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what is offered here?

 

Overviews, Paths, Definitions, Terminology, 
   Foundations, Methods, Algorithms
      Realities, 
         Current research trends, Projects,
            Perspectives, 
               … and some theory

 

into/for/about

 

 Operating Systems & Networks
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who could be interested in this?

 

anybody who …

… would like to see 
how rich, diverse and deep the real world of operating systems goes

… would like to learn how to create predictability 
and fault-tolerant operating systems

… would like to know more about the usage of 
95% of all µprocessors (and thus operating systems)
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who are these people? – introduction

 

This course will be given by

 

Holger Kenn

 

 for the networks sections

 

and

 

Uwe R. Zimmer 

 

for the operating systems sections
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how will this all be done?

 

☞

 

Lectures (

 

320-202

 

):

 

• 2 per week … all the nice stuff and theory 
Tuesday, 8:00-9:15; Friday, 11-12:15 – all in Conrad Naber lecture hall 

 

☞

 

Labs (Advanced CS lab), independent course, but related (

 

320-222

 

):

 

• 2 sessions per week … all the rough stuff and practice
Monday 15:30-19:30; Tuesday 15:30-19:30

 

☞

 

Resources:

 

• introduced in the lectures and collected on the course page: 

 

http://www.faculty.iu-bremen.de/course/FundCS2/

 

… as well as schedules, slides, code, etc. pp. … keep an eye on these pages!

 

☞

 

Assessment:

 

• Two exams, 50% each, one oral exam, one written exam – assignments for self-checking

 

© 2003 Uwe R. Zimmer, International University Bremen Page 6 of 432 (chapter 0: to 12)

Real-Time & Embedded SystemsOperating Systems & Networks

 

Topics in operating systems

 

1.

 

    Introduction 

 

2.

 

        Hardware basics

 

3.

 

            Processes

 

4.

 

                Memory management
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Table of contents

 

2. Hardware Fundamentals

 

• General computer architecture

• CPU

 

• Registers
• Traps/Interrupts & protected modes

 

• Memory

 

• General memory layout
• Caching

 

• I/O systems

 

• I/O controllers, I/O buses, device programming

 

• Some examples of µprocessors

 

• Small scale µcontroller (68HC05)
• Full scale integrated processor (MCP565)
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Table of contents

 

3. Processes

 

• Processes and threads

 

• Architectures, definitions, process states

 

• Synchronization

 

• Shared memory based synchronization
• Message based synchronization

 

• Deadlocks

 

• Detection, avoidance, and prevention (& recovery)

 

• Scheduling

 

• Basic performance based scheduling
• Basic predictable scheduling
• Aperiodic, sporadic, and synchronized tasks
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Table of contents

 

3.1 Synchronization methods

 

• Shared memory based synchronization

 

• Semaphores 

 

☞

 

 ‘C’, POSIX — Dijkstra
• Conditional critical regions

 

☞

 

 Edison (experimental)
• Monitors 

 

☞

 

 Modula-1, Mesa — Dijkstra, Hoare, …
• Mutexes & conditional variables 

 

☞

 

 POSIX
• Synchronized methods 

 

☞

 

 Real-time Java
• Protected objects 

 

☞

 

 Ada95

 

• Message based synchronization

 

• Asynchronous messages

 

☞

 

 e.g. POSIX, …
• Synchronous messages

 

☞

 

 e.g. Ada95, CHILL, Occam2
• Remote invocation, remote procedure call

 

☞

 

 e.g. Ada95, …
• Synchronization in distributed systems

 

☞

 

 e.g. CORBA, …
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Table of contents

 

3.2 Deadlocks

 

• Ignorance & recovery

 

•

 

☞

 

 ‘kill some seemingly persistently blocked processes from time to time’ (exasperation)

 

• Deadlock detection & recovery

 

•

 

☞

 

 multiple methods for detection, e.g. resource allocation graphs, Banker’s algorithm
•

 

☞

 

 recovery is mostly ‘ugly’

 

• Deadlock avoidance

 

•

 

☞

 

 check system safety before allocating resources, e.g. Banker’s algorithm

 

•

 

Deadlock prevention

 

•

 

☞

 

 eliminate one of the pre-conditions for deadlocks
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Table of contents

 

3.3 Scheduling

 

• Basic performance based scheduling

 

•  is not known: first-come-first-served (FCFS), round robin (RR), 
and feedback-scheduling

•  is known: shortest job first (SJF), highest response ration first (HRRF), 
shortest remaining time first (SRTF)-scheduling

• Basic predictable scheduling

• Fixed Priority Scheduling (FPS) with Rate Monotonic (RMPO)
• Earliest Deadline First (EDF)

• Real-world extensions

• Aperiodic, sporadic, soft real-time tasks
• Synchronized talks (priority inheritance, priority ceiling protocols)

Ci

Ci
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Table of contents

4. Memory
• Requirements & hardware structures

• MMU features & requirements

• Partitioning, segmentation, paging & virtual memory

• Simple segmentation
• Simple paging, multi-level paging, combined segmentation & paging
• Translation look aside buffers
• Hashed tables, Inverted page tables

• Virtual memory management algorithms

• Fetching & placement
• Replacement
• Resident set management
• Cleaning
• Load control

1
Introduction

Uwe R. Zimmer – International University Bremen
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References for this chapter

[Silberschatz01]
Abraham Silberschatz, Peter Bear Galvin,
Greg Gagne
Operating System Concepts
John Wiley & Sons, Inc., 2001

[Stallings2001]
William Stallings
Operating Systems
Prentice Hall, 2001

[Tanenbaum97]
Andrew S. Tanenbaum, Albert S. Woodhull
Operating Systems: Design and Implementation
Prentice Hall, 1997

[Tanenbaum95]
Andrew S. Tanenbaum
Distributed Operating Systems
Prentice Hall, 1995

all references and some links are available on the course page
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What are operating system based on?

Hardware environments / configurations:

• stand-alone, universal, single-processor machines

• symmetrical multiprocessor-machines

• local distributed systems

• open, web-based systems

• dedicated/embedded computing

What is the common ground for operating systems?

