

4

Memory

Uwe R. Zimmer – International University Bremen

432

© 2003 Uwe R. Zimmer, International University Bremen Page 396 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

References for this chapter

[Silberschatz01] – Chapter 9,10

Abraham Silberschatz, Peter Bear Galvin,
Greg Gagne

Operating System Concepts

John Wiley & Sons, Inc., 2001

[Stallings2001] – Chapter 7,8

William Stallings

Operating Systems

Prentice Hall, 2001

all references and some links are available on the course page

© 2003 Uwe R. Zimmer, International University Bremen Page 397 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory

Memory levels and fragments

Basic memory hierarchy

CPU

Register set

Level 1 cache

Level 2 cache

I/O

Disks

< 1 ns

< 1-2 ns

< 4 ns> 512 KB

> 64 KB

> 1 KB

< 8 ms> 60 GB

Typical memory sizes Typical access times

ROM RAM RAM V-RAM I/O

© 2003 Uwe R. Zimmer, International University Bremen Page 398 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory

What is the challenge?

• Main memory is too small (regardless how large it is)

☞

The operating system needs to place (parts of) processes in and out
of main memory during the life-time of the system.

• Swapping memory blocks between primary and secondary memory
is an extremely slow operation.

☞

The operating system needs to supply highly efficient strategies
to avoid system stalls or unacceptable delays.

© 2003 Uwe R. Zimmer, International University Bremen Page 399 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory

Goals / optimization criteria

• Supply address spaces, which are independent from the physically available address space.

• Supply multiple memory modes, e.g. allow processes to reside permanently in main memory

• Support for multiple address spaces

• Protection between address spaces

• Supply methods to share address spaces

• Support memory based I/O methods

• Allow for predictable behaviours of memory accesses

• Minimize any overhead for memory accesses and program executions

© 2003 Uwe R. Zimmer, International University Bremen Page 400 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory

Required support

•

Relocation

Assembler level addressing modes as well as compilers and linkers
need to support relocatable programs and data structures.

•

Protection

Memory protection needs hardware support, since the operating system itself has
no knowledge which memory cells will be addressed by a specific process next.

•

Sharing

The protection scheme needs to be flexible enough to allow for shared memory areas.

•

Control of secondary memory

Since swapping speeds between primary and secondary memory is a critical factor,
the operating system needs to have close access to the secondary memory interface.

•

Project logical structures to memory modules

 (optional)
It might be useful to supply addressing modes, which allow the
use of logical structures in the programs itself as the basis for memory structuring.

© 2003 Uwe R. Zimmer, International University Bremen Page 401 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Process Mapping

Pros Cons

simple internal & strong
external fragmentation

no internal
fragmentation

strong
external fragmentation

no internal
fragmentation

external
fragmentation

no external
fragmentation

a small amount of
internal fragmentation

Process

Segments

Pages

Dynamic
partitions

Static
partitions

realtime only

© 2003 Uwe R. Zimmer, International University Bremen Page 402 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Virtual addressing

The step from pagination/segmentation to

Virtual addressing

Segmentation / Paging:

• all memory references are logical addresses

• there is support to translate logical to physical addresses at run-time

• processes may be moved in memory and suspended to or loaded from secondary storage

• processes are divided in pages or segments (or both)

• pages or segments can be loaded in any order into primary memory
(i.e. they need not to be dense or in sequence)

☞

 Virtual addressing:

• not all pages or segments need to be loaded in order to run a process

© 2003 Uwe R. Zimmer, International University Bremen Page 403 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

MMU

Translating virtual to physical addresses

MMU

1.

Translate virtual to physical addresses

without any delay in most cases.

2.

Provide memory protection

according to the attributes, which are
attached to individual memory areas
in form of page or segment descriptors.

CPU MMU

Disk

Misses

Loading page/
segment/

descriptor table

M
ai

n
 m

em
o

ry

© 2003 Uwe R. Zimmer, International University Bremen Page 404 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory – Segmentation

• Segment lengths is stored in
segment table

☞

 needs to be
evaluated by the memory
protection unit.

• Segment base address and
offset need to be added.

• Parts of segment tables as well
as segments themselves can
be suspended to secondary
memory.

e.g. Intel x86

Seg. table base

Seg # Offset

+
Seg.
table

Segmentation Physical memory

Seg-
ment

+

DiskSegment fault
Load segment

Disk

Segment table fault

Load page table

© 2003 Uwe R. Zimmer, International University Bremen Page 405 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory – Paging

• Page frame address and
address offset can be
concatenated.

