

3

Processes

Uwe R. Zimmer – International University Bremen

© 2003 Uwe R. Zimmer, International University Bremen Page 159 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

References for this chapter

[Ari90]

M. Ben-Ari

Principles of Concurrent and Distributed Pro-
gramming

Prentice Hall, 1990

[Bollella01]

Greg Bollella, Ben Brosgol, Steve Furr, David
Hardin, Peter Dibble, James Gosling, Mark
Turnbull & Rudy Belliardi

The Real-Time Specification for Java

http://www.rtj.org

[Burns01]

Alan Burns and Andy Wellings

Real-Time Systems and Programming Languages

Addison Wesley, third edition, 2001

[Silberschatz01] – Chapter 4,5

Abraham Silberschatz, Peter Bear Galvin,
Greg Gagne

Operating System Concepts

John Wiley & Sons, Inc., 2001

[Stallings2001] – Chapter 3,4

William Stallings

Operating Systems

Prentice Hall, 2001

all references and some links are available on the course page

© 2003 Uwe R. Zimmer, International University Bremen Page 160 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Introduction to processes and threads

1 CPU
per control-flow

for specific configurations only:

• distributed µcontrollers

• physical process control
systems:
1 cpu per task,
connected via a typ. fast
bus-system (VME, PCI)

☞

no need for process
management

CPU
stack

code

CPU
stack

code

CPU stack code

address space 1

shared memory

CPU
stack

code

CPU stack code

CPU stack code

address space n

shared memory

…

© 2003 Uwe R. Zimmer, International University Bremen Page 161 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Introduction to processes and threads

1 CPU
for all control-flows

• OS: emulate one CPU for
every control-flow

☞

multi-tasking

operating system

• support for memory
protection becomes essential

stack
code

stack
code

stack code

address space 1

shared memory

stack
code

stack code

CPU

stack code

address space n

shared memory

…

© 2003 Uwe R. Zimmer, International University Bremen Page 162 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Introduction to processes and threads

Processes

•

Process

 ::=
address space
+ control flow(s)

• Kernel has full knowledge
about all

processes

 as well as
their

requirements

and current

resources

(see below)

stack
code

stack
code

stack code

address space 1

shared memory

stack
code

stack code

CPU

stack code

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

© 2003 Uwe R. Zimmer, International University Bremen Page 163 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Introduction to processes and threads

Threads

Threads

 (individual control-flows)
can be handled:

•

inside the kernel

:

• kernel scheduling
• I/O block-releases

according to external
signal

•

outside the kernel

:

• user-level scheduling
• no signals to threads

stack
thread

stack
thread

stack thread

address space 1

shared memory

stack
thread

stack thread

CPU

stack thread

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

© 2003 Uwe R. Zimmer, International University Bremen Page 164 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Introduction to processes and threads

Multi-processor-
systems

• The kernel may execute
multiple processes at a time.

☞

Address space and resource
restrictions of individual
CPUs and processes/threads
need to be considered.

☞

Caching, synchronization,
and memory protection need
to be adapted.

stack
thread

stack
thread

stack thread

address space 1

shared memory

stack
thread

stack thread

stack thread

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

CPU CPU CPUCPU …

© 2003 Uwe R. Zimmer, International University Bremen Page 165 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Introduction to processes and threads

Symmetric Multi-
processing (SMP)

• all CPUs share the same
physical address space
(and access to resources)

☞

processes/threads can be
executed on
any available CPU

stack
thread

stack
thread

stack thread

address space 1

shared memory

stack
thread

stack thread

stack thread

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

CPU CPU CPUCPU …

shared memory

p
h

ys
ic

al
 a

d
d

re
ss

 s
p

ac
e

© 2003 Uwe R. Zimmer, International University Bremen Page 166 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Introduction to processes and threads

Processes

↔

 Threads

Also processes can share memory
and the exact interpretation of threads is different in different operating systems:

☞

Threads can be regarded as a group of processes, which share some resources
(

☞

 process-hierarchy)

☞

Due to the overlap in resources,
the attributes attached to threads are less than for ‘first-class-citizen-processes’

☞

Thread switching and inter-thread communications
can be more efficient than on full-process-level

☞

Scheduling of threads depends on the actual thread implementations:

• e.g. user-level control-flows, which the kernel has no knowledge about at all
• e.g. kernel-level control-flows, which are handled as processes with some restrictions

© 2003 Uwe R. Zimmer, International University Bremen Page 167 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Introduction to processes and threads

Process Control Blocks

• Process Id

•

Process state

:
{created, ready, executing, blocked, suspended, …}

•

Scheduling info

:
priorities, deadlines, consumed CPU-time, …

•

CPU state

:
saved/restored information while context switches
(incl. the program counter, stack pointer, …)

•

Memory spaces / privileges

:
memory base, limits, shared areas, …

•

Allocated resources / privileges

:
open and requested devices and files

… PCBs are usually enqueued at a certain state or condition

Process Id

Process state

Saved registers
(complete CPU state)

Scheduling info

Memory spaces /
privileges

Allocated resources /
privileges

Process Control Blocks (PCBs)

© 2003 Uwe R. Zimmer, International University Bremen Page 168 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Process states

•

 created

: the task is ready to run,
but not yet considered by any dispatcher
– waiting for admission

•

 ready

: ready to run
– waiting for a free CPU

•

 running

: holds a CPU and executes

•

 blocked

: not ready to run
– waiting for a a resource to become
available

blockedblocked

ready running

blocked

dispatch

timeout

block
release

created

admit

terminated

finish

m
ai

n
m

em
o

ry

© 2003 Uwe R. Zimmer, International University Bremen Page 169 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Process states

• created: the task is ready to run,
but not yet considered by any dispatcher
– waiting for admission

• ready: ready to run
– waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run
– waiting for a resource

• suspended states: swapped out of main
memory (not time critical processes)
– waiting for main memory space
(and other resources)

blockedblocked

ready running

blocked

dispatch

timeout

block
release

created

admit

terminated

finish

blockedblockedblocked, susp.

suspend (swap-out)

ready, susp.

suspend (swap out)

release

reload (swap in)

m
ai

n
m

em
o

ry
se

co
nd

ar
y

m
em

o
ry

© 2003 Uwe R. Zimmer, International University Bremen Page 170 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Process states

• created: the task is ready to run,
but not yet considered by any dispatcher
– waiting for admission

• ready: ready to run
– waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run
– waiting for a resource

• suspended states: swapped out of main
memory (not time critical processes)
– waiting for main memory space
(and other resources)

☞ dispatching and suspending
can be independent modules here

blockedblocked

ready running

blocked

dispatch

timeout

block
release

created

admit

terminated

finish

blockedblockedblocked, susp.

suspend (swap-out)

ready, susp.

suspend (swap out)

release

reload (swap in)

m
ai

n
m

em
o

ry
se

co
nd

ar
y

m
em

o
ry

© 2003 Uwe R. Zimmer, International University Bremen Page 171 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Process states

CPU
creation

batch ready

ready, suspended

blocked, suspended

blocked

pre-emption or cycle done

termination

block or synchronize

executing
admitted dispatch

unblock suspend (swap-out)

swap-in

swap-out

unblock

suspend (swap-out)

© 2003 Uwe R. Zimmer, International University Bremen Page 172 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization methods
• Shared memory based synchronization

• Semaphores ☞ ‘C’, POSIX — Dijkstra
• Conditional critical regions ☞ Edison (experimental)
• Monitors ☞ Modula-1, Mesa — Dijkstra, Hoare, …
• Mutexes & conditional variables ☞ POSIX
• Synchronized methods ☞ Real-time Java
• Protected objects ☞ Ada95

• Message based synchronization

• Asynchronous messages ☞ e.g. POSIX, …
• Synchronous messages ☞ e.g. Ada95, CHILL, Occam2
• Remote invocation, remote procedure call ☞ e.g. Ada95, …
• Synchronization in distributed systems ☞ e.g. CORBA, …

© 2003 Uwe R. Zimmer, International University Bremen Page 173 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization in operating systems
☞ There are many concurrent entities in operating systems:

• Interrupt handlers
• Processes
• Dispatchers
• Timers
• …

… and … operating systems need to be expandible or very robust …

Thus all data is declared …

☞ … either local (and protected by language-, or hardware-mechanisms)

☞ … or it is ‘out in the open’ and all access need to be synchronized!

© 2003 Uwe R. Zimmer, International University Bremen Page 174 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

The need for synchronization
Synchronization: the run-time overhead?
☞ Is the potential overhead justified for simple data-structures:

 int i;

 ……

 i++; {in one thread} | i=0; {in another thread}

• Are those operations atomic?

• Do we really need to introduce full featured synchronization methods here?

© 2003 Uwe R. Zimmer, International University Bremen Page 175 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

The need for synchronization
 int i;

 ……

 i++; {in one thread} | i=0; {in another thread}

• Depending on the hardware and the compiler, it might be atomic, it might be not:

☞ Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic
… but perhaps it is an 8-bit integer.

☞ Any manipulations on the main memory will not be atomic
… but perhaps it is a register.

☞ Broken down to a load-operate-store cycle, the operations will not be atomic
… but perhaps the processor supplies atomic operations for the actual case.

☞ Assuming that all ‘perhapses’ are applying: how to expand this code?

© 2003 Uwe R. Zimmer, International University Bremen Page 176 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

The need for synchronization
 int i;

 ……

 i++; {in one thread} | i=0; {in another thread}

☞ Unfortunately: the chances that such programming errors turn out are usually small and some
implicit by chance synchronization in the rest of the system might prevent them at all.

• Many effects stemming from asynchronous memory accesses are interpreted as (hardware)
‘glitches’, since they are rare and effect usually only some parts of the data.

• On assembler level: synchronization by employing knowledge about the atomicity of
CPU-operations and interrupt structures is nevertheless possible and done frequently.

In anything higher than assembler level on small, predictable µcontrollers:

☞ Measures for synchronization are required!

© 2003 Uwe R. Zimmer, International University Bremen Page 177 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Some synchronization terms:

• Condition synchronization:
synchronize a task with an event given by another task.

• Critical sections:
code fragments which contain access to shared resources and need to be executed without
interference with other critical sections, sharing the same resources.

• Mutual exclusion:
protection against asynchronous access to critical sections.

• Atomic operations:
the set of operations, which atomicity is guaranteed by the underlying system (e.g. hardware).

☞ there must be a set of atomic operations to start with!

© 2003 Uwe R. Zimmer, International University Bremen Page 178 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by flags
Word-access atomicity:

Assuming that any access to a word in the system is an atomic operation:

e.g. assigning two values (not wider than the size of word) to a memory cell simultaneously:

Task 1: x := 0; | Task 2: x := 5;

will result in either x = 0 xor x = 5 — and no other value is ever observable.

© 2003 Uwe R. Zimmer, International University Bremen Page 179 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by flags
Assuming further that there is a shared memory area between two processes:

• A set of processes agree on a (word-size) atomic variable operating
as a flag to indicate synchronization conditions.

© 2003 Uwe R. Zimmer, International University Bremen Page 180 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Condition synchronization by flags

var Flag : boolean := false;

process P1;
 statement X;

 repeat until Flag;

 statement Y;
end P1;

process P2;
 statement A;

 Flag := true;

 statement B;
end P2;

Sequence of operations: [A | X] ➠ [B | Y]

© 2003 Uwe R. Zimmer, International University Bremen Page 181 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by flags
Assuming further that there is a shared memory between two processes:

• A set of processes agree on a (word-size) atomic variable operating
as a flag to indicate synchronization conditions:

Memory flag method is ok for simple condition synchronization, but …

☞ … is not sufficient for general mutual exclusion in critical sections!

☞ … busy-waiting is required to poll the synchronization condition!

