedded application development
interface: NEXUS debug port (IEEE-ISTO 5001-1999)

• Packing: 352/388 ball PBGA
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µControllers MPC565

Time processing unit
a special-purpose µcontroller:

• Independent µengine.

• 16 digital I/O channels with 
independent match and 
capture capabilities.

• Meant to operate these 
I/O channels for timing 
control purposes.

• Predefined µengine command
set (ROM functions 
in control store).

• 2 16-bit time bases
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Summary 

Hardware Fundamentals
• General computer architecture

• CPU

• Registers
• Traps/Interrupts & protected modes

• Memory

• General memory layout
• Caching

• I/O systems

• I/O controllers, I/O buses, device programming

• Some examples of µprocessors

• Small scale µcontroller (68HC05)
• Full scale integrated processor (MCP565)