• Parts of page tables as well
as pages themselves can
be suspended to secondary
memory (into ‘frames’).

• Page tables would be very
large for modern processors
(32-64bit addressing)

not implemented
in this pure form.

Page. table base

Page # Offset

+ OffsetFramePage
table

Paging Physical memory

Page
frame

DiskPage fault
Load page

Disk

Page table fault

Load page table

© 2003 Uwe R. Zimmer, International University Bremen Page 406 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory – Multi stage page tables

• Reducing
page table
sizes

• Up to four
page levels
(Sparc)

• More
memory
accesses
required.

Sparc, PowerPC,
Alpha, HP

+Root. table base

Page # Page # Offset

+ OffsetFramePage
table

Root page
table

Paging Physical memory

Page
frame

DiskPage fault
Load page

Disk

Page table fault

Load page table

© 2003 Uwe R. Zimmer, International University Bremen Page 407 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory – Segmentation & Paging

• Allow
segmentation
for logical
structure

• Allow
paging for
effective
virtual
memory
management

x86, (PowerPC)

+Seg. table base

Seg # Page # Offset

+ OffsetFramePage
table

Segment
table

Segmentation Paging Physical memory

Page
frame

DiskPage fault
Load page

Disk

Page table fault

Load page table

© 2003 Uwe R. Zimmer, International University Bremen Page 408 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory – Translation look aside buffers

• Accessing page tables for
each access is ineffective.

☞

Introducing address
translation caches:

Translation look aside
buffers (tlb).

• Access
cache (tlb) - memory -
disk (in this order) for
address translation

all modern MMUs

Page # Offset

OffsetFrame

Paging Physical memory

Page
frame

Disk
Load page

Translation
look aside buffer

TLB miss

+
Page
table

Disk

Page table fault

Load page table

Pa
ge

. t
ab

le
 b

as
e

© 2003 Uwe R. Zimmer, International University Bremen Page 409 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory – Inverted page tables

• Forward page tables grow with the size of the
virtual address space.

• The number of loaded pages is bound by the
physical memory.

☞

Keep only the loaded pages in the page table
and resolve the virtual addresses via a
hash table:

☞

 Inverted page tables (ipt)

• IPTs are not suspended to secondary
memory, but more than one access is
required to translate the page number.

not implemented in this pure form.

Page # Offset

f

OffsetFrameInverted page
table

Paging Physical memory

Page
frame

DiskPage fault
Load page

Hashing function

© 2003 Uwe R. Zimmer, International University Bremen Page 410 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory – Translation look aside & Inverted page tables

• Combining translation
look aside buffers and
inverted page tables.

• Mostly no delay
(look aside buffer).

• Short delay if tlb misses
(inverted page table).

• No page table loading.

PowerPC, UltraSparc

Page # Offset

f

OffsetFrameInverted page
table

Paging Physical memory

Page
frame

DiskPage fault
Load page

Hashing function

Translation
look aside buffer

TLB miss

© 2003 Uwe R. Zimmer, International University Bremen Page 411 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Addressing

Some current MMU implementations
Physical

addresses
Virtual

addresses
TLB size Segments Pages

Inverted/hashed
tables

Pentium 4 36bit 32bit
(per segment)

64
different

types
4k, 4M
(optional)

-

Itanium 2 50bit 64bit 4*32 - 4k … 4G -

Power PC 604 32bit 52bit 256
< 256MB,
(optional)

4 k yes

Power PC 970 42bit 64bit 1024
< 256MB,
(optional)

4 k yes

UltraSparc 36bit 64bit 64 - 8k … 4M yes

Alpha 41bit 64bit 256 - 8k … 4M -

© 2003 Uwe R. Zimmer, International University Bremen Page 412 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Design alternatives

• Employ virtual memory in the first place?

• Employ segmentation, pagination, or a combination of those?

• Which algorithms should be applied to answer:

• when to load a page/segment? ☞ fetching
• where to place a page/segment? ☞ placement
• which page/segment to suspend? ☞ replacement
• how many pages/segments to load for a specific process? ☞ resident set management
• when to suspend a page/segment? ☞ cleaning
• which processes to run/suspend? ☞ load control

© 2003 Uwe R. Zimmer, International University Bremen Page 413 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Fetching
• Demand paging:

Fetch pages only if and exactly when requested by a reference to an address inside this page.

☞ may lead to a burst of page faults in some situations (e.g. starting a process).