☞ More powerful synchronization operations
are required for critical sections

© 2003 Uwe R. Zimmer, International University Bremen Page 182 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by semaphores
(Dijkstra 1968)

Assuming further that there is a shared memory between two processes:

• a set of processes agree on a variable S operating
as a flag to indicate synchronization conditions … and …

• an atomic operation P on S — P stands for ‘passeren’ (Dutch for ‘pass’):

• P: [if S > 0 then S := S - 1] also: ‘Wait’, ‘Suspend_Until_True’

• an atomic operation V on S — V stands for ‘vrygeven’ (Dutch for ‘to release’):

• V: [S := S + 1] also: ‘Signal’, ‘Set_True’

☞ the variable S is then called a semaphore.

OS-level: P is usually also suspending the current task until S > 0.
CPU-level: P indicates whether it was successful, but the operation is not blocking.

© 2003 Uwe R. Zimmer, International University Bremen Page 183 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Condition synchronization by semaphores

var sync : semaphore := 0;

process P1;
 statement X;

 wait (sync);

 statement Y;
end P1;

process P2;
 statement A;

 signal (sync);

 statement B;
end P2;

Sequence of operations: [A | X] ➠ [B | Y]

© 2003 Uwe R. Zimmer, International University Bremen Page 184 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Mutual exclusion by semaphores

var mutex : semaphore := 1;

process P1;
 statement X;

 wait (mutex);
 statement Y;
 signal (mutex);

 statement Z;
end P1;

process P2;
 statement A;

 wait (mutex);
 statement B;
 signal (mutex);

 statement C;
end P2;

Sequence of operations: [A | X] ➠ [B ➠ Y xor Y ➠ B] ➠ [C | Z]

© 2003 Uwe R. Zimmer, International University Bremen Page 185 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Semaphores

Types of semaphores:
• General semaphores (counting semaphores): non-negative number; (range limited by the system)
P and V increment and decrement the semaphore by one.

• Binary semaphores: restricted to [0, 1]; Multiple V (Signal) calls have the same effect than 1 call.

• binary semaphores are sufficient to create all other semaphore forms.
• atomic ‘test-and-set’ operations at hardware level are usually binary semaphores.

• Quantity semaphores: The increment (and decrement) value for the semaphore is specified as a
parameter with P and V.

© 2003 Uwe R. Zimmer, International University Bremen Page 186 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Semaphores in Ada95
package Ada.Synchronous_Task_Control is

 type Suspension_Object is limited private;

 procedure Set_True (S : in out Suspension_Object);
 procedure Set_False (S : in out Suspension_Object);

 function Current_State (S : Suspension_Object) return Boolean;

 procedure Suspend_Until_True (S : in out Suspension_Object);

private
 … -- not specified by the language
end Ada.Synchronous_Task_Control;

© 2003 Uwe R. Zimmer, International University Bremen Page 187 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Semaphores in Ada95
package Ada.Synchronous_Task_Control is

 type Suspension_Object is limited private;

 procedure Set_True (S : in out Suspension_Object);
 procedure Set_False (S : in out Suspension_Object);

 function Current_State (S : Suspension_Object) return Boolean;

 procedure Suspend_Until_True (S : in out Suspension_Object);

private
 … -- not specified by the language
end Ada.Synchronous_Task_Control;

• only one task can be blocked at Suspend_Until_True! (‘strict version of a binary semaphore’)
(Program_Error will be raised with the second task trying to suspend itself)

☞ no queues! ☞ minimal run-time overhead

© 2003 Uwe R. Zimmer, International University Bremen Page 188 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Semaphores in Ada95
package Ada.Synchronous_Task_Control is

 type Suspension_Object is limited private;

 procedure Set_True (S : in out Suspension_Object);
 procedure Set_False (S : in out Suspension_Object);

 function Current_State (S : Suspension_Object) return Boolean;

 procedure Suspend_Until_True (S : in out Suspension_Object);

private
 … -- not specified by the language
end Ada.Synchronous_Task_Control;

• only one task can be blocked at Suspend_Until_True! (strict version of a binary semaphore)
(Program_Error will be raised with the second task trying to suspend itself)

☞ no queues ☞ minimal run-time overhead

for v
ery sp

ecial cases o
nly,

in general:

medieval

© 2003 Uwe R. Zimmer, International University Bremen Page 189 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Semaphores in POSIX

int sem_init (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy (sem_t *sem_location);

int sem_wait (sem_t *sem_location);
int sem_trywait (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post (sem_t *sem_location);

int sem_getvalue (sem_t *sem_location, int *value);

© 2003 Uwe R. Zimmer, International University Bremen Page 190 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Semaphores in POSIX

int sem_init (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy (sem_t *sem_location);

int sem_wait (sem_t *sem_location);
int sem_trywait (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post (sem_t *sem_location);

int sem_getvalue (sem_t *sem_location, int *value);

generate semaphore for usage between processes
(otherwise for threads of the same process only)

© 2003 Uwe R. Zimmer, International University Bremen Page 191 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Semaphores in POSIX

int sem_init (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy (sem_t *sem_location);

int sem_wait (sem_t *sem_location);
int sem_trywait (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post (sem_t *sem_location);

int sem_getvalue (sem_t *sem_location, int *value);

delivers the number of waiting processes as a negative integer,
if there are processes waiting on this semaphore

© 2003 Uwe R. Zimmer, International University Bremen Page 192 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Semaphores in POSIX
void allocate (priority_t P)
{
 sem_wait (&mutex);
 if (busy) {
 sem_post (&mutex);
 sem_wait (&cond[P]);
 }
 busy = 1;
 sem_post (&mutex);
}

—————
sem_t mutex, cond[2];
typedef emun {low, high} priority_t;
int waiting
int busy

void deallocate (priority_t P)
{
 sem_wait (&mutex);
 busy = 0;
 sem_getvalue (&cond[high],
 &waiting);
 if (waiting < 0) {
 sem_post (&cond[high]);
 }
 else {
 sem_getvalue (&cond[low],
 &waiting);
 if (waiting < 0) {
 sem_post (&cond[low]);
 }
 else {
 sem_post (&mutex);
} } }

© 2003 Uwe R. Zimmer, International University Bremen Page 193 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Deadlock by semaphores
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;

X, Y : Suspension_Object;

task B;

task body B is

begin
 …

 Suspend_Until_True (Y);
 Suspend_Until_True (X);
 …
end B;

task A;

task body A is

begin
 …

 Suspend_Until_True (X);
 Suspend_Until_True (Y);
 …
end A;

☞ could raise a Program_Error in Ada95.

☞ produces a potential deadlock when implemented with general semaphores.

☞ Deadlocks can be generated by all kinds of synchronization methods.

© 2003 Uwe R. Zimmer, International University Bremen Page 194 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Criticism of semaphores

• Semaphores are not bound to any resource or method or region
☞ Adding or deleting a single semaphore operation some place might stall the whole system

• Semaphores are scattered all over the code
☞ hard to read, error-prone

☞ Semaphores are considered not adequate for complex systems.

(all concurrent and real-time languages offer more abstract and safer synchronization methods).

© 2003 Uwe R. Zimmer, International University Bremen Page 195 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Conditional critical regions

Basic idea:
• Critical regions are a set of code sections in different processes,

which are guaranteed to be executed in mutual exclusion:

• Shared data structures are grouped in named regions
and are tagged as being private resources.

• Processes are prohibited from entering a critical region,
when another process is active in any associated critical region.

• Condition synchronisation is provided by guards:

• When a process wishes to enter a critical region it evaluates the guard (under mutual
exclusion). If the guard evaluates false, the process is suspended / delayed.

• As with semaphores, no access order can be assumed.

© 2003 Uwe R. Zimmer, International University Bremen Page 196 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Conditional critical regions
buffer : buffer_t;

resource critial_buffer_region : buffer;

process producer;

 loop

 region critial_buffer_region
 when buffer.size < N do

 -- place in buffer etc.

 end region

 end loop;
end producer

process consumer;

 loop

 region critial_buffer_region
 when buffer.size > 0 do

 -- take from buffer etc.

 end region

 end loop;
end consumer

© 2003 Uwe R. Zimmer, International University Bremen Page 197 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Criticism of conditional critical regions
• All guards need to be re-evaluated,

when any conditional critical region is left:

☞ all involved processes are activated to test their guards
☞ there is no order in the re-evaluation phase ☞ potential livelocks

• As with semaphores the conditional critical regions
are scattered all over the code.

☞ on a larger scale: same problems as with semaphores.

The language Edison uses conditional critical regions
for synchronization in a multiprocessor environment
(each process is associated with exactly one processor).

© 2003 Uwe R. Zimmer, International University Bremen Page 198 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors
(Modula-1, Mesa — Dijkstra, Hoare)

Basic idea:
• Collect all operations and data-structures shared in critical regions in one place, the monitor.

• Formulate all operations as procedures or functions.

• Prohibit access to data-structures, other than by the monitor-procedures.

• Assure mutual exclusion of the monitor-procedures.

© 2003 Uwe R. Zimmer, International University Bremen Page 199 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors
monitor buffer;

 export append, take;

 var (* declare protected vars *)

 procedure append (I : integer);
 …

 procedure take (var I : integer);
 …

begin
 (* initialisation *)
end; How to realize conditional synchronization?

© 2003 Uwe R. Zimmer, International University Bremen Page 200 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors with condition synchronization
(Hoare)

Hoare-monitors:

• Condition variables are implemented by semaphores (Wait and Signal).

• Queues for tasks suspended on condition variables are realized.

• A suspended task releases its lock on the monitor, enabling another task to enter.

☞ More efficient evaluation of the guards:
the task leaving the monitor can evaluate all guards and the right tasks can be activated.

☞ Blocked tasks may be ordered and livelocks prevented.

© 2003 Uwe R. Zimmer, International University Bremen Page 201 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors with condition synchronization
monitor buffer;
 export append, take;
 var BUF : array […] of integer;
 top, base : 0..size-1;
 NumberInBuffer : integer;
 spaceavailable, itemavailable : condition;

 procedure append (I : integer);
 begin
 if NumberInBuffer = size then

 wait (spaceavailable);

 end if;
 BUF[top] := I; NumberInBuffer := NumberInBuffer+1;
 top := (top+1) mod size;

 signal (itemavailable)

 end append; …

© 2003 Uwe R. Zimmer, International University Bremen Page 202 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors with condition synchronization
…
 procedure take (var I : integer);
 begin
 if NumberInBuffer = 0 then

 wait (itemavailable);

 end if;
 I := BUF[base];
 base := (base+1) mod size;
 NumberInBuffer := NumberInBuffer-1;

 signal (spaceavailable);

 end take;

begin (* initialisation *)
 NumberInBuffer := 0;
 top := 0; base := 0
end;

The signalling and the
waiting process are both

active in the monitor!

© 2003 Uwe R. Zimmer, International University Bremen Page 203 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors with condition synchronization

Suggestions to overcome the multiple-tasks-in-monitor-problem:

• A signal is allowed only as the last action of a process before it leaves the monitor.

• A signal operation has the side-effect of executing a return statement.

• Hoare, Modula-1, POSIX: a signal operation which unblocks another process
has the side-effect of blocking the current process;
this process will only execute again once the monitor is unlocked again.

• A signal operation which unblocks a process does not block the caller,
but the unblocked process must gain access to the monitor again.

© 2003 Uwe R. Zimmer, International University Bremen Page 204 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Modula-1

• wait (s, r):
delays the caller until condition variable s is true (r is the rank (or ‘priority’) of the caller).

• send (s):
If a process is waiting for the condition variable s,
then the process at the top of the queue of the highest filled rank is activated
(and the caller suspended).

• awaited (s):
check for waiting processes on s.

© 2003 Uwe R. Zimmer, International University Bremen Page 205 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Modula-1
INTERFACE MODULE resource_control;

 DEFINE allocate, deallocate;
 VAR busy : BOOLEAN; free : SIGNAL;

 PROCEDURE allocate;
 BEGIN
 IF busy THEN WAIT (free) END;
 busy := TRUE;
 END;

 PROCEDURE deallocate;
 BEGIN
 busy := FALSE;
 SEND (free); -- or: IF AWAITED (free) THEN SEND (free);
 END;

BEGIN
 busy := false;
END.