What is an operating system?
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What is an operating system?

1. A virtual machine!
… offering a more comfortable, robust, reliable, flexible … machine

Hardware

OS

Tasks

Typ. general OS

Hardware
RT-OS

Tasks

Typ. real-time system

Hardware

Tasks

Typ. embedded system

run-time
environment
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What is an operating system?

2. A resource manager!
… dealing with all sorts of devices and coordinating access

Operating systems deal with

• processors,

• memory

• mass storage

• communication channels

• devices 
(timers, special purpose processors, interfaces, …)

☞ and many tasks/processes/programs, which are applying for access to these resources
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What is an operating system?

Is there a standard set of features for an operating system?
☞ no, 

the term ‘operating systems’ covers 4KB kernels, 
as well as 1GB installations of general purpose OSs.

Is there a minimal set of features?
☞ almost,

memory management, process management and inter-process communication/synchronization 
will be considered essential in most systems.

Is there always an explicit operating system?
☞ no, 

some languages and development systems operate with stand-alone run-time-environments.
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The evolution of operating systems

• in the beginning: single user, single program, single task, serial processing ☞  no OS

• 50s: System monitors / batch processing
☞  the monitor ordered the sequence of jobs and triggered their sequential execution

• 50s-60s: Advanced system monitors / batch processing:
☞  the monitor is handling interrupts and timers
☞  first support for memory protection
☞  first implementations of privileged instructions (accessible by the monitor only).

• early 60s: Multiprogramming systems:
☞  employ the long device I/O delays for switches to other, runable programs

• early 60s: Multiprogramming, time-sharing systems:
☞  assign time-slices to each program and switch regularly

• early 70s: Multitasking systems – multiple developments resulting in UNIX (besides others)

• early 80s: single user, single tasking systems, with emphasis on user interface (MacOS) or APIs.
MS-DOS, CP/M, MacOS and others first employed ‘small scale’ CPUs (personal computers).

• mid-80s: Distributed/multiprocessor operating systems - modern UNIX systems (SYSV, BSD)
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The evolution of communication systems

• 1901: first wireless data transmission (Morse-code from ships to shore)

• ‘56: first transmission of data through phone-lines

• ‘62: first transmission of data via satellites (Telstar)

• ‘69: ARPA-net (predecessor of the current internet)

• 80s: introduction of fast local networks (LANs): ethernet, token-ring

• 90s: mass introduction of wireless networks (LAN and WAN)

Currently: standard consumer computers come with 

• High speed network connectors (e.g. GB-ethernet)
• Wireless LAN (e.g. IEEE802.11)
• Local device bus-system (e.g. firewire)
• Wireless local device network (e.g. bluetooth)
• Infrared communication (e.g. IrDA)
• Modem
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Types of current operating systems

Personal computing systems and workstations:
• late 70s: Workstations starting by porting UNIX or VMS to ‘smaller’ computers.

• 80s: PCs starting with almost none of the classical OS-features and services, 
but with an user-interface (MacOS) and simple device drivers (MS-DOS)

☞ last 20 years: evolving and expanding into current general purpose OSs: 

• Solaris (based on SVR4, BSD, and SunOS)
• LINUX (open source UNIX re-implementation for x86 processors and others)
• current Windows (proprietary, partly based on Windows NT, which is ‘related’ to VMS)
• MacOS X (Mach kernel with BSD Unix and an proprietary user-interface)

• Multiprocessing is supported by all these OSs to some extend.

• None of these OSs is very suitable for embedded systems, also trials have been performed.

• All of these OSs are not suitable at all for distributed or real-time systems.
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Types of current operating systems

Parallel operating systems
• support for a large number of processors, either:

• symmetrical:
each CPU has a full copy of the operating system

or
• asymmetrical:

only one CPU carries the full operating system, 
the others are operated by small operating system stubs to transfer code or tasks.
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Types of current operating systems

Distributed operating systems
• all CPUs carry a small kernel operating system for communication services.

• all other OS-services are distributed over available CPUs

• services may migrate

• services can be multiplied in order to 

• guarantee availability (hot stand-by)
• or to increase throughput (heavy duty servers)
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Types of current operating systems

Real-time operating systems

• Fast context switches? ☞  should be fast anyway

• Small size? ☞  should be small anyway

• Quick responds to external interrupts? ☞  not ‘quick’, but predictable

• Multitasking? ☞  real time systems are often multitasking systems

• ‘low level’ programming interfaces? ☞  needed in many operating systems

• Interprocess communication tools? ☞  needed in almost all operating systems

• High processor utilization? ☞  fault tolerance builds on redundancy!
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Types of current operating systems

Real-time operating systems requesting …

☞ the logical correctness of the results as well as

☞ the correctness of the time, when the results are delivered

☞  Predictability!
(not performance!)

☞ All results are to be delivered just-in-time – not too early, not too late.

Timing constraints are specified in many different ways …
… often as a response to ‘external’ events ☞  reactive systems
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Types of current operating systems

Embedded operating systems
• usually real-time systems, often hard real-time systems

• very small footprint (often a few KBs)

• none or limited user-interaction

☞ 90-95% of all processors are working here!

© 2003 Uwe R. Zimmer, International University Bremen Page 27 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Roots of current commercial operating systems

Basic
methods, algorithms, terminologies

(50s to mid 80s)

Advanced topics,
Current research

projects

Current general
purpose OSs

Dedicated operating systems
(real-time, embedded, distributed)
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Typical structures of operating systems

‘Monolithic’ or ‘the big mess’
• non-portable

• hard to maintain

• lacks reliability

• all services are in the kernel (on the same privilege level)

☞ may reach very high efficiency

e.g. most early UNIX implementations (70s), 
MS-DOS (80s), Windows (basically all versions besides NT and NT-based editions), 
MacOS (until version 9), 

Hardware

OS

Tasks

Monolithic

APIs
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Typical structures of operating systems

‘Monolithic & modular’
• Modules can be platform independent

• Easier to maintain and to develop

• Reliability is increased

• all services are still in the kernel (on the same privilege level)