☞ reduces the transfer between primary and secondary storage to a minimum.

• Prepaging:

Predict which pages will also be required in the near future and pre-load them
(together with the currently requested page).

☞ pages may be loaded, which will be never referenced

☞ multiple page loads can be more efficient if organized as a few transfers of a larger blocks

© 2003 Uwe R. Zimmer, International University Bremen Page 414 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Fetching
• Demand paging:

Fetch pages only if and exactly when requested by a reference to an address inside this page.

☞ may lead to a burst of page faults in some situations (e.g. starting a process).

☞ reduces the transfer between primary and secondary storage to a minimum.

• Prepaging:

Predict which pages will also be required in the near future and pre-load them
(together with the currently requested page).

☞ pages may be loaded, which will be never referenced

☞ multiple page loads can be more efficient if organized as a few transfers of a larger blocks

MM oo ss tt ss yy ss tt ee mm ss ww ii ll ll

cc oo mm bb ii nn ee bb oo tt hh pp uu rr ee ff oo rr mm ss

© 2003 Uwe R. Zimmer, International University Bremen Page 415 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Placement

☞ Required for partition or pure segmentation systems

apply standard ‘best-fit’, ‘first-fit’, etc. strategies to minimize fragmentation
– there is a trade-off between minimal fragmentation and minimal placement overhead

☞ Irrelevant for all paging or mixed segmentation/paging systems

external fragmentation is not an issue here

© 2003 Uwe R. Zimmer, International University Bremen Page 416 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Replacement
In order to load a new page, another page need to be suspended ☞ which one?

• Optimal:
the page which will not be referenced for the longest period of future time

• Least Recently Used (LRU):
the page which has not be referenced for the longest period of past time

• First-In-First-Out (FIFO):
the page which resides in primary memory for the longest period of past time

© 2003 Uwe R. Zimmer, International University Bremen Page 417 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Replacement
The practical implementation aspect of replacement algorithms:

• Optimal:
☞ can only be implemented, if all future memory references are known ☞ ✘

• Least Recently Used (LRU):
☞ can only be implemented, if all past access times/order are known ☞ check hardware support

• First-In-First-Out (FIFO):
☞ can be implemented without any hardware support ☞ ✔

© 2003 Uwe R. Zimmer, International University Bremen Page 418 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Replacement
Full LRU implementations:

• Counter or time-of-access field in the page table:
Update this entry with each reference to this page

☞ need to be supplied by hardware (not implemented in any practical system)

• Page stack:
bring a reference to the page on top of a stack with each access to this page
(and replace the pages at the bottom of the stack)

☞ need to be supplied by hardware (not implemented in any practical system)

© 2003 Uwe R. Zimmer, International University Bremen Page 419 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Replacement
LRU-approximations:

• Reference-bit-shift-history algorithm:

Shift the reference bit of each page into a bit-field () in each page table entry
at regular intervals (employing a timer-interrupt).
Interpret the resulting bit-field as an integer and replace the page with the smallest value

☞ requires a reference-bit, which is updates by hardware, as well as a hardware timer
(usually provided).

© 2003 Uwe R. Zimmer, International University Bremen Page 420 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Replacement
LRU-approximations:

• Second-chance (clock) algorithm:

Implement a circular list of all pages. Search the list for a not referenced page:

WHILE page was referenced DO
 reset reference bit and proceed to next page
END WHILE

☞ requires a reference-bit, which is updates by hardware (usually provided).

next check

referenced not referenced

© 2003 Uwe R. Zimmer, International University Bremen Page 421 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Replacement
LRU-approximations:

• Enhanced second-chance (clock) algorithm:

Replace pages applying the priorities:

• not referenced (first scan)
• referenced-but-not-modified (second scan)
• referenced-and-modified

☞ requires a reference and a modified-bit, which is updates by hardware (usually provided).

next check

referenced modified

© 2003 Uwe R. Zimmer, International University Bremen Page 422 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Replacement
Performances:

• Optimal:
obviously the best algorithm — impossible to implement

• Least Recently Used (LRU):
good approximation of the optimal algorithm — cannot be implemented in any current system

• Approximated Least Recently Used (LRU):
approximates the performance of LRU — can be implemented in most systems

• First-In-First-Out (FIFO):
performs worst — can be implemented in any system

© 2003 Uwe R. Zimmer, International University Bremen Page 423 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Resident set management
How many pages are assigned to a specific process:

• too many:

• the number of resident processes is reduced
• due to localities, there is no noticeable speed-up for the specific process