© 2003 Uwe R. Zimmer, International University Bremen Page 206 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init (pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_cond_init (pthread_cond_t *cond,
 const pthread_condattr_t *attr);
int pthread_cond_destroy (pthread_cond_t *cond);

…

© 2003 Uwe R. Zimmer, International University Bremen Page 207 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init (pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_cond_init (pthread_cond_t *cond,
 const pthread_condattr_t *attr);
int pthread_cond_destroy (pthread_cond_t *cond);

…

Attributes include:

• semantics for trying to lock a mutex which
is locked already by the same thread

• sharing of mutexes and
condition variables between processes

• priority ceiling

• clock used for timeouts

• … … …

© 2003 Uwe R. Zimmer, International University Bremen Page 208 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init (pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_cond_init (pthread_cond_t *cond,
 const pthread_condattr_t *attr);
int pthread_cond_destroy (pthread_cond_t *cond);

…

Undefined, if locked

Undefined, if threads are waiting

© 2003 Uwe R. Zimmer, International University Bremen Page 209 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

© 2003 Uwe R. Zimmer, International University Bremen Page 210 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

unblocking ‘at least one’ thread

unblocking all threads

© 2003 Uwe R. Zimmer, International University Bremen Page 211 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

undefined,

if called out of order!

© 2003 Uwe R. Zimmer, International University Bremen Page 212 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

can be called any time, anywhere
(multiple lock reaction can be specified)

© 2003 Uwe R. Zimmer, International University Bremen Page 213 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(example, definitions)

#define BUFF_SIZE 10

typedef struct {
 pthread_mutex_t mutex;
 pthread_cond_t buffer_not_full;
 pthread_cond_t buffer_not_empty;
 int count, first, last;
 int buf[BUFF_SIZE];
} buffer;

© 2003 Uwe R. Zimmer, International University Bremen Page 214 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(example, operations)

int append (int item, buffer *B) {

 PTHREAD_MUTEX_LOCK (&B->mutex);
 while (B->count == BUFF_SIZE) {
 PTHREAD_COND_WAIT (
 &B->buffer_not_full,
 &B->mutex);
 }
 PTHREAD_MUTEX_UNLOCK (&B->mutex);
 PTHREAD_COND_SIGNAL (
 &B->buffer_not_empty);
 return 0;
}

int take (int *item, buffer *B) {

 PTHREAD_MUTEX_LOCK (&B->mutex);
 while (B->count == 0) {
 PTHREAD_COND_WAIT (
 &B->buffer_not_empty,
 &B->mutex);
 }
 PTHREAD_MUTEX_UNLOCK (&B->mutex);
 PTHREAD_COND_SIGNAL (
 &B->buffer_not_full);
 return 0;
}

© 2003 Uwe R. Zimmer, International University Bremen Page 215 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
Java provides two mechanisms to construct monitors:

• Synchronized methods and code blocks
all methods and code blocks which are using the synchronized tag
are mutually exclusive with respect to the addressed class.

• Notification methods: wait, notify, and notifyAll
can be used only in synchronized regions and are waking any or all threads,
which are waiting in the same synchronized object.

© 2003 Uwe R. Zimmer, International University Bremen Page 216 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
Considerations:

1. Synchronized methods and code blocks:
• In order to implement a monitor all methods in an object need to be synchronized.

☞ any other standard method can break the monitor and enter at any time.

• Methods outside the monitor-object can synchronize at this object.

☞ it is impossible to analyse a monitor locally, since lock accesses can exist all over the system.

• Static data is shared between all objects of a class.

☞ access to static data need to be synchronized over the whole class.

Either in static synchronized blocks: synchronized (this.getClass()) {…}
or in static methods: public synchronized static <method> {…}

© 2003 Uwe R. Zimmer, International University Bremen Page 217 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
Considerations:

2. Notification methods: wait, notify, and notifyAll

• wait suspends the thread and releases the local lock only

☞ nested wait-calls will keep all enclosing locks.

• notify and notifyAll does not release the lock.

☞ methods, which are activated via notification need to wait for lock-access.

• wait-suspended threads are hold in a queue (Real-time Java only!),
thus notify{All} is waking the threads in order ☞ livelocks are prevented at this level .

• There are no explicit conditional variables.

☞ every notified thread needs
to wait for the lock to be released and to re-evaluate its entry condition

© 2003 Uwe R. Zimmer, International University Bremen Page 218 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
(multiple-readers-one-writer-example)

each of the readers uses these monitor.calls:

startRead ();
 // read the shared data only
stopRead ();

each of the writers uses these monitor.calls:

startWrite ();
 // manipulate the shared data
stopWrite ();

☞ construct a monitor, which allows
multiple readers

or
one writer

at a time inside the critical regions

© 2003 Uwe R. Zimmer, International University Bremen Page 219 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
(multiple-readers-one-writer-example: wait-notifyAll method)

public class ReadersWriters

{

 private int readers = 0;
 private int waitingWriters = 0;
 private boolean writing = false;

…

© 2003 Uwe R. Zimmer, International University Bremen Page 220 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
(multiple-readers-one-writer-example: wait-notifyAll method)

… public synchronized void StartWrite () throws InterruptedException
 {
 while (readers > 0 || writing)
 {
 waitingWriters++;
 wait();
 waitingWriters--;
 }
 writing = true;
 }

 public synchronized void StopWrite()
 {
 writing = false;
 notifyAll ();
 } …

© 2003 Uwe R. Zimmer, International University Bremen Page 221 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
(multiple-readers-one-writer-example: wait-notifyAll method)

… public synchronized void StartRead () throws InterruptedException
 {
 while (writing || waitingWriters > 0)
 {
 wait();
 }
 readers++;
 }

 public synchronized void StopRead()
 {
 readers--;
 if (readers == 0) notifyAll();
 }
}

whenever a synchronized region is left:

• all thread are notified

• all threads are
re-evaluating their guards

© 2003 Uwe R. Zimmer, International University Bremen Page 222 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
Standard monitor solution:

• declare the monitored data-structures private to the monitor object (non-static).

• introduce a class ConditionVariable:

 public class ConditionVariable {
 public boolean wantToSleep = false;
 }

• introduce synchronization-scopes in monitor-methods:
☞ synchronize on the adequate conditional variables first and
☞ synchronize on the monitor-object second.

• make sure that all methods in the monitor are implementing the correct synchronizations.

• make sure that no other method in the whole system is synchronizing on this monitor-object.

© 2003 Uwe R. Zimmer, International University Bremen Page 223 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

public class ReadersWriters
{

 private int readers = 0;
 private int waitingReaders = 0;
 private int waitingWriters = 0;
 private boolean writing = false;

 ConditionVariable OkToRead = new ConditionVariable ();
 ConditionVariable OkToWrite = new ConditionVariable ();

…

© 2003 Uwe R. Zimmer, International University Bremen Page 224 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
… public void StartWrite () throws InterruptedException
 {
 synchronized (OkToWrite)
 {
 synchronized (this)
 {
 if (writing | readers > 0) {
 waitingWriters++;
 OkToWrite.wantToSleep = true;
 } else {
 writing = true;
 OkToWrite.wantToSleep = false;
 }
 }
 if (OkToWrite.wantToSleep) OkToWrite.wait ();
 } } …

© 2003 Uwe R. Zimmer, International University Bremen Page 225 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
… public void StopWrite ()
 {
 synchronized (OkToRead)
 {
 synchronized (OkToWrite)
 {
 synchronized (this)
 {
 if (waitingWriters > 0) {
 waitingWriters--;
 OkToWrite.notify (); // wakeup one writer
 } else {
 writing = false;
 OkToRead.notifyAll (); // wakeup all readers
 readers = waitingReaders;
 waitingReaders = 0;
 }
 } } } } …

© 2003 Uwe R. Zimmer, International University Bremen Page 226 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
… public void StartRead () throws InterruptedException
 {
 synchronized (OkToRead)
 {
 synchronized (this)
 {
 if (writing | waitingWriters > 0) {
 waitingReaders++;
 OkToRead.wantToSleep = true;
 } else {
 readers++;
 OkToRead.wantToSleep = false;
 }
 }
 if (OkToRead.wantToSleep) OkToRead.wait ();
 } } …

© 2003 Uwe R. Zimmer, International University Bremen Page 227 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
… public void StopRead ()
 {
 synchronized (OkToWrite)
 {
 synchronized (this)
 {
 readers--;
 if (readers == 0 & waitingWriters > 0) {
 waitingWriters--;
 OkToWrite.notify ();
 }
 }
 }
 }
}

© 2003 Uwe R. Zimmer, International University Bremen Page 228 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Object-orientation and synchronization

Since mutual exclusion, notification, and condition synchronization schemes need to be designed
and analysed considering the implementation of all involved methods and guards:

☞ new methods cannot be added without re-evaluating the whole class!

In opposition to the general re-usage idea of object-oriented programming,
the re-usage of synchronized classes (e.g. monitors) need to be considered carefully.

☞ The parent class might need to be adapted in order to suit the global synchronization scheme.

☞ Inheritance anomaly (Matsuoka & Yonezawa ‘93)

Methods to design and analyse expandible synchronized systems exist,
but are fairly complex and are not provided in any current object-oriented language.

© 2003 Uwe R. Zimmer, International University Bremen Page 229 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in POSIX & Java

☞ flexible and universal,
but relies on conventions rather than compilers

POSIX offers conditional variables

Java is more supportive than POSIX
in terms of data-encapsulation

Extreme care must be taken when employing
object-oriented programming and monitors

© 2003 Uwe R. Zimmer, International University Bremen Page 230 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Nested monitor calls
Assuming a thread in a monitor is calling an operation in another monitor
and is suspended at a conditional variable there:

☞ the called monitor is aware of the suspension and allows other threads to enter.

☞ the calling monitor is possibly not aware of the suspension and keeps its lock!

☞ the unjustified locked calling monitor
reduces the system performance and leads to potential deadlocks.

Suggestions to solve this situation:

• Maintain the lock anyway: e.g. POSIX, Real-time Java

• Prohibit nested procedure calls: e.g. Modula-1

• Provide constructs which specify the release of a monitor lock for remote calls, e.g. Ada95

© 2003 Uwe R. Zimmer, International University Bremen Page 231 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Criticism of monitors

• Mutual exclusion is solved elegantly and safely.

• Conditional synchronization is on the level of semaphores still
☞ all criticism on semaphores apply

☞ mixture of low-level and high-level synchronization constructs.

© 2003 Uwe R. Zimmer, International University Bremen Page 232 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects
Combine

• the encapsulation feature of monitors

with

• the coordinated entries of conditional critical regions

to

☞ Protected objects

• all controlled data and operations are encapsulated
• all operations are mutual exclusive
• entry guards are attached to operations
• the protected interface allows for operations on data
• no protected data is accessible (other than by defined operations)
• tasks are queued (according to their priorities)

© 2003 Uwe R. Zimmer, International University Bremen Page 233 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(simultaneous read-access)

Some read-only operations do not need to be mutual exclusive:

protected type Shared_Data (Initial : Data_Item) is

 function Read return Data_Item;
 procedure Write (New_Value : in Data_Item);

private
 The_Data : Data_Item := Initial;
end Shared_Data_Item;

• protected functions can have ‘in’ parameters only and are not allowed to alter the private data
(enforced by the compiler).

☞ protected functions allow simultaneous access (but mutual exclusive with other operations).

• there is no defined priority between functions and other protected operations in Ada95.