☞ may reach very high efficiency

e.g. current LINUX versions

Hardware

OS

Tasks

Modular

APIs

M1 M1 Mn…
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Typical structures of operating systems

‘Monolithic & layered’
• easily portable

• significantly easier to maintain

• crashing layers do not necessarily stop the whole OS

• possibly reduced efficiency through many interfaces

• rigorous implementation of the stacked virtual machine perspective
on OSs

e.g. some current UNIX implementations (e.g. Solaris) to a certain degree, 
many research OSs (e.g. ‘THE system’, Dijkstra ‘68)

Hardware

Tasks

Layered

M0

M1

Mn
OS

APIs

…

layers
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Typical structures of operating systems

‘µkernels and virtual machines’
• µkernel implements essential 

process, memory, and message handling

• all ‘higher’ services are dealt with outside the
kernel ☞  no threat for the kernel stability

• significantly easier to maintain

• multiple OSs can be executed at the same time

• µkernel is highly hardware dependent 
☞  only the µkernel need to be ported.

• possibly reduced efficiency through increased
communications

e.g. wide spread concept: as early as the CP/M, VM/370 (‘79) 
or as recent as MacOS X (mach kernel + BSD unix)

Hardware

µkernel, virtual machine

µkernel

Tasks

M0

M1

Mn
OS

APIs

…

layersOS

Tasks

APIs

M1 M1 Mn…OS

Tasks

APIs
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Typical structures of operating systems

‘µkernels and client-server models’
• µkernel implements essential 

process, memory, and message handling

• all ‘higher’ services are user-level servers

• kernel ensures the reliable message passing 
between clients and servers

• highly modular and flexible

• servers can be redundant and easily replaced

• possibly reduced efficiency through increased
communications

e.g. current µkernel research projects

Hardware

µkernel, client server structure

µkernel

service mservice 1task 1 task n
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Typical structures of operating systems

‘µkernels and distributed systems’
• µkernel implements essential 

process, memory, and message handling

• all ‘higher’ services are user-level servers

• kernel ensures the reliable message passing 
between clients and servers: 
locally and via a communication system

• highly modular and flexible

• servers can be redundant and easily replaced

• possibly reduced efficiency through increased
communications

e.g. Java machines, distributed real-time operat-
ing systems + current distributed OSs research projects

µkernel, distributed systems

task 1 task n service 1

µkernel µkernel

service m

µkernel

Hardware

Network
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Basic programming styles

• Imperative (sequential) ☞  Ada, JAVA, Eiffel, C…

• Functional (recursive) ☞  Lisp, OCaml, …

• Declarative (logic) ☞  Prolog, …

• Data-flow machines ☞  Lustre, Signal, …

• (hierarchical) Finite state machines ☞  synchronous languages: Esterel, syncEifel, synERJY, …

Programming styles alternatives
Imperative ↔ Functional ↔ Declarative ↔ Data-flow ↔ Finite state machines

Static ↔ Dynamic
 Modular ↔ Concurrent ↔ Distributed

Synchronous ↔ Continuous time
Control oriented ↔ Data oriented
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Programming styles

What makes a language suitable for operating systems?

• Precise expressions on machine level ☞  address physical memory + I/O

• Concurrency ☞  support for tasking/threading

• Distribution ☞  support for message passing or rpc

• Reliability ☞  detect errors at compile-time or in the run-time environment 

• Large systems ☞  scalable, modular, or object-oriented + separate compilation

• Predictability
☞  no operations which will lead to unforeseeable timing behaviours (e.g. garbage collection)
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Programming styles

Languages considered in this course

• C/C++ (for the lab-assignments)

• Ada95 (for your understanding)

• JAVA (for some distribution and object orientated features)

• POSIX (as the IEEE standard for (UNIX-) OS interfaces)

… others in places



© 2003 Uwe R. Zimmer, International University Bremen Page 37 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Ada95 is a standardized (ISO/IEC 8652:1995(E)) ‘general purpose’ language 
with core language primitives for

• strong typing, separate compilation (specification and implementation),
object-orientation, 

• concurrency, monitors, rpcs, timeouts, scheduling, priority ceiling locks

• strong run-time environments

… and standardized language-annexes for

• additional real-time features, distributed programming, 
system-level programming, numeric, informations systems, 
safety and security issues.
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Ada95

A crash course
… refreshing:

• specification and implementation (body) parts, basic types

• exceptions

• information hiding in specifications (‘private’)

• generic programming

• class-wide programming (‘tagged types’)

• monitors and synchronisation (‘protected’, ‘entries’, ‘selects’, ‘accepts’)

• abstract types and dispatching
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Ada95

Basics
… introducing:

• specification and implementation (body) parts

• constants

• some basic types (integer specifics)

• some type attributes

• parameter specification
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A simple queue specification

package Queue_Pack_Simple is

   QueueSize : constant Positive := 10;
   type Element is new Positive range 1_000..40_000;
   type Marker is mod QueueSize;
   type List is array (Marker'Range) of Element;
   type Queue_Type is record
      Top, Free : Marker := Marker'First;
      Elements  : List;
   end record;

   procedure Enqueue (Item: in  Element; Queue: in out Queue_Type);
   procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

end Queue_Pack_Simple;
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A simple queue implementation

package body Queue_Pack_Simple is

   procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
   begin
      Queue.Elements (Queue.Free) := Item;
      Queue.Free := Queue.Free - 1;
   end Enqueue;

   procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
   begin
      Item      := Queue.Elements (Queue.Top);
      Queue.Top := Queue.Top - 1;
    end Dequeue;

end Queue_Pack_Simple;
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A simple queue test program

with Queue_Pack_Simple; use Queue_Pack_Simple;

procedure Queue_Test_Simple is

   Queue : Queue_Type;
   Item  : Element;

begin
   Enqueue (2000, Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue); -- will produce an unpredictable result!
end Queue_Test_Simple;
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Ada95

Exceptions
… introducing:

• exception handling

• enumeration types

• functional type attributes
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A queue specification with proper exceptions

package Queue_Pack_Exceptions is

   QueueSize : constant Integer := 10;
   type Element is (Up, Down, Spin, Turn);
   type Marker is mod QueueSize;
   type List is array (Marker'Range) of Element;
   type Queue_State is (Empty, Filled);
   type Queue_Type is record
      Top, Free : Marker      := Marker'First;
      State     : Queue_State := Empty;
      Elements  : List;
   end record;

   procedure Enqueue (Item: in  Element; Queue: in out Queue_Type);
   procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

   Queueoverflow, Queueunderflow : exception;

end Queue_Pack_Exceptions;
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A queue implementations with proper exceptions

package body Queue_Pack_Exceptions is

   procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Filled and Queue.Top = Queue.Free then
         raise Queueoverflow;
      end if;
      Queue.Elements (Queue.Free) := Item;
      Queue.Free  := Marker'Pred (Queue.Free);
      Queue.State := Filled;
   end Enqueue;

   procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Empty then
         raise Queueunderflow;
      end if;
      Item      := Queue.Elements (Queue.Top);
      Queue.Top := Marker'Pred (Queue.Top);
      if Queue.Top = Queue.Free then Queue.State := Empty; end if;
   end Dequeue;

end Queue_Pack_Exceptions;
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A queue test program with proper exceptions

with Queue_Pack_Exceptions; use Queue_Pack_Exceptions;
with Ada.Text_IO;           use Ada.Text_IO;

procedure Queue_Test_Exceptions is

   Queue : Queue_Type;
   Item  : Element;

begin
   Enqueue (Turn, Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
   when Queueunderflow   => Put ("Queue underflow");
   when Queueoverflow    => Put ("Queue overflow");

end Queue_Test_Exceptions;
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Ada95

Information hiding (private parts)
… introducing:

• private ☞  assignments and comparisons are allowed

• limited private ☞  entity cannot be assigned or compared
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A queue specification with proper information hiding

package Queue_Pack_Private is

   QueueSize : constant Integer := 10;
   type Element is new Positive range 1..1000;
   type Queue_Type is limited private;

   procedure Enqueue (Item: in  Element; Queue: in out Queue_Type);
   procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

   Queueoverflow, Queueunderflow : exception;

private
   type Marker is mod QueueSize;
   type List is array (Marker'Range) of Element;
   type Queue_State is (Empty, Filled);
   type Queue_Type is record
      Top, Free : Marker      := Marker'First;
      State     : Queue_State := Empty;
      Elements  : List;
   end record;
end Queue_Pack_Private;
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A queue implementation with proper information hiding

package body Queue_Pack_Private is

   procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Filled and Queue.Top = Queue.Free then
         raise Queueoverflow;
      end if;
      Queue.Elements (Queue.Free) := Item;
      Queue.Free  := Queue.Free - 1;
      Queue.State := Filled;
   end Enqueue;

   procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Empty then
         raise Queueunderflow;
      end if;
      Item      := Queue.Elements (Queue.Top);
      Queue.Top := Queue.Top - 1;
      if Queue.Top = Queue.Free then Queue.State := Empty; end if;
   end Dequeue;

end Queue_Pack_Private;

identical
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A queue test program with proper information hiding

with Queue_Pack_Private; use Queue_Pack_Private;
with Ada.Text_IO;        use Ada.Text_IO;

procedure Queue_Test_Private is

   Queue, Queue_Copy : Queue_Type;
   Item              : Element;

begin
   Queue_Copy := Queue;
       -- compiler-error: left hand of assignment must not be limited type
   Enqueue (Item => 1, Queue => Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
   when Queueunderflow   => Put ("Queue underflow");
   when Queueoverflow    => Put ("Queue overflow");
end Queue_Test_Private;
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Ada95

Generic packages
… introducing:

• specification of generic packages

• instantiation of generic packages
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A generic queue specification

generic
   type Element is private;

package Queue_Pack_Generic is

   QueueSize: constant Integer := 10;
   type Queue_Type is limited private;

   procedure Enqueue (Item: in  Element; Queue: in out Queue_Type);
   procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

   Queueoverflow, Queueunderflow : exception;

private
   type Marker is mod QueueSize;
   type List is array (Marker'Range) of Element;
   type Queue_State is (Empty, Filled);
   type Queue_Type is record
      Top, Free : Marker      := Marker'First;
      State     : Queue_State := Empty;
      Elements  : List;
   end record;
end Queue_Pack_Generic;
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A generic queue implementation
package body Queue_Pack_Generic is

   procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Filled and Queue.Top = Queue.Free then
         raise Queueoverflow;
      end if;
      Queue.Elements (Queue.Free) := Item;
      Queue.Free  := Queue.Free - 1;
      Queue.State := Filled;
   end Enqueue;

   procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Empty then
         raise Queueunderflow;
      end if;
      Item      := Queue.Elements (Queue.Top);
      Queue.Top := Queue.Top - 1;
      if Queue.Top = Queue.Free then Queue.State := Empty; end if;
   end Dequeue;

end Queue_Pack_Generic;

identical
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A generic queue test program

with Queue_Pack_Generic;
with Ada.Text_IO;        use Ada.Text_IO;

procedure Queue_Test_Generic is

   package Queue_Pack_Positive is
      new Queue_Pack_Generic (Element => Positive);
   use Queue_Pack_Positive;

   Queue : Queue_Type;
   Item  : Positive;

begin
   Enqueue (Item => 1, Queue => Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
   when Queueunderflow   => Put ("Queue underflow");
   when Queueoverflow    => Put ("Queue overflow");
end Queue_Test_Generic;
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Ada95

Object oriented programming I
… introducing:

• tagged types ☞  the Ada-way to say that this type can be extended

• derivation of tagged types

• method overwriting

• usage of parent entities
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An open queue base class specification

package Queue_Pack_Object_Base is

   QueueSize : constant Integer := 10;
   type Element is new Positive range 1..1000;
   type Marker is mod QueueSize;
   type List is array (Marker'Range) of Element;
   type Queue_State is (Empty, Filled);
   type Queue_Type is tagged record
      Top, Free : Marker      := Marker'First;
      State     : Queue_State := Empty;
      Elements  : List;
   end record;

   procedure Enqueue (Item: in  Element; Queue: in out Queue_Type);
   procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