• too few:

• significant increase in the page-fault rate

☞ Challenge: find the essential working set of pages for each process at any given time

© 2003 Uwe R. Zimmer, International University Bremen Page 424 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Resident set management
Strategies:

• Number of allocated pages per process can be

• fixed
• or variable

• Replacement can be either

• local (inside each process’ page set) – only possibility for fixed allocation scenes
• prioritized (allow higher priority processes to expand their page sets)
• or global (replace pages regardless of the processes which are using them)

© 2003 Uwe R. Zimmer, International University Bremen Page 425 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Resident set management
☞ Challenge:

find the essential working page set for each process at any given time

• Calculating the optimal working set, required full knowledge of the future process behaviour

• Many approximations are suggested (and implemented), mostly employing:

Page Fault Frequencies (PFF)
or related statistical information on the past process behaviour

Problems:
• “the past does not always predict the future”

i.e. multiple locality assumptions must hold

© 2003 Uwe R. Zimmer, International University Bremen Page 426 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Cleaning
• Demand cleaning:

Clean pages only if and exactly when a free pages is required.

☞ slows down process reaction times, since each page fault will result in a page cleaning.

☞ reduces the total transfer between primary and secondary storage to a minimum.

• Precleaning:

Clean multiple pages according to replacement criteria introduced above
before a page fault occurs.

☞ too many pages might be cleaned, resulting in an increase of page faults

☞ multiple page cleanings can be more efficient if organized as a few transfers of a larger blocks

© 2003 Uwe R. Zimmer, International University Bremen Page 427 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Cleaning
• Demand cleaning:

Clean pages only if and exactly when a free pages is required.

☞ slows down process reaction times, since each page fault will result in a page cleaning.

☞ reduces the total transfer between primary and secondary storage to a minimum.

• Precleaning:

Clean multiple pages according to replacement criteria introduced above
before a page fault occurs.

☞ too many pages might be cleaned, resulting in an increase of page faults

☞ multiple page cleanings can be more efficient if organized as a few transfers of a larger blocks

MM oo ss tt ss yy ss tt ee mm ss ww ii ll ll

cc oo mm bb ii nn ee bb oo tt hh pp uu rr ee ff oo rr mm ss

© 2003 Uwe R. Zimmer, International University Bremen Page 428 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Load Control
How many processes will be resident in primary memory?

• More processes in primary memory implies less pages per process

• Beyond a critical threshold of pages per process, the page fault rate rises significantly

☞ Thrashing occurs

• The overall performance of the system is approaching nil,
since most of the time is spent for page loads

☞ Reduce the number of resident processes immediately

© 2003 Uwe R. Zimmer, International University Bremen Page 429 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Load Control

Which process is to be suspended?

• Lowest priority process

• Process with the highest page fault frequency

• Process with the smallest current resident page set

• Process with the largest current resident page set

• Last activated process

• Process with the largest remaining execution time (see scheduling)

© 2003 Uwe R. Zimmer, International University Bremen Page 430 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Design alternatives

• Employ virtual memory in the first place?

• Employ segmentation, pagination, or a combination of those?

• Which algorithms should be applied to answer:

• when to load a page/segment? ☞ fetching
• where to place a page/segment? ☞ placement
• which page/segment to suspend? ☞ replacement
• how many pages/segments to load for a specific process? ☞ resident set management
• when to suspend a page/segment? ☞ cleaning
• which processes to run/suspend? ☞ load control

© 2003 Uwe R. Zimmer, International University Bremen Page 431 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Design alternatives

• Employ virtual memory in the first place?

• Employ segmentation, pagination, or a combination of those?

• Which algorithms should be applied to answer:

• when to load a page/segment? ☞ fetching
• where to place a page/segment? ☞ placement
• which page/segment to suspend? ☞ replacement
• how many pages/segments to load for a specific process? ☞ resident set management
• when to suspend a page/segment? ☞ cleaning
• which processes to run/suspend? ☞ load control

Real-tim
e / predictable systems:

no virtual memory!

© 2003 Uwe R. Zimmer, International University Bremen Page 432 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Memory
• Requirements & hardware structures

• MMU features & requirements

• Partitioning, segmentation, paging & virtual memory

• Simple segmentation
• Simple paging, multi-level paging, combined segmentation & paging
• Translation look aside buffers
• Hashed tables, Inverted page tables

• Virtual memory management algorithms

• Fetching & placement
• Replacement
• Resident set management
• Cleaning
• Load control