© 2003 Uwe R. Zimmer, International University Bremen Page 234 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
Condition synchronization is realized in the form of protected procedures
combined with boolean conditional variables (barriers): ☞ entries in Ada95:

Buffer_Size : constant Integer := 10;

type Index is mod Buffer_Size;
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer_T is array (Index) of Data_Item;

protected type Bounded_Buffer is

 entry Get (Item : out Data_Item);
 entry Put (Item : in Data_Item);
private
 First : Index := Index'First;
 Last : Index := Index'Last;
 Num : Count := 0;
 Buffer : Buffer_T;

end Bounded_Buffer;

© 2003 Uwe R. Zimmer, International University Bremen Page 235 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(barriers)

protected body Bounded_Buffer is

 entry Get (Item : out Data_Item) when Num > 0 is
 begin
 Item := Buffer (First);
 First := First + 1;
 Num := Num - 1;
 end Get;

 entry Put (Item : in Data_Item) when Num < Buffer_Size is
 begin
 Last := Last + 1;
 Buffer (Last) := Item;
 Num := Num + 1;
 end Put;

end Bounded_Buffer;

© 2003 Uwe R. Zimmer, International University Bremen Page 236 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
Protected entries are used like task entries:

Buffer : Bounded_Buffer;

select
 Buffer.Put (Some_Data);
or
 delay 10.0;
 -- do something after 10 s.
end select;

select
 Buffer.Get (Some_Data);
else
 -- do something else
end select;

select
 delay 10.0;
then abort
 Buffer.Put (Some_Data);
 -- try to enter for 10 s.
end select;

select
 Buffer.Get (Some_Data);
then abort
 -- meanwhile try something else
end select;

© 2003 Uwe R. Zimmer, International University Bremen Page 237 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(barrier evaluation)

Barrier evaluations and task activations:

• on calling a protected entry, the associated barrier is evaluated
(only those parts of the barrier which might have changed since the last evaluation).

• on leaving a protected procedure or entry, related barriers with tasks queued are evaluated
(only those parts of the barriers which might have been altered by this procedure / entry
or which might have changed since the last evaluation).

Barriers are not evaluated while inside a protected object or on leaving a protected function.

© 2003 Uwe R. Zimmer, International University Bremen Page 238 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(operations on entry queues)

The count attribute indicate the number of tasks waiting at a specific queue:

protected Blocker is

 entry Proceed;

private
 Release : Boolean := False;
end Blocker;

protected body Blocker is

 entry Proceed
 when Proceed’count = 5
 or Release is
 begin
 Release := Proceed’count > 0;
 end Proceed;

end Blocker;

© 2003 Uwe R. Zimmer, International University Bremen Page 239 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(operations on entry queues)

The count attribute indicate the number of tasks waiting at a specific queue:

protected type Broadcast is

 entry Receive (M: out Message);
 procedure Send (M: in Message);

private

 New_Message : Message;
 Arrived : Boolean := False;

end Blocker;

protected body Broadcast is

 entry Receive (M: out Message)
 when Arrived is
 begin
 M := New_Message
 Arrived := Receive’count > 0;
 end Proceed;

 procedure Send (M: in Message) is
 begin
 New_Message := M;
 Arrived := Receive’count > 0;
 end Send;

end Blocker;

© 2003 Uwe R. Zimmer, International University Bremen Page 240 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(entry families, requeue & private entries)

Further refinements on task control by:

• Entry families:
a protected entry declaration can contain a discrete subtype selector, which can be evaluated
by the barrier (other parameters cannot be evaluated by barriers) and implements an
array of protected entries.

• Requeue facility:
protected operations can use ‘requeue’ to redirect tasks to other internal, external, or private
entries. The current protected operation is finished and the lock on the object is released.

‘Internal progress first’-rule: internally requeued tasks are placed at the head of the waiting queue!

• Private entries:
protected entries which are not accessible from outside the protected object,
but can be employed as destinations for requeue operations.

© 2003 Uwe R. Zimmer, International University Bremen Page 241 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(requeue & private entries)

How to implement a queue, at which every task
can be released only once per triggering event?

package Single_Release is

 entry Wait;
 procedure Trigger;

end Single_Release;

© 2003 Uwe R. Zimmer, International University Bremen Page 242 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(requeue & private entries)

How to implement a queue, at which every task
can be released only once per triggering event?

☞ e.g. by employing a second (private) entry:

package Single_Release is

 entry Wait;
 procedure Trigger;

private
 Front_Door,
 Main_Door : Boolean := False;

 entry Queue;

end Single_Release;

© 2003 Uwe R. Zimmer, International University Bremen Page 243 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(requeue & private entries)

package body Single_Release is

 entry Wait
 when Front_Door is

 begin
 if Wait'Count = 0 then
 Front_Door := False;
 Main_Door := True;
 end if;

 requeue Queue;

 end Wait;

 entry Queue
 when Main_Door is

 begin
 if Queue’count = 0 then
 Main_Door := False;
 end if;;
 end Queue;

 procedure Trigger is
 begin
 Front_Door := True;
 end Trigger;

end Single_Release;opening the main door
before requeuing?

© 2003 Uwe R. Zimmer, International University Bremen Page 244 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(restrictions applying to protected operations)

Code inside a protected procedure, function or entry is bound to non-blocking operations
(which would keep the whole protected object locked).

Thus the following operations are prohibited:

• entry call statements

• delay statements

• task creations or activations

• calls to sub-programs which contains a potentially blocking operation

• select statements

• accept statements

☞ The requeue facility allows for a potentially blocking operation,
but releases the current lock!

© 2003 Uwe R. Zimmer, International University Bremen Page 245 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Shared memory based
synchronization

General

Criteria:

• level of abstraction

• centralized vs. distributed concepts

• support for consistency
and correctness validations

• error sensitivity

• predictability

• efficiency

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

© 2003 Uwe R. Zimmer, International University Bremen Page 246 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Shared memory based
synchronization

POSIX

• all low level constructs available.

• no connection with the
actual data-structures.

• error-prone.

• non-determinism introduced by
‘release some’ semantics of
conditional variables (cond_signal). Semaphores

(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

© 2003 Uwe R. Zimmer, International University Bremen Page 247 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Shared memory based
synchronization

Java

• mutual exclusion
(synchronized methods)
as the only support.

• general notification feature
(no conditional variables)

• non-restricted object oriented extension
introduces hard to predict timing
behaviours.

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

© 2003 Uwe R. Zimmer, International University Bremen Page 248 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Shared memory based
synchronization

Modula-1, CHILL

• full monitor implementation
(Dijkstra-Hoare monitor concept).

… no more, no less, …

☞ all features of and criticism
about monitors apply.

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

© 2003 Uwe R. Zimmer, International University Bremen Page 249 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Shared memory based
synchronization

Ada95

• complete synchronization support

• low-level semaphores
for very special cases.

• predictable timing (☞ scheduler).

☞ most memory oriented synchronization
conditions are realized by the compiler
or the run-time environment directly
rather then the programmer.

(Ada95 is currently without any mainstream
competitor in this field)

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

© 2003 Uwe R. Zimmer, International University Bremen Page 250 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
• Synchronization model

• Asynchronous
• Synchronous
• Remote invocation

• Addressing (name space)

• direct communication
• mail-box communication

• Message structure

• arbitrary
• restricted to ‘basic’ types
• restricted to un-typed communications

© 2003 Uwe R. Zimmer, International University Bremen Page 251 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Asynchronous messages

If there is a listener:

☞ send the message directly

async. send async. receiveasync. send async. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 252 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Asynchronous messages

If the receiver becomes available at a later stage:

☞ the message need to be buffered

async. send

async. receive

async. send

async. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 253 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Synchronous messages

Delay the sender:

• until the receiver got the message

sync. send sync. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 254 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Synchronous messages

Delay the sender:

• until the receiver got the message

☞ two asynchronous messages required

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 255 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Synchronous messages

Delay the sender until:

• a receiver is available

• a receiver got the message

sync. send

sync. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 256 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Synchronous messages

If the receiver becomes available at a later stage:

☞ messages need to be buffered

async. send async. receive

async. sendasync. receive

async. send

async. receive

async. sendasync. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 257 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Remote invocation

Delay the sender, until:

• a receiver got the message

• a receiver executed an addressed routine

rem. invoc. invocation

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 258 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Remote invocation

Delay the sender, until:

• a receiver got the message

• a receiver executed an addressed routine

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 259 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver executed an addressed routine

rem. invoc.

invocation

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 260 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver executed an addressed routine

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

async. send

async. receive

async. sendasync. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 261 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Asynchronous remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

rem. invoc.

invocation

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 262 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Asynchronous remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

async. send async. receive

async. sendasync. receive

async. send

async. receive

async. sendasync. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 263 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronous vs. asynchronous communications
Purpose ‘synchronization’: ☞ synchronous messages / remote invocations
Purpose ‘in-time delivery’: ☞ asynchronous messages / asynchronous remote invocations

☞ ‘Real’ synchronous message passing in distributed systems requires hardware support.

☞ Asynchronous message passing requires the usage of (infinite?) buffers.

• Synchronous communications are emulated
by a combination of asynchronous messages in some systems.

• Asynchronous communications can be emulated in synchronized message passing systems by
introducing ‘buffer-tasks’ (de-coupling sender and receiver as well as allowing for broadcasts).

© 2003 Uwe R. Zimmer, International University Bremen Page 264 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Addressing (name space)
Direct vs. indirect:

send <message> to <process-name>
wait for <message> from <process-name>
send <message> to <mailbox>
wait for <message> from <mailbox>

Asymmetrical addressing:

send <message> to …
wait for <message>

☞ Client-server paradigm

© 2003 Uwe R. Zimmer, International University Bremen Page 265 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Addressing (name space)

Communication medium:

Connections Functionality

one-to-one buffer, queue, synchronization

one-to-many multicast

one-to-all broadcast

many-to-one local server, synchronization

all-to-one general server, synchronization

many-to-many general network- or bus-system

© 2003 Uwe R. Zimmer, International University Bremen Page 266 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message structure
• Machine dependent representations need to be taken care of in a distributed environment.

• Communication system is often outside the typed language environment.

Most communication systems are handling streams (packets) of a basic element type only.

☞ Conversion routines for data-structures other then the basic element type are supplied …

… manually (POSIX)
… semi-automatic (Real-time CORBA)
… automatic and are typed-persistent (Ada95)

© 2003 Uwe R. Zimmer, International University Bremen Page 267 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message structure (Ada95)
package Ada.Streams is
 pragma Pure (Streams);

 type Root_Stream_Type is abstract tagged limited private;

 type Stream_Element is mod implementation-defined;

 type Stream_Element_Offset is range implementation-defined;

 subtype Stream_Element_Count is
 Stream_Element_Offset range 0..Stream_Element_Offset'Last;

 type Stream_Element_Array is
 array (Stream_Element_Offset range <>) of Stream_Element;

 procedure Read (…) is abstract;
 procedure Write (…) is abstract;

private
 … -- not specified by the language
end Ada.Streams;

© 2003 Uwe R. Zimmer, International University Bremen Page 268 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message structure (Ada95)
Reading and writing values of any type to a stream:

procedure S'Write(
 Stream : access Ada.Streams.Root_Stream_Type'Class; Item : in T);
procedure S'Class'Write(
 Stream : access Ada.Streams.Root_Stream_Type'Class; Item : in T'Class);

procedure S'Read(
 Stream : access Ada.Streams.Root_Stream_Type'Class; Item : out T);
procedure S'Class'Read(
 Stream : access Ada.Streams.Root_Stream_Type'Class; Item : out T'Class)

Reading and writing values, bounds and discriminants of any type to a stream:

procedure S'Output(
 Stream : access Ada.Streams.Root_Stream_Type'Class; Item : in T);

function S'Input(
 Stream : access Ada.Streams.Root_Stream_Type'Class) return T;

© 2003 Uwe R. Zimmer, International University Bremen Page 269 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Practical message-passing systems:

POSIX:
“message queues”:
☞ ordered indirect [asymmetrical | symmetrical] asynchronous
byte-level many-to-many message passing

CHILL:
“buffers”, ”signals”:
☞ ordered indirect [asymmetrical | symmetrical] [synchronous | asynchronous]
typed [many-to-many | many-to-one] message passing

Occam2:
“channels”:
☞ indirect symmetrical synchronous fully-typed one-to-one message passing

Ada95:
“(extended) rendezvous”:
☞ ordered direct asymmetrical [synchronous | asynchronous]
fully-typed many-to-one remote invocation

Java: no communication via messages available

© 2003 Uwe R. Zimmer, International University Bremen Page 270 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Practical message-passing systems:

o
rd

er
ed

sy
m

m
et

ri
ca

l

as
ym

m
et

ri
ca

l

sy
n

ch
ro

n
o

u
s

as
yn

ch
ro

n
o

u
s

d
ir

ec
t

in
d

ir
ec

t
contents o

n
e-

to
-o

n
e

m
an

y-
to

-o
n

e

m
an

y-
to

-m
an

y

method

POSIX: * * * * * bytes * message passing

CHILL: * * * * * * typed * * message passing

Occam2: * * * fully typed * message passing

Ada95: * * * * * fully typed * remote invocation

Java: no communication via messages available

© 2003 Uwe R. Zimmer, International University Bremen Page 271 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Occam2
Communication is ensured by means of a ‘channel’, which:

• can be used by one writer and one reader process only

• and is synchronous:

CHAN OF INT SensorChannel:

PAR
 INT reading:
 SEQ i = 0 FOR 1000
 SEQ
 -- generate reading
 SensorChannel ! reading

 INT data:
 SEQ i = 0 FOR 1000
 SEQ
 SensorChannel ? data
 -- employ data

 tasks are synchronized
at these points

© 2003 Uwe R. Zimmer, International University Bremen Page 272 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in CHILL
CHILL is the ‘CCITT High Level Language’,
where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.
The CHILL language development was started in 1973 and standardized in 1979.