   Queueoverflow, Queueunderflow : exception;

end Queue_Pack_Object_Base;
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An open queue base class implementation

package body Queue_Pack_Object_Base is

   procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Filled and Queue.Top = Queue.Free then
         raise Queueoverflow;
      end if;
      Queue.Elements (Queue.Free) := Item;
      Queue.Free  := Queue.Free - 1;
      Queue.State := Filled;
   end Enqueue;

   procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Empty then
         raise Queueunderflow;
      end if;
      Item      := Queue.Elements (Queue.Top);
      Queue.Top := Queue.Top - 1;
      if Queue.Top = Queue.Free then Queue.State := Empty; end if;
   end Dequeue;

end Queue_Pack_Object_Base;

identical
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A derived open queue class specification

with Queue_Pack_Object_Base; use Queue_Pack_Object_Base;

package Queue_Pack_Object is

   type Ext_Queue_Type is new Queue_Type with record
      Reader       : Marker      := Marker'First;
      Reader_State : Queue_State := Empty;
   end record;

   procedure Enqueue    (Item: in  Element; Queue: in out Ext_Queue_Type);
   procedure Read_Queue (Item: out Element; Queue: in out Ext_Queue_Type);

end Queue_Pack_Object;
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A derived open queue class implementation

package body Queue_Pack_Object is

   procedure Enqueue (Item: in  Element; Queue: in out Ext_Queue_Type) is
   begin
      Enqueue (Item, Queue_Type (Queue));
      Queue.Reader_State := Filled;
   end Enqueue;

   procedure Read_Queue (Item: out Element; Queue: in out Ext_Queue_Type) is
   begin
      if Queue.Reader_State = Empty then
         raise Queueunderflow;
      end if;
      Item         := Queue.Elements (Queue.Reader);
      Queue.Reader := Queue.Reader - 1;
      if Queue.Reader = Queue.Free then Queue.Reader_State := Empty; end if;
   end Read_Queue;

end Queue_Pack_Object;
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An open class test program

with Queue_Pack_Object_Base; use Queue_Pack_Object_Base;
with Queue_Pack_Object;      use Queue_Pack_Object;
with Ada.Text_IO;            use Ada.Text_IO;

procedure Queue_Test_Object is

   Queue : Ext_Queue_Type;
   Item  : Element;

begin
   Enqueue (Item => 1, Queue => Queue);
   Read_Queue (Item, Queue);
   Enqueue (Item => 5, Queue => Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
   when Queueunderflow   => Put ("Queue underflow");
   when Queueoverflow    => Put ("Queue overflow");
end Queue_Test_Object;
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Ada95

Object oriented programming II
… introducing:

• private tagged types 

• objects which are protected against their children also
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An encapsulated queue base class specification

package Queue_Pack_Object_Base_Private is

   QueueSize : constant Integer := 10;
   type Element is new Positive range 1..1000;
   type Queue_Type is tagged limited private;

   procedure Enqueue (Item: in  Element; Queue: in out Queue_Type);
   procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

   Queueoverflow, Queueunderflow : exception;

private
   type Marker is mod QueueSize;
   type List is array (Marker'Range) of Element;
   type Queue_State is (Empty, Filled);
   type Queue_Type is tagged limited record
      Top, Free : Marker      := Marker'First;
      State     : Queue_State := Empty;
      Elements  : List;
   end record;

end Queue_Pack_Object_Base_Private;
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An encapsulated queue base class implementation

package body Queue_Pack_Object_Base_Private is

   procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Filled and Queue.Top = Queue.Free then
         raise Queueoverflow;
      end if;
      Queue.Elements (Queue.Free) := Item;
      Queue.Free  := Queue.Free - 1;
      Queue.State := Filled;
   end Enqueue;

   procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
   begin
      if Queue.State = Empty then
         raise Queueunderflow;
      end if;
      Item      := Queue.Elements (Queue.Top);
      Queue.Top := Queue.Top - 1;
      if Queue.Top = Queue.Free then Queue.State := Empty; end if;
   end Dequeue;

end Queue_Pack_Object_Base_Private;

identical
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A derived encapsulated queue class specification

with Queue_Pack_Object_Base_Private; use Queue_Pack_Object_Base_Private;

package Queue_Pack_Object_Private is

   type Ext_Queue_Type is new Queue_Type with private;
   subtype Depth_Type is Positive range 1..QueueSize;

   procedure Look_Ahead (Item: out Element;
                         Depth: in Depth_Type; Queue: in out Ext_Queue_Type);

private
   type Ext_Queue_Type is new Queue_Type with null record;

end Queue_Pack_Object_Private;
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A derived encapsulated queue class implementation

package body Queue_Pack_Object_Private is

   procedure Look_Ahead (Item: out Element;
                      Depth: in Depth_Type; Queue: in out Ext_Queue_Type) is

      Storage     : Queue_Type;
      ShuffleItem : Element;

   begin
      for I in 1..Depth - 1 loop
         Dequeue (ShuffleItem, Queue);
         Enqueue (ShuffleItem, Storage);
      end loop;
      Dequeue (Item, Queue);
      Enqueue (Item, Storage);
(…)
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(…)

  Read_The_Rest:
      begin
         for I in 1..QueueSize - Depth loop
            Dequeue (ShuffleItem, Queue);
            Enqueue (ShuffleItem, Storage);
         end loop;
      exception
         when Queueunderflow => null; -- read the rest is done
      end Read_The_Rest;
  Restore_The_Queue:
      begin
         for I in 1..QueueSize loop
            Dequeue (ShuffleItem, Storage);
            Enqueue (ShuffleItem, Queue);
         end loop;
      exception
         when Queueunderflow => null; -- restore is done
      end Restore_The_Queue;

   end Look_Ahead;

end Queue_Pack_Object_Private;

bad
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An encapsulated class test program

with Queue_Pack_Object_Base_Private; use Queue_Pack_Object_Base_Private;
with Queue_Pack_Object_Private;      use Queue_Pack_Object_Private;
with Ada.Text_IO;                    use Ada.Text_IO;

procedure Queue_Test_Object_Private is

   Queue : Ext_Queue_Type;
   Item  : Element;

begin
   Enqueue (Item => 1, Queue => Queue);
   Enqueue (Item => 1, Queue => Queue);
   Look_Ahead (Item => Item, Depth => 2, Queue => Queue);
   Enqueue (Item => 5, Queue => Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue);
   Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
   when Queueunderflow   => Put ("Queue underflow");
   when Queueoverflow    => Put ("Queue overflow");
end Queue_Test_Object_Private;
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Ada95