☞ strong support for concurrency, synchronization, and communication
(monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;
…
send SensorBuffer (reading); | receive case
 | (SensorBuffer in data) : …
 | esac;

signal SensorChannel = (int) to consumertype;
…
send SensorChannel (reading) | receive case
 to consumer | (SensorChannel in data): …
 | esac;

© 2003 Uwe R. Zimmer, International University Bremen Page 273 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in CHILL
CHILL is the ‘CCITT High Level Language’,
where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.
The CHILL language development was started in 1973 and standardized in 1979.

☞ strong support for concurrency, synchronization, and communication
(monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;
…
send SensorBuffer (reading); | receive case
 | (SensorBuffer in data) : …
 | esac;

signal SensorChannel = (int) to consumertype;
…
send SensorChannel (reading) | receive case
 to consumer | (SensorChannel in data): …
 | esac;

asynchronous

synchronous

© 2003 Uwe R. Zimmer, International University Bremen Page 274 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
Ada95 supports remote invocations ((extended) rendezvous) in form of:

• entry points in tasks

• full set of parameter profiles supported

If the local and the remote task are on different architectures,
or if an intermediate communication system is employed:

☞ parameters incl. bounds and discriminants are ‘tunnelled’ through byte-stream-formats.

Synchronization:

• both tasks are synchronized at the beginning of the remote invocation (☞ ‘rendezvous’)

• the calling task if blocked until the remote routine is completed (☞ ‘extended rendezvous’)

© 2003 Uwe R. Zimmer, International University Bremen Page 275 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
Remote invocation

(Rendezvous)

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver started an addressed routine

rem. invoc.

invocation

timetime

P2P1

synchronized

© 2003 Uwe R. Zimmer, International University Bremen Page 276 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
Remote invocation

(Extended rendezvous)

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver executed an addressed routine

• a receiver passed the results

rem. invoc.

invocation

timetime

P2P1

send results

get results

synchronized

released

© 2003 Uwe R. Zimmer, International University Bremen Page 277 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
(Rendezvous)

…
<entry_name> [(index)] <parameters>
… -- waiting for synchronization
… --
… --
… --
…
…
…
…
…

…
…
…
…
…
accept <entry_name> [(index)]
 <parameter_profile>;
…
…
…
…
…

synchronized

© 2003 Uwe R. Zimmer, International University Bremen Page 278 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
(Rendezvous)

…
…
…
…
…
<entry_name> [(index)] <parameters>
…
…
…
…

…
accept <entry_name> [(index)]
 <parameter_profile>;
… -- waiting for synchronization
… --
… --
…
…
…
…

synchronized

© 2003 Uwe R. Zimmer, International University Bremen Page 279 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
(Extended rendezvous)

…
<entry_name> [(index)] <parameters>
… -- waiting for synchronization
… --
… --
… --
 … --
 … -- blocked
 … --
 … --
…

…
…
…
…
…
accept <entry_name> [(index)]
 <parameter_profile> do
 … --
 … -- remote invocation
 … --
end <entry_name>;
…

synchronizedsynchronized

synchronizedreturn results

© 2003 Uwe R. Zimmer, International University Bremen Page 280 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
(Extended rendezvous)

…
…
…
…
…
<entry_name> [(index)] <parameters>
 … --
 … -- blocked
 … --
 … --
…

…
accept <entry_name> [(index)]
 <parameter_profile> do
… -- waiting for synchronization
… --
… --
 … --
 … --
 … -- remote invocation
 … --
end <entry_name>;
…

synchronizedsynchronized

synchronizedreturn results

© 2003 Uwe R. Zimmer, International University Bremen Page 281 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
Some things to consider for task-entries:

• In contrast to protected-object-entries, task-entries can call other blocking operations.

• Accept statements can be nested (but need to be different).

☞ helpful e.g. to synchronize more than two tasks.

• Accept statements can have a dedicated exception handler (like any other code-block).

Exceptions, which are not handled during the rendezvous phase
are propagated to all involved tasks.

• Parameters cannot be direct ‘access’ parameters, but can be access-types.

© 2003 Uwe R. Zimmer, International University Bremen Page 282 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
Some things to consider for task-entries:

• In contrast to protected-object-entries, task-entries can call other blocking operations.

• Accept statements can be nested (but need to be different).

☞ helpful e.g. to synchronize more than two tasks.

• Accept statements can have a dedicated exception handler (like any other code-block).

Exceptions, which are not handled during the rendezvous phase
are propagated to all involved tasks.

• Parameters cannot be direct ‘access’ parameters, but can be access-types.

• ‘count on task-entries is defined, but is only accessible from inside the tasks owning the entry.

• Entry families (arrays of entries) are supported.

• Private entries (accessible for internal tasks) are supported.

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Selective waiting
Dijkstra’s guarded commands:

if x <= y -> m := x
❏ x >= y -> m := y
fi

☞ the programmer needs to design the alternatives as ‘parallel’ options:
all cases need to be covered and overlapping conditions need to lead to the same result

Extremely different philosophy: ‘C’-switch:

switch (x) {
 case 1: r := 3;
 case 2: r := 2; break;
 case 3: r := 1;
}

☞ the sequence of alternatives has a crucial role.

selection is
non-deterministic!

© 2003 Uwe R. Zimmer, International University Bremen Page 284 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based selective synchronization in Ada95
Forms of selective waiting:

select_statement ::= selective_accept |
 conditional_entry_call |
 timed_entry_call |
 asynchronous_select

… underlying concept: Dijkstra’s guarded commands

selective_accept implements …

• … wait for more than a single rendezvous at any one time

• … time-out if no rendezvous is forthcoming within a specified time

• … withdraw its offer to communicate if no rendezvous is available immediately

• … terminate if no clients can possibly call its entries

© 2003 Uwe R. Zimmer, International University Bremen Page 285 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based selective synchronization in Ada95
selective_accept in its full syntactical form in Ada95:

selective_accept ::= select
 [guard] selective_accept_alternative
 { or [guard] selective_accept_alternative
 [else sequence_of_statements]
 end select;

guard ::= when <condition> =>

selective_accept_alternative ::= accept_alternative |
 delay_alternative |
 terminate_alternative

accept_alternative ::= accept_statement [sequence_of_statements]
delay_alternative ::= delay_statement [sequence_of_statements]
terminate_alternative ::= terminate;

© 2003 Uwe R. Zimmer, International University Bremen Page 286 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Basic forms of selective synchronization
(select-or)

select
 accept … do …
 end …
or
 accept … do …
 end …
or
 accept … do …
 end …
or
 accept … do …
 end …
…
end select;

• If none of the named entries have been
called, the task is suspended until one of the
entries is addressed by another task.

• The selection of an accept is non-determinis-
tic, in case that multiple entries are called.

☞ The selection can be controlled by means of
the real-time systems annex.

• The select statement is completed, when at
least one of the entries has been called and
those accept-block has been executed.

© 2003 Uwe R. Zimmer, International University Bremen Page 287 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Basic forms of selective synchronization
(guarded select-or)

select
 when <condition> =>
 accept … do …
 end …
or
 when <condition> =>
 accept … do …
 end …
or
 when <condition> =>
 accept … do …
 end …
…
end select;

• Analogue to Dijkstra’s guarded commands

• all accepts closed will raise a Program_Error

☞ set of conditions need to be complete

© 2003 Uwe R. Zimmer, International University Bremen Page 288 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Basic forms of selective synchronization
(guarded select-or-else)

select
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 accept … do …
 end …
else
 <statements>
…
end select;

• If none of the open entries can be accepted
immediately, the else alternative is selected.

• There can be only one else alternative and it
cannot be guarded.

© 2003 Uwe R. Zimmer, International University Bremen Page 289 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Basic forms of selective synchronization
(guarded select-or-delay)

select
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 delay …
 <statements>
or
 [when <condition> =>]
 delay …
 <statements>
…
end select;

• If none of the open entries has been called
before the amount of time specified in the
earliest open delay alternative, this delay al-
ternative is selected.

• There can be multiple delay alternatives if
more than one delay alternative expires si-
multaneously, either one may be chosen.

• delay and delay until can be employed.

© 2003 Uwe R. Zimmer, International University Bremen Page 290 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Basic forms of selective synchronization
(guarded select-or-terminate)

select
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 terminate;
…
end select;

The terminate alternative is chosen if none of the
entries can ever be called again, i.e.:

• all tasks which can possibly call any of the
named entries are terminated.

or

• all remaining active tasks which can possibly
call any of the named entries are waiting on
selective terminate statements and none of
their open entries can be called any longer.

☞ This task and all its dependent waiting-for-
termination tasks are terminated together.

© 2003 Uwe R. Zimmer, International University Bremen Page 291 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Basic forms of selective synchronization
(guarded select-or-else select-or-delay select-or-terminate)

select
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 accept … do …
 end …
else
 <statements>
…
end select;

select
 [when <condition> =>]
 accept … do …

 end …
or
 [when <condition> =>]
 delay …
 <statements>
…
end select;

select
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 terminate;
…
end select;

else - delay - terminate
alternatives

cannot be mixed!

© 2003 Uwe R. Zimmer, International University Bremen Page 292 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Non-determinism in selective synchronizations
☞ If equal alternatives are given, then the program correctness (incl. the timing specifications)

must not be affected by the actual selection.

• If alternatives have different priorities,
this can be expressed e.g. by means of the Ada real-time annex.

• Non-determinism in concurrent systems is or can be also introduced by:

• non-ordered monitor or other queues
• buffering / routing message passing systems
• non-deterministic schedulers
• timer quantization
• … any form of asynchronism

© 2003 Uwe R. Zimmer, International University Bremen Page 293 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Conditional & timed entry-calls
conditional_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 else
 sequence_of_statements
 end select;

select
 Light_Monitor.Wait_for_Light;
 Lux := True;
else
 Lux := False;
end;

timed_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 or
 delay_alternative
 end select;

select
 Controller.Request (Medium)
 (Some_Item);
 -- process data
or
 delay 45.0;
 -- try something else
end select;

© 2003 Uwe R. Zimmer, International University Bremen Page 294 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Conditional & timed entry-calls
conditional_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 else
 sequence_of_statements
 end select;

select
 Light_Monitor.Wait_for_Light;
 Lux := True;
else
 Lux := False;
end;

timed_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 or
 delay_alternative
 end select;

select
 Controller.Request (Medium)
 (Some_Item);
 -- process data
or
 delay 45.0;
 -- try something else
end select;

There is only
one entry call

and either
one ‘else ‘

or
one ‘or delay’

© 2003 Uwe R. Zimmer, International University Bremen Page 295 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Conditional & timed entry-calls
conditional_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 else
 sequence_of_statements
 end select;

select
 Light_Monitor.Wait_for_Light;
 Lux := True;
else
 Lux := False;
end;

timed_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 or
 delay_alternative
 end select;

select
 Controller.Request (Medium)
 (Some_Item);
 -- process data
or
 delay 45.0;
 -- try something else
end select;

The idea in both cases is to withdraw a synchronization request
and not to implement polling or busy-waiting.

© 2003 Uwe R. Zimmer, International University Bremen Page 296 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Synchronization

• Shared memory based synchronization

• Flags, condition variables, semaphores, …
… conditional critical regions, monitors, protected objects.

• Guard evaluation times, nested monitor calls, deadlocks, …
… simultaneous reading, queue management.

• Synchronization and object orientation, blocking operations and re-queuing.

• Message based synchronization

• Synchronization models, addressing modes, message structures
• Selective accepts, selective calls
• Indeterminism in message based synchronization

© 2003 Uwe R. Zimmer, International University Bremen Page 297 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Synchronization may lead to

☞ DEADLOCKS

… a closer look on deadlocks
and what can be done about them …

© 2003 Uwe R. Zimmer, International University Bremen Page 298 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Reserving resources in reverse order

var reserve_1, reserve_2: semaphore := 1;

process P1;
 statement X;

 wait (reserve_1);
 wait (reserve_2);
 statement Y; - employ resources
 signal (reserve_2);
 signal (reserve_1);

 statement Z;
end P1;

process P2;
 statement A;

 wait (reserve_2);
 wait (reserve_1);
 statement B; - employ resources
 signal (reserve_1);
 signal (reserve_2);

 statement C;
end P2;

Sequence of operations : [A | X] ➠ {[B ➠ Y] xor [Y ➠ B]} ➠ [C | Z]
or : [A | X] ➠ deadlocked!

© 2003 Uwe R. Zimmer, International University Bremen Page 299 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Circular dependencies

var reserve_1, reserve_2, reserve_3: semaphore := 1;

process P1;
 statement X;

 wait (reserve_1);
 wait (reserve_2);
 statement Y;
 signal (reserve_2);
 signal (reserve_1);

 statement Z;
end P1;

process P2;
 statement A;

 wait (reserve_2);
 wait (reserve_3);
 statement B;
 signal (reserve_3);
 signal (reserve_2);

 statement C;
end P2;

process P3;
 statement K;

 wait (reserve_3);
 wait (reserve_1);
 statement L;
 signal (reserve_1);
 signal (reserve_3);

 statement M;
end P3;

Sequence of operations : [A | X | K] ➠ {[B ➠ Y➠ L] xor …} ➠ [C | Z | M]
or : [A | X | K] ➠ deadlocked!

© 2003 Uwe R. Zimmer, International University Bremen Page 300 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously

2. Hold and wait:
a process applies for a resource, while it is holding another resource (sequential requests)

3. No pre-emption:
resources cannot be pre-empted; only the process itself can release resources

4. Circular wait:
a ring list of processes exists, where every process waits for release of a resource by the next one

☞ system may be deadlocked, when all these conditions apply!

© 2003 Uwe R. Zimmer, International University Bremen Page 301 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Deadlock strategies:

1. Ignorance
☞ Kill unresponsive processes

2.Deadlock detection & recovery
☞ find deadlocked processes and recover the system in a coordinated way

3.Deadlock avoidance
☞ the resulting system state is checked before any resources are actually assigned

4.Deadlock prevention
☞ the system prevents deadlocks by its structure

© 2003 Uwe R. Zimmer, International University Bremen Page 302 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Deadlock prevention
(remove one of the four deadlock conditions)

1. Mutual exclusion:
Applicable to specific cases only; usually this can only be removed by replication of resources.

2. Hold and wait:
Processes are forced to allocate all their required resources at once,
often at the time of admittance to the main dispatcher – done in many static realtime-systems.

3. No pre-emption:
If the current state of a resource can be stored and restored easily, then they can be pre-empted.
Usually resources are pre-empted from processes, which are currently not ready to run.

4. Circular wait:
A circular wait can be avoided by a global ordering of all resources, e.g. resources can only be
requested in a specific order – hard to maintain in a dynamic system configuration.

© 2003 Uwe R. Zimmer, International University Bremen Page 303 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

 ; vertices and edges

 ; vertices are processes or resource types:

 ; processes

 ; resource types

 ; claims, requests and assignments

 ; claims

 ; requests

 ; assignments

Note: a resourcefully may have more than one instance

Pi

Rj

Pi

Rj

Pi

Rj

holds

requests

claims

RAG V E,{ }=
V P R∪=

P P1 P2 … Pn, , ,{ }=
R R1 R2 …Rk, ,{ }=

E Er Ea Ec∪ ∪=

Ec Pi Rj …,→{ }=
Er Pi Rj …,→{ }=
Ea Ri Pj …,→{ }=

© 2003 Uwe R. Zimmer, International University Bremen Page 304 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

the two process, reverse allocation deadlock:
P1

R1

Rj

P2

R2

© 2003 Uwe R. Zimmer, International University Bremen Page 305 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Is this a deadlock situation? ☞
P1

R1

Rj

R3

P2

R2

P3

© 2003 Uwe R. Zimmer, International University Bremen Page 306 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

no, there is no circular dependency
P1

R1

Rj

R3

P2

R2

P3

© 2003 Uwe R. Zimmer, International University Bremen Page 307 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Is this a deadlock situation? ☞
P1

R1

Rj

R3

P2 P3

R2

© 2003 Uwe R. Zimmer, International University Bremen Page 308 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

yes, there are circular dependencies:

as well as:

☞ IF some processes are deadlocked, THEN
there are cycles in the resource allocation graph

P1

R1

Rj

R3

P2 P3

R2P1 R1 P2 R3 P3 R2 P1→ → → → → →

P2 R3 P3 R2 P2→ → → →

© 2003 Uwe R. Zimmer, International University Bremen Page 309 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Assuming all claims of are known in advance,

☞ Could the deadlock situation be avoided?

P1

R1

Rj

R3

P2 P3

R2

P3

© 2003 Uwe R. Zimmer, International University Bremen Page 310 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

yes, when resources are assigned so that there
are no resulting circular dependencies:

☞ in this case: assign to (instead of)

P1

R1

Rj

R3

P2 P3

R2

R3 P2 P3

© 2003 Uwe R. Zimmer, International University Bremen Page 311 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

as well as:

☞ ARE some processes deadlocked, IF
there are cycles in the resource allocation graph?

P1

R1

Rj

R3

P2 P3

R2

P1 R1 P2 R3 P3 R2 P1→ → → → → →

P2 R3 P3 R2 P2→ → → →

© 2003 Uwe R. Zimmer, International University Bremen Page 312 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

yes,
if there is only one instance per resource type:

☞ IF there are cycles in the
resource allocation graph

AND there is only one instance per resource type,
THEN some processes are deadlocked!

P1

R1

Rj

P2

R2

© 2003 Uwe R. Zimmer, International University Bremen Page 313 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

no,
if there is more than one instance

per resource type:

☞ IF there are cycles in the
resource allocation graph

AND there is more than one instance per resource
type, THEN some processes may be deadlocked!

P1

R1

Rj

R3

P2 P3

P4

R2

© 2003 Uwe R. Zimmer, International University Bremen Page 314 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

How to detect deadlocks
in the general case?
(of multiple instances per resource)

P1

R1

Rj

R3

P2 P3

R2

© 2003 Uwe R. Zimmer, International University Bremen Page 315 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Banker’s algorithm
There are processes and resource types in the system. Let and :

•
☞ the number of resources of type allocated by process .

•
☞ the number of available resources of type .

•
☞ the number of resources of type required by process to complete eventually.

•
☞ the number of currently requested resources of type by process .

Temporary variables:

• : boolean vector indicating processes, which may complete right now.

• : available resources, if some processes complete and de-allocate.

n m i 1…n∈ j 1…m∈

Allocated i j,[]
j i

Free j[]
j

Claimed i j,[]
j i

Request i j,[]
j i

Completed i[]
Simulated_Free j[]

© 2003 Uwe R. Zimmer, International University Bremen Page 316 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Banker’s algorithm
Checking for a deadlock situation

1. ; :

2.While :
 and : do: {request i can be granted}

 :

3. If : then the system is deadlock-free!
(otherwise all processes with are deadlocked)

Simulated_Free Free⇐ i∀ Completed i[] False⇐

i∃ Completed i[]¬
j∀ Requested i j,[] Simulated_Free j[]<

j∀ Simulated_Free j[] Simulated_Free j[] Allocated i j,[]+⇐
Completed i[] True⇐

i∀ Completed i[]
i Completed i[] False=

© 2003 Uwe R. Zimmer, International University Bremen Page 317 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Banker’s algorithm
Checking the current system state

1. ; :

2.While :
 and : do: {meaning process i can complete}

 :

3. If : then the system is safe!
(e.g. no process is currently deadlocked and no process can be deadlocked in any future state)

Simulated_Free Free⇐ i∀ Completed i[] False⇐

i∃ Completed i[]¬
j∀ Claimed i j,[] Simulated_Free j[]<

j∀ Simulated_Free j[] Simulated_Free j[] Allocated i j,[]+⇐
Completed i[] True⇐

i∀ Completed i[]

© 2003 Uwe R. Zimmer, International University Bremen Page 318 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Banker’s algorithm

Checking the validity of a resource request

If (Request < Claimed) and (Request < Free) then

 Free := Free - Request;
 Claimed := Claimed - Request;
 Allocated := Allocated + Request;

 ☞ Apply system state check (as above)
 If System_is_safe then

 ☞ Actually grant request
 else
 -- restore former system state (Free, Claimed, Allocated)

 end if;
end if;

© 2003 Uwe R. Zimmer, International University Bremen Page 319 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Deadlock recovery

☞ Stop or restart one or multiple of the deadlocked processes and reclaim its resources

☞ Pre-empt one of the involved resources (and restore an earlier state of the victim process)

Deadlock recovery does not deal with the source of the problem!
(the system may deadlock again right away)

☞ use deadlock prevention or deadlock avoidance instead

© 2003 Uwe R. Zimmer, International University Bremen Page 320 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Deadlocks
• Ignorance & recovery

• ☞ ‘kill some seemingly persistently blocked processes from time to time’ (exasperation)

• Deadlock detection & recovery

• ☞ multiple methods for detection, e.g. resource allocation graphs, Banker’s algorithm
• ☞ recovery is mostly ‘ugly’

• Deadlock avoidance

• ☞ check system safety before allocating resources, e.g. Banker’s algorithm

• Deadlock prevention

• ☞ eliminate one of the pre-conditions for deadlocks

© 2003 Uwe R. Zimmer, International University Bremen Page 321 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Purpose of scheduling
A scheduling scheme provides two features:

• Ordering the use of resources (e.g. CPUs, networks)
• Predicting the worst-case behaviour of the system

when the scheduling algorithm is applied
… in case that some or all information about the expected resource requests are known

A prediction can then be used

☞ at compile-run: to confirm the overall resource requirements of the application, or

☞ at run-time: to permit acceptance of additional usage/reservation requests.