Tasks & Monitors
… introducing:

• protected types

• tasks (definition, instantiation and termination)

• task synchronisation

• entry guards

• entry calls

• accept and selected accept statements
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A protected queue specification

Package Queue_Pack_Protected is

   QueueSize : constant Integer := 10;
   subtype Element is Character;
   type Queue_Type is limited private;

   Protected type Protected_Queue is

      entry Enqueue (Item: in  Element);
      entry Dequeue (Item: out Element);

   private
      Queue : Queue_Type;

   end Protected_Queue;

private
   type Marker is mod QueueSize;
   type List is array (Marker'Range) of Element;
   type Queue_State is (Empty, Filled);
   type Queue_Type is record
      Top, Free : Marker      := Marker'First;
      State     : Queue_State := Empty;
      Elements  : List;
   end record;
end Queue_Pack_Protected;
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A protected queue implementation

package body Queue_Pack_Protected is

   protected body Protected_Queue is

      entry Enqueue (Item: in Element) when
        Queue.State = Empty or Queue.Top /= Queue.Free is
      begin
         Queue.Elements (Queue.Free) := Item;
         Queue.Free  := Queue.Free - 1;
         Queue.State := Filled;
      end Enqueue;

      entry Dequeue (Item: out Element) when
        Queue.State = Filled is
      begin
         Item      := Queue.Elements (Queue.Top);
         Queue.Top := Queue.Top - 1;
         if Queue.Top = Queue.Free then Queue.State := Empty; end if;
      end Dequeue;

   end Protected_Queue;
end Queue_Pack_Protected;
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A multitasking protected queue test program 

with Queue_Pack_Protected; use Queue_Pack_Protected;
with Ada.Text_IO;          use Ada.Text_IO;

procedure Queue_Test_Protected is

   Queue : Protected_Queue;

   task Producer is entry shutdown; end Producer;
   task Consumer is                 end Consumer;

   task body Producer is
      Item   : Element;
      Got_It : Boolean;
   begin
      loop
         select
            accept shutdown; exit; -- main task loop
         else
            Get_Immediate (Item, Got_It);
            if Got_It then
               Queue.Enqueue (Item); -- task might be blocked here!
            else
               delay 0.1; --sec.
            end if;
         end select;
      end loop;
   end Producer;

(…)
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A multitasking protected queue test program (cont.)

(…)   

   task body Consumer is
      Item  : Element;
   begin
      loop
         Queue.Dequeue (Item); -- task might be blocked here!
         Put ("Received: "); Put (Item); Put_Line ("!");
         if Item = 'q' then
            Put_Line ("Shutting down producer"); Producer.Shutdown;
            Put_Line ("Shutting down consumer"); exit; -- main task loop
         end if;
      end loop;
   end Consumer;

begin
   null;
end Queue_Test_Protected;
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Ada95

Abstract types & dispatching
… introducing:

• abstract tagged types

• abstract subroutines

• concrete implementation of abstract types

• dispatching to different packages, tasks, and partitions 
according to concrete types
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An abstract queue specification

package Queue_Pack_Abstract is

   subtype Element is Character;
   type Queue_Type is abstract tagged limited private;

   procedure Enqueue (Item: in  Element; Queue: in out Queue_Type) is 
      abstract;
   procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is 
      abstract;

private
   type Queue_Type is abstract tagged limited null record;
end Queue_Pack_Abstract;
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A concrete queue specification

with Queue_Pack_Abstract; use Queue_Pack_Abstract;

package Queue_Pack_Concrete is

   QueueSize : constant Integer := 10;
   type Real_Queue is new Queue_Type with private;

   procedure Enqueue (Item: in  Element; Queue: in out Real_Queue);
   procedure Dequeue (Item: out Element; Queue: in out Real_Queue);

   Queueoverflow, Queueunderflow : exception;

private
   type Marker is mod QueueSize;
   type List is array (Marker'Range) of Element;
   type Queue_State is (Empty, Filled);
   type Real_Queue is new Queue_Type with record
      Top, Free : Marker      := Marker'First;
      State     : Queue_State := Empty;
      Elements  : List;
   end record;
end Queue_Pack_Concrete;
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A concrete queue implementation

package body Queue_Pack_Concrete is

   procedure Enqueue (Item: in Element; Queue: in out Real_Queue) is
   begin
      if Queue.State = Filled and Queue.Top = Queue.Free then
         raise Queueoverflow;
      end if;
      Queue.Elements (Queue.Free) := Item;
      Queue.Free  := Queue.Free - 1;
      Queue.State := Filled;
   end Enqueue;

   procedure Dequeue (Item: out Element; Queue: in out Real_Queue) is
   begin
      if Queue.State = Empty then
         raise Queueunderflow;
      end if;
      Item      := Queue.Elements (Queue.Top);
      Queue.Top := Queue.Top - 1;
      if Queue.Top = Queue.Free then Queue.State := Empty; end if;
   end Dequeue;

end Queue_Pack_Concrete;
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A multitasking dispatching test program

with Queue_Pack_Abstract; use Queue_Pack_Abstract;
with Queue_Pack_Concrete; use Queue_Pack_Concrete;

procedure Queue_Test_Dispatching is

   type Queue_Class is access all Queue_Type'class;

   task Queue_Holder is -- could be on an individual partition
      entry Queue_Filled;
   end Queue_Holder;