© 2003 Uwe R. Zimmer, International University Bremen Page 322 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Criteria for scheduling methods

Performance criteria:
minimize the …

Predictability criteria:
minimize the diversion from given

 Process / user perspective:

Waiting time maximum / average / variance minimal and maximal waiting times

Response time maximum / average / variance minimal and maximal response times

Turnaround time maximum / average / variance deadlines

 System perspective:

Throughput
maximum / average / variance

of CPU time per process
—

Utilization CPU idle time —

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Time scales of scheduling

CPU
creation

batch ready

ready, suspended

blocked, suspended

blocked

pre-emption or cycle done

terminate.

block or synchronize

executingadmit

dispatch

suspend (swap-out)

swap-in

swap-out

unblock

suspend (swap-out)

Long-term

Short-term

Medium-term

© 2003 Uwe R. Zimmer, International University Bremen Page 324 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Example: Requested times

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 325 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

First come, first served (FCFS) – bad case: (arrival order: , ,)

Waiting time: 0…11; average: 5.95 – Turnaround time: 3…12; average: 8.47

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 326 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

First come, first served (FCFS) – nice case: (arrival order: , ,)

Waiting time: 0…11; average: 5.47 – Turnaround time: 3…12; average: 8.00

☞ The actual average waiting time for FCFS may vary here between: 5.47 and 5.95

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 327 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Round robin (RR) – pre-emption

Waiting time: 0…4; average: 1.21 – Turnaround time: 1…19; average: 5.63

☞ Waiting and average turnaround time is going down, but maximal turnaround time is going up

… assuming that task-switching is free and always possible

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 328 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Feedback with 2i pre-emption intervals – pre-emption

• implement multiple
hierarchical ready-queues

• fetch processes from the highest
filled ready queue

• dispatch more CPU time for lower
priorities (units)

☞ processes on lower ranks may
suffer starvation

☞ new and short tasks
will be preferred

C
PU

priority 0

priority 1

executingadmit

dispatch 20

priority i

dispatch 21

dispatch 2i

2i

© 2003 Uwe R. Zimmer, International University Bremen Page 329 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Feedback with 2i pre-emption intervals – pre-emption

Waiting time: 0…6; average: 1.79 – Turnaround time: 1…21; average 5.63

☞ less task switches than RR,
but long processes can suffer starvation!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 330 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Shortest job first (SJF) – Ci is known

Waiting time: 0…10; average: 3.47 – Turnaround time: 1…14; average: 6.00

☞ on average this is doing better than FCFS

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 331 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Highest response ratio first (HRRF) – Ci is known

Response ratio: – Waiting time: 0…9; average: 4.11 – Turnaround time: 1…13; average 6.63

☞ on average this is doing worse than SJF,
but the maximal waiting and turnaround times and variance might be reduced!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

Wi Ci+() Ci⁄

© 2003 Uwe R. Zimmer, International University Bremen Page 332 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Shortest remaining time first (SRTF) – Ci is known + pre-emption

Waiting time: 0…6; average: 1.05 – Turnaround time: 1…18; average 4.42

☞ on average this is doing better than FCFS, SJF or HRRF,
but the maximal turnaround time is going up and there are many task-switches!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 333 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Non-realtime scheduling methods

☞ CPU utilization: 100% in all cases.

☞ Pre-emptive methods perform better, assuming that the overhead is negligible.

☞ Knowledge of (computation times) has a significant impact on scheduler performance.

1 5 15 20 25 30 35 40 4510 50 t

FCFS

RR

FB 2i

SJF

HRRF

SRTF

Ci

© 2003 Uwe R. Zimmer, International University Bremen Page 334 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Selection
Pre-

emption

Waiting Turnaround Preferred
processes

Starvation
possible? in high load situations

FCFS no possibly long possibly long long no

RR equal share yes bound possibly long none no

Feedback priority queues yes short on average
very short on aver-

age, large maximum
short yes

SJF no short on average short on average short yes

HRRF no
short on average,

lower variance
short on average,

lower variance

balanced,
towards

short
no

SRTF yes
very short
on average

very short on aver-
age, large maximum

short yes

max Wi()

min Ci()

max
Wi Ci+

Ci

 
 
 

min Ci Ei–()

© 2003 Uwe R. Zimmer, International University Bremen Page 335 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Real-time scheduling

Towards predictable scheduling …

☞ Task behaviours are more specified (restricted).

☞ Task requirements from the operating systems are more specific.

☞ Task sets are often fully or mostly static.

☞ Sporadic and urgent requests (e.g. user interaction, alarms) need to be addressed.

¬ CPU-utilization and throughput (system oriented performance measures) are not important!

© 2003 Uwe R. Zimmer, International University Bremen Page 336 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Specifying timing requirements

Temporal scopes

Common attributes:
• Minimal & maximal

delay after creation

• Maximal elapsed time

• Maximal execution time

• Absolute deadline
Task i

t1 5 20 25 3010

deadline

execution time

min. delay
max. delay

activated

suspended

re-activated

terminated

created

elapse time

max. elapse time
max. exec. time

© 2003 Uwe R. Zimmer, International University Bremen Page 337 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Specifying timing requirements

Some common scope attributes
Temporal Scopes can be:

Deadlines (absolute, elapse, or execution time) can be:

Periodic – e.g. controllers, samplers, monitors

Aperiodic – e.g. ‘periodic on average’ tasks, burst requests

Sporadic / Transient – e.g. mode changes, occasional services

Hard – single failure leads to severe malfunction

Firm – results are meaningless after the deadline

– only multiple or permanent failures threaten the whole system
Soft

– results may still by useful after the deadline

© 2003 Uwe R. Zimmer, International University Bremen Page 338 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Real-time scheduling

A simple process model

• The number of processes in the system is fixed.

• All processes are periodic and all periods are known.

• All deadlines are identical with the process cycle times (periods).

• The worst case execution time is known for all processes.

• All processes are independent.

• All processes are released at once.

• The task-switching overhead is negligible.

☞ this model can only be applied to a specific group of hard real-time systems.
(extensions to this model will be discussed later in this chapter).

© 2003 Uwe R. Zimmer, International University Bremen Page 339 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Real-time scheduling

Introducing deadlines

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 340 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling

Earliest deadline first (EDF)
1. Determine (one of) the processe(s) with the closest deadline.

2. Execute this process

2-a until it finishes

2-b or until another process’ deadline is found closer then the current one.

☞ Pre-emptive scheme

☞ Dynamic scheme,
since the dispatched process is selected at run-time, due to the current deadlines.

© 2003 Uwe R. Zimmer, International University Bremen Page 341 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Earliest deadline first

1. Schedule the earliest deadline first

2. Avoid task switches (in case of equal deadlines)

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 342 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Earliest deadline first: Response times

worst case response times (maximal time in which the request from task is served):

☞ can be close or identical to deadlines.

☞ small or none spare capacity, if any task misses its expected computation time.

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

R
RR

Ri Ti

© 2003 Uwe R. Zimmer, International University Bremen Page 343 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Earliest deadline first: Maximal utilization

☞ maximal possible utilization: ☞ sufficient & necessary test!

with the computation and cycle times of task i
(the deadlines are assumed to be identical with the cycles times here)

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

Ci
Ti

i 1=

n

∑ 1≤

Ci Ti,
Di Ti

© 2003 Uwe R. Zimmer, International University Bremen Page 344 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling

Fixed Priority Scheduling (FPS), rate monotonic
1. Each process is assigned a fixed priority according to its cycle time :

2. At any point in time: dispatch the process with the highest priority

☞ Pre-emptive scheme

☞ Static scheme,
since the dispatch order of processes is fixed and calculated off-line.

• Rate monotonic ordering is optimal (in the framework of fixed priority schedulers),
i.e. if a process set is schedulable under a FPS-scheme,
then it is also schedulable by applying rate monotonic priorities.

Ti

Ti Tj< Pi Pj>⇒

© 2003 Uwe R. Zimmer, International University Bremen Page 345 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities

☞ assign task priorities according to the cycle times (identical to deadline).

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

����

3
2
1

Ti Di

© 2003 Uwe R. Zimmer, International University Bremen Page 346 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities

max. utilization test: ☞ sufficient, but not necessary test!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

����

3
2
1

Ci
Ti

i 1=

n

∑ N 2

1
N

1–
 
 
 
 

≤

© 2003 Uwe R. Zimmer, International University Bremen Page 347 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities

utilization test: ☞ not guaranteed!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

����

3
2
1

Ci
Ti

i 1=

n

∑ 1= 0.779 N 2

1
N

1–
 
 
 
 

≈>

© 2003 Uwe R. Zimmer, International University Bremen Page 348 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities (reduced requests)

max. utilization test:

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

3
2
1

Ci
Ti

i 1=

n

∑ N 2

1
N

1–
 
 
 
 

≤

© 2003 Uwe R. Zimmer, International University Bremen Page 349 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities (reduced requests)

☞ utilization: ; ☞ not guaranteed!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

3
2
1

6
16
------ 3

12
------ 1

4
---+ + 0.875= 0.779 3 2

1
3

1–
 
 
 
 

≈>
Ci
Ti

i 1=

n

∑ N 2

1
N

1–
 
 
 
 

≤

© 2003 Uwe R. Zimmer, International University Bremen Page 350 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities (further reduced requests)

☞ utilization: ; ☞ guaranteed!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

3
2
1

4
16
------ 3

12
------ 1

4
---+ + 0.75= 0.779 3 2

1
3

1–
 
 
 
 

≈≤
Ci
Ti

i 1=

n

∑ N 2

1
N

1–
 
 
 
 

≤

© 2003 Uwe R. Zimmer, International University Bremen Page 351 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ calculate the worst case response times for each task individually.

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

3
2
1

© 2003 Uwe R. Zimmer, International University Bremen Page 352 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ for the highest priority task:

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R3

3
2
1

R3 C3=

© 2003 Uwe R. Zimmer, International University Bremen Page 353 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ for other tasks: = computation + interference

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R1

3
2
1

Ri Ci Ii+= Ci Ii

© 2003 Uwe R. Zimmer, International University Bremen Page 354 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

for other tasks:

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R1

3
2
1

Ri Ci
Ri

Tj
----- Cj

j i>
∑+=

© 2003 Uwe R. Zimmer, International University Bremen Page 355 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis

☞ fixed-point equation!

☞ form recurrent equation: (1)

☞ starting with

☞ Iterate (1) until or

Ri Ci
Ri

Tj
----- Cj

j i>
∑+=

Ri
k 1+ Ci

Ri
k

Tj
------ Cj

j i>
∑+=

Ri
0 Ci=
Ri

k 1+ Ri
k

= Ri
k 1+ Ti>

© 2003 Uwe R. Zimmer, International University Bremen Page 356 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis

The worst case for EDF is not necessarily when all tasks are released at once!

☞ all possible combinations in a full hyper -cycle need to be considered!

• The response times are bounded by the cycle times as long as the maximal utilization is ≤ 1.

• Other tasks need to be considered only, if their deadline is closer or equal to the current task.

© 2003 Uwe R. Zimmer, International University Bremen Page 357 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis

☞ (2)

☞ starting with

☞ Iterate (2) until

☞ ; where

Ri a() a
Ti
---- 1+ Ci

Ri a()
Tj

------------- 0
a T+ i Tj–

Tj
-------------------------, 1+

 
 
 

max

,
 
 
 

min

Cj
j i≠
∑+=

Ri
k 1+ a() a

Ti
---- 1+ Ci

Ri
k a()
Tj

-------------- 0
a T+ i Tj–

Tj
-------------------------, 1+

 
 
 

max

,
 
 
 

min

Cj
j i≠
∑+=

Ri
0 a() a C+ i=
Ri

k 1+ a() Ri
k a()=

Ri Ri a() a–{ }max a A∈= A scm Ti{ }=

© 2003 Uwe R. Zimmer, International University Bremen Page 358 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ ; ; ; and

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R1

3
2
1

R3
R2

Ri Ci
Ri

Tj
----- Cj

j i>
∑+= R3 1 ✔= R2 4 ✔= R1 10 ✔=

Ci

Ti

i 1=

n

∑ N 2

1
N

1–
 
 
 

✔≤

© 2003 Uwe R. Zimmer, International University Bremen Page 359 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (reduced requests)

☞ ; ; ; but

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

R1

3
2
1

R3
R2

Ri Ci
Ri

Tj
----- Cj

j i>
∑+= R3 1 ✔= R2 4 ✔= R1 12 ✔=

Ci

Ti

i 1=

n

∑ N 2

1
N

1–
 
 
 

✖>

© 2003 Uwe R. Zimmer, International University Bremen Page 360 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (full requests)

☞ ; ; ; and

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

����

3
2
1

Ri Ci
Ri

Tj
----- Cj

j i>
∑+= R3 1 ✔= R2 4 ✔= R1 19 ✖=

Ci

Ti

i 1=

n

∑ N 2

1
N

1–
 
 
 

✖>

© 2003 Uwe R. Zimmer, International University Bremen Page 361 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis (full requests)

☞ testing all combinations in a hyper-period: LCM of — here: 48

: = ; : = ; : =

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

R
R

R

Ti{ }

R 16 16 ✔≤ T R 12 12 ✔≤ T R 4 4 ✔≤ T

© 2003 Uwe R. Zimmer, International University Bremen Page 362 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis (reduced requests)

☞ relaxed task-set changes:

: = ; : = ; : =

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

R RR

R 16 12→ 16 ✔≤ T R 12 8→ 12 ✔≤ T R 4 1→ 4 ✔≤ T

© 2003 Uwe R. Zimmer, International University Bremen Page 363 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis (further reduced requests)

☞ further relaxed task-set changes:

: = ; : = ; : =

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R RR

R 12 10→ 16 ✔≤ T R 8 6→ 12 ✔≤ T R 1 1→ 4 ✔≤ T

© 2003 Uwe R. Zimmer, International University Bremen Page 364 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Real-time scheduling

Response time analysis (comparison)

Fixed Priority Scheduling Earliest Deadline First

utilization
test

response
times

utilization
test

response
times

✖ (1.000) ✔ (1.000)

✖ (0.875) ✔ (0.875)

✔ (0.750) ✔ (0.750)

check full
hyper-cycle

Ri{ } Ri{ }

Ti Ci,(){ } 16 8,() 12 3,() 4 1,();;{ }= ✖ 4 1, ,{ } 16 12 4, ,{ }

Ti Ci,(){ } 16 6,() 12 3,() 4 1,();;{ }= 12 4 1, ,{ } 12 8 1, ,{ }

Ti Ci,(){ } 16 4,() 12 3,() 4 1,();;{ }= 10 4 1, ,{ } 10 6 1, ,{ }

Ci
Ti

i 1=

n

∑ N 2

1
N

1–
 
 
 
 

≤ Ci
Ri
Tj
----- Cj

j i>
∑+

Ci
Ti

i 1=

n

∑ 1≤

© 2003 Uwe R. Zimmer, International University Bremen Page 365 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Real-time scheduling

Fixed Priority Scheduling ↔ Earliest Deadline First

• EDF can handle higher (full) utilization than FPS.

• FPS is easier to implement and implies less run-time overhead

• Graceful degradation features (resource is over-booked):

• FPS: processes with lower priorities will always miss their deadlines first.
• EDF: any process can miss its deadline ☞ and can trigger a cascade of failed deadlines.

• Response time analysis and utilization tests:

• FPS: O(n) utilization test — response time analysis: fixed point equation
• EDS: O(n) utilization test — response time analysis: fixed point equation in hyper-cycle

© 2003 Uwe R. Zimmer, International University Bremen Page 366 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Extensions which we will introduce:

• tasks are periodic
☞ we will introduce sporadic and aperiodic processes

• tasks are independent
☞ we will introduce schedules for interacting tasks

• deadlines are identical with task’s period time
☞ Real-time course

• pre-emptive scheduling
☞ Real-time course

• worst case execution times are known
☞ Real-time course

D T=()

© 2003 Uwe R. Zimmer, International University Bremen Page 367 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling — real-world considerations

… including

aperiodic, sporadic & ‘soft’ real-time tasks

© 2003 Uwe R. Zimmer, International University Bremen Page 368 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Hard real-time tasks

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(Ti,Ci)

(16,7)

3
2

© 2003 Uwe R. Zimmer, International University Bremen Page 369 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Introducing soft real-time tasks

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,)

(

T

i

,

C

i

)

(16,7)

3
2
12

© 2003 Uwe R. Zimmer, International University Bremen Page 370 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Introducing soft real-time tasks

☞

set can be scheduled using average computation and period times

☞

hard real-time tasks can be scheduled under worst case conditions
(including worst case behaviours of soft real-time tasks)

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,)

(

T

i

,

C

i

)

(16,7)

����

3
2
12

© 2003 Uwe R. Zimmer, International University Bremen Page 371 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: FPS, rate monotonic + server

Introducing a server task

Server is established at a high priority

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(

T

i

,

C

i

)

(16,8)

(8,2)

3
2
1

© 2003 Uwe R. Zimmer, International University Bremen Page 372 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: FPS, rate monotonic + server

Introducing a server task: Deferrable Server

☞

Deferrable Server (DS): Capacity replenished every

T

s

 (here: 8)

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,)

(

T

i

,

C

i

)

(16,8)

����

 -2

(8,2)

3
2
1

© 2003 Uwe R. Zimmer, International University Bremen Page 373 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: FPS, rate monotonic + server

Introducing a server task: Sporadic Server

☞

Sporadic Server (SS): Capacity replenished

T

s

 units after

t

s

☞

 POSIX

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,)

(

T

i

,

C

i

)

(16,8)

����

 -2

(8,2)

3
2
1

t

s

t

s

t

s

t

s

t

s

t

s

© 2003 Uwe R. Zimmer, International University Bremen Page 374 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), dual-priorities

Introducing dual priorities

☞

start hard rt-tasks in low priorities; promote them in time to higher ones

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(

T

i

,

C

i

)

(16,8)

����

3
2
1

4

(12,) 2

(4,1)

(16,8)

5

© 2003 Uwe R. Zimmer, International University Bremen Page 375 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First+ aperiodic server

Introducing a server task to EDF

1 5 15 20 25 30 35 40 4510 50 t

 (4,1)

(

T

i

,

C

i,

D

i

)

(16,8)

(8,2,2)

Server

Hard
RT

© 2003 Uwe R. Zimmer, International University Bremen Page 376 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First + aperiodic server

Introducing a server task to EDF

1 5 15 20 25 30 35 40 4510 50 t

 (4,1)

(12,)

(16,8)

����

Server

2

(8,2,2)

Hard
RT

Sporadic

(

T

i

,

C

i,

D

i

)

© 2003 Uwe R. Zimmer, International University Bremen Page 377 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First + aperiodic tasks

Switching between EDF & Earliest Deadline Last (EDL)

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,)

(

T

i

,

C

i

)

(16,8)

����

2

Hard
RT

Sporadic

EDLEDL

© 2003 Uwe R. Zimmer, International University Bremen Page 378 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling — real-world considerations

… including

 task interdependencies

© 2003 Uwe R. Zimmer, International University Bremen Page 379 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

Schedule for independent tasks

(independent task set)

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

© 2003 Uwe R. Zimmer, International University Bremen Page 380 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

Synchronized via lock

(interdependent task set

☞

 lock shared between and)

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

 Lock

© 2003 Uwe R. Zimmer, International University Bremen Page 381 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

Synchronized via lock

☞

 Priority inversion

(interdependent task set

☞

 lock shared between and)

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

 Lock

���� ����

© 2003 Uwe R. Zimmer, International University Bremen Page 382 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

Priority inheritance

Task inherits the priority of , if:

 1.

2.

task has locked a resource

3.

task is blocked waiting for resource to be released

ti tj

Pi Pj<

ti Q

tj Q

© 2003 Uwe R. Zimmer, International University Bremen Page 383 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

Priority inheritance

Maximal blocking time for task :

• with the number of critical sections

• a boolean

(0/1)

 function indicating that

r

is used by
at least one with and at least one with

• is the worst case computation time in critical section

a task can only be blocked once for each employed resource!

ti
B

i

usage r i

,()

C r

()

r

1

=

R

 ∑
=

R

usage r i,()
tj Pj Pi< tk Pk Pi≥

C r() r

© 2003 Uwe R. Zimmer, International University Bremen Page 384 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

Priority inheritance

(inherits priority of , when is in lock and is dispatched)

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

 Lock

���� ��������

© 2003 Uwe R. Zimmer, International University Bremen Page 385 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

A more complex example

(independent task set)

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

© 2003 Uwe R. Zimmer, International University Bremen Page 386 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

Interdependencies

☞ Priority inversion

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

Lock 1

��������

Lock 2

����

© 2003 Uwe R. Zimmer, International University Bremen Page 387 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

Priority inheritance

(and inherit priority of , when in lock and is dispatched)

no improvement!

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

Lock 1

��������

Lock 2

����

© 2003 Uwe R. Zimmer, International University Bremen Page 388 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

One additional lock request

☞ Deadlock

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

Lock 1

��������

Lock 2

�������� ���� ���� ���� ���� ���� ���� ���� �������� ���� ���� ���� ��������

© 2003 Uwe R. Zimmer, International University Bremen Page 389 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies: Priority ceiling protocols

Immediate ceiling priority protocol (POSIX, Ada, RT-Java)

• Each task has static default priority .

• Each resource (lock, monitor) has a static ceiling priority , which is
the maximum of priorities of the tasks which employ this resource.

• Each task has a dynamic priority , which is the maximum of its own
static priority and the ceiling priorities of any resource it has locked.

ti Pi

Rk Ck
ti

Ck max employ i k,() Pi⋅{ }i=

ti Pi
D

Pi
D max Pi max locked i k,() Ck⋅{ }k,{ }=

© 2003 Uwe R. Zimmer, International University Bremen Page 390 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies: Priority ceiling protocols

Immediate ceiling priority protocol (POSIX, Ada, RT-Java)

(, and inherit the ceiling priority of or when entering the lock)

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

Lock 1

��������

Lock 2

��������

© 2003 Uwe R. Zimmer, International University Bremen Page 391 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies: Priority ceiling protocols

Immediate ceiling priority protocol (POSIX, Ada, RT-Java)

☞ Tasks are dispatched only if all employed resources are available.

☞ Deadlocks are prevented

☞ Number of context switches is reduced

© 2003 Uwe R. Zimmer, International University Bremen Page 392 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies: Priority ceiling protocols

Immediate ceiling priority protocol (POSIX, Ada, RT-Java)

Maximal blocking time:

• with the number of critical sections

• a boolean (0/1) function indicating that r is used by
at least one with and at least one with

• is the worst case computation time in critical section

a task can only be blocked once by any lower priority task!

Bi max usage r i,() C r()⋅{ }R
r 1==

R

usage r i,()
tj Pj Pi< tk Pk Pi≥

C r() r

© 2003 Uwe R. Zimmer, International University Bremen Page 393 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Scheduling
• Basic performance based scheduling

• is not known: first-come-first-served (FCFS), round robin (RR),
and feedback-scheduling

• is known: shortest job first (SJF), highest response ration first (HRRF),
shortest remaining time first (SRTF)-scheduling

• Basic predictable scheduling

• Fixed Priority Scheduling (FPS) with Rate Monotonic (RMPO)
• Earliest Deadline First (EDF)

• Real-world extensions

• Aperiodic, sporadic, soft real-time tasks
• Synchronized talks (priority inheritance, priority ceiling protocols)

Ci

Ci

© 2003 Uwe R. Zimmer, International University Bremen Page 394 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Processes
• Processes and threads

• Architectures, definitions, process states

• Synchronization

• Shared memory based synchronization
• Message based synchronization

• Deadlocks

• Detection, avoidance, and prevention (& recovery)

• Scheduling

• Basic performance based scheduling
• Basic predictable scheduling
• Aperiodic, sporadic, and synchronized tasks