   task Queue_User is   -- could be on an individual partition
      entry Send_Queue (Remote_Queue: in Queue_Class);
   end Queue_User;
(…)
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   task body Queue_Holder is
      Local_Queue : Queue_Class;
      Item        : Element;
   begin
      Local_Queue := new Real_Queue; -- could be a different implementation!
      Queue_User.Send_Queue (Local_Queue);
      accept Queue_Filled do
         Dequeue (Item, Local_Queue.all); -- Item will be 'r'
      end Queue_Filled;
   end Queue_Holder;

   task body Queue_User is
      Local_Queue : Queue_Class;
      Item        : Element;
   begin
      Local_Queue := new Real_Queue; -- could be a different implementation!
      accept Send_Queue (Remote_Queue: in Queue_Class) do
         Enqueue ('r', Remote_Queue.all); -- potentially a rpc!
         Enqueue ('l', Local_Queue.all);
      end Send_Queue;
      Queue_Holder.Queue_Filled;
      Dequeue (Item, Local_Queue.all); -- Item will be 'l'
   end Queue_User;

begin null; end Queue_Test_Dispatching;
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Ada95

Ada95 language status
• Established language standard with free and 

commercial compilers available for all major OSs.

• Stand-alone runtime environments for embedded systems 
(some are only available commercially).

• Special (yet non-standard) extensions (i.e. language reductions and
proof systems) for extreme small footprint embedded systems or high
integrity real-time environments available ☞  Ravenscar profile systems.

☞ has been used and is in use in numberless large scale projects 
(e.g. in the international space station, and in some spectacular crashes: e.g. Ariane 5)
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POSIX

Portable Operating System Interface 
for Computing Environments

• IEEE/ANSI Std 1003.1 and following

• Program Interface (API) [C Language]

• more than 30 different POSIX standards
(a system is ‘POSIX compliant’, if it implements parts of just one of them!)
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POSIX – some of the real-time relevant standards

1003.1
12/01

OS Definition
single process, multi process, job control, signals, user groups, file system, file attributes, file 
device management, file locking, device I/O, device-specific control, system database, pipes, 
FIFO, …

1003.1b
10/93

Real-time 
Extensions

real-time signals, priority scheduling, timers, asynchronous I/O, prioritized I/O, synchronized 
I/O, file sync, mapped files, memory locking, memory protection, message passing, sema-
phore, …

1003.1c
6/95

Threads
multiple threads within a process; includes support for: thread control, thread attributes, pri-
ority scheduling, mutexes, mutex priority inheritance, mutex priority ceiling, and condition 
variables

1003.1d
10/99

Additional Real-
time Extensions

new process create semantics (spawn), sporadic server scheduling, execution time monitor-
ing of processes and threads, I/O advisory information, timeouts on blocking functions, de-
vice control, and interrupt control

1003.1j
1/00

Advanced Real-
time Extensions

typed memory, nanosleep improvements, barrier synchronization, reader/writer locks, spin 
locks, and persistent notification for message queues

1003.21
-/-

Distributed 
Real-time

buffer management, send control blocks, asynchronous and synchronous operations, 
bounded blocking, message priorities, message labels, and implementation protocols
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POSIX – 1003.1b

Frequently employed POSIX features include:
• Timers: delivery is accomplished using POSIX signals

• Priority scheduling: fixed priority, 32 priority levels

• Real-time signals: signals with multiple levels of priority

• Semaphore: named semaphore

• Memory queues: message passing using named queues

• Shared memory: memory regions shared between multiple processes

• Memory locking: no virtual memory swapping of physical memory pages
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POSIX – support in some OSs

POSIX 1003.1 
(Base POSIX)

POSIX 1003.1b 
(Real-time 

extensions)

POSIX 1003.1c 
(Threads)

Solaris Full support Full support Full support

IRIX Conformant Full support Full support

LynxOS Conformant Full support Conformant (Version 3.1)

QNX
Neutrino

Full support
Partial support

(no memory locking)
Full support

Linux Full support
Partial support

(no timers, 
no message queues)

Full support

VxWorks Partial support
(different process model)

Partial support
(different process model)

Supported through third 
party product
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POSIX – other languages

POSIX is a ‘C’ standard …
… but bindings to other languages are also (suggested) POSIX standards:

• Ada: 1003.5*, 1003.24 (some PAR approved only, some withdrawn)

• Fortran: 1003.9 (6/92)

• Fortran90: 1003.19 (withdrawn)

… and there are POSIX standards for task-specific POSIX profiles, e.g.:

• Super computing: 1003.10 (6/95)

• Realtime: 1003.13, 1003.13b (3/98) 

- profiles 51-54: combinations of the above RT-relevant POSIX standards ☞  RT-Linux

• Embedded Systems: 1003.13a (PAR approved only)
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POSIX – example: setting a timer

void timer_create(int num_secs, int num_nsecs)
{
    struct sigaction sa;
    struct sigevent sig_spec;
    sigset_t allsigs;
    struct itimerspec tmr_setting;
    timer_t timer_h;

    /* setup signal to respond to timer */
    sigemptyset(&sa.sa_mask);
    sa.sa_flags = SA_SIGINFO;
    sa.sa_sigaction = timer_intr;

    if (sigaction(SIGRTMIN, &sa, NULL) < 0)
        perror(‘sigaction’);

    sig_spec.sigev_notify = SIGEV_SIGNAL;
    sig_spec.sigev_signo = SIGRTMIN;
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POSIX – example: setting a timer (cont.)

    /* create timer, which uses the REALTIME clock */
    if (timer_create(CLOCK_REALTIME, &sig_spec, &timer_h) < 0)
        perror(‘timer create’);

    /* set the initial expiration and frequency of timer */
    tmr_setting.it_value.tv_sec = 1;
    tmr_setting.it_value.tv_nsec = 0;
    tmr_setting.it_interval.tv_sec = num_secs;
    tmr_setting.it_interval.tv_sec = num_nsecs;
    if ( timer_settime(timer_h, 0, &tmr_setting,NULL) < 0) 
        perror(‘settimer’);

    /* wait for signals */
    sigemptyset(&allsigs);
    while (1) {
        sigsuspend(&allsigs);
    }
}

/* routine that is called when timer expires */
void timer_intr(int sig, siginfo_t *extra, void *cruft)
{
    /* perform periodic processing and then exit */
}
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POSIX – example: setting a timer (cont.)

    /* create timer, which uses the REALTIME clock */
    if (timer_create(CLOCK_REALTIME, &sig_spec, &timer_h) < 0)
        perror(‘timer create’);

    /* set the initial expiration and frequency of timer */
    tmr_setting.it_value.tv_sec = 1;
    tmr_setting.it_value.tv_nsec = 0;
    tmr_setting.it_interval.tv_sec = num_secs;
    tmr_setting.it_interval.tv_sec = num_nsecs;
    if ( timer_settime(timer_h, 0, &tmr_setting,NULL) < 0) 
        perror(‘settimer’);

    /* wait for signals */
    sigemptyset(&allsigs);
    while (1) {
        sigsuspend(&allsigs);
    }
}

/* routine that is called when timer expires */
void timer_intr(int sig, siginfo_t *extra, void *cruft)
{
    /* perform periodic processing and then exit */
}

remember the Pearl timers?

AFTER
 30 M

IN AL
L 5 M

IN DU
RING 

1 HRS
 ACTI

VATE 
Help;
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Languages

Languages used in this course

Ada RT-Java C/C++ Posix

Predictability ***
(specific 

run-time env.)

--- 
(OOP)

implementation 
dependent

implementation 
dependent

low-level interfaces *** - ** **

Concurrency *** ** --- ** 

Distribution ** *** --- *

Error detection
(compiler, tools)

**
(strong typing)

** --- ---

Large systems
*** ***

OOP C++ style
(no support in C)

/

© 2003 Uwe R. Zimmer, International University Bremen Page 89 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary 

Introduction to operating systems
• Features (and non-features) of operating system

• Common grounds for operating systems

• Historical perspectives

• Types of current operating systems

• Design principles for system software (monoliths & µkernels)

• Examples of languages considered for system level programming:

• Java
• Ada95
• POSIX interfaces
• C/C++

2
Hardware Fundamentals

Uwe R. Zimmer – International University Bremen
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References for this chapter

[Silberschatz01] – Chapter 2
Abraham Silberschatz, Peter Bear Galvin,
Greg Gagne
Operating System Concepts
John Wiley & Sons, Inc., 2001

[Stallings2001] – Chapter 1
William Stallings
Operating Systems
Prentice Hall, 2001

all references and some links are available on the course page
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Hardware Fundamentals

A common computer architecture:

• Bus-systems carry device, address information and data (8-64bit wide)
as well as control lines in groups such as:

• arbitration, synchronization, requests, interrupts, priorities

CPUIn
te

rf
ac

eSequencer

ALU

Registers

Control
Address

Data

Memory I/O
Interface

Memory I/O
Interface

......
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Hardware Fundamentals

The CPU

• CPU components relevant for this course:

• register-set, sequencer (‘normal operation’), interrupt controller, protected modes

CPUIn
te

rf
ac

eSequencer

ALU

Registers

Control
Address

Data

Memory I/O
Interface

Memory I/O
Interface

......
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Hardware Fundamentals

Register set
• SR: Status / Condition codes (CC), e.g.:

privilege level, interrupt level, result of last operation

• IR: current instruction

• PC: Address of current (next) instruction

• SP: Top of stack address

• Special privileged registers, e.g.:
page table entries, memory protection maps

• Dedicated registers, e.g.:
registers which can by employed in some contexts only

• Universal registers: 
registers, which can be employed for any purpose 
(addressing, storage, index, parameters, …)

Status (SR)
or Condition codes (CC)

Register structure

Instruction (IR)

Program counter (PC)

Stack pointer (SP)

Universal registers

Special registers
(privileged, 

e.g. page table pointers)

Dedicated registers
(mostly used in specific

addressing modes)
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Hardware Fundamentals

Register set
• Often divided into a 

privileged and non-privileged section

• Switch from non-privileged to privileged mode 
only via traps or interrupts (later in this chapter)

☞ SR, IR, PC, SP 
+ some general registers (or at least one ‘accumulator’) 

are found in all current processor designs

• Special and dedicated registers are 
not used in all architectures

Status (SR)
or Condition codes (CC)

Register structure

Instruction (IR)

Program counter (PC)

Stack pointer (SP)

Universal registers

Special registers
(privileged, 

e.g. page table pointers)

Dedicated registers
(mostly used in specific

addressing modes)

P
ri
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d

N
o

n
-p
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ge
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Hardware Fundamentals

Memory layout
• Classical usage of the 

RAM areas in most processors

• Main storage of data in 

• heap
• stack
• or local static

depends on the usage of the
programming language

Code

Main memory layout

Static variables

Stack

Heap

I/O

SP

PC
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Hardware Fundamentals

Stack frames
• Every sub-program call

leaves an entry on the stack
with all relevant information:

• parameters
• context (not in ‘C’)
• return address

• Parameters may
be removed by:

• the calling routine (‘C’)
• or the called routine

• Special architectures
support faster parameter
passing (e.g. register-bands)

Code

Main memory layout

Static variables

Stack

Heap

I/O

SP

PC SP

Parameters

Return address

Context reference

Context reference

Return address

Parameters

Context reference

Return address

Return address

Local variables

Local variables

Saved environment
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Hardware Fundamentals

Privileged instructions
Purpose: 

• prevent user level tasks from by-passing the operating system

• restrict access form user-level tasks to resources, which are managed by the operating system:

• Memory
• I/O
• Structures which are used to administer memory or I/O access 

(e.g. special registers, MMUs, etc.)

Implementation:
• declare some instructions privileged

• implement two (or more) protection levels in the CPU

• allow changes to a higher privilege level by means of traps/exceptions/interrupts only.
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Asynchronism

Interrupts

Required mechanisms for interrupt driven programming:

• Interrupt control: grouping, encoding, prioritising, and en-/disabling interrupt sources

• Context switching: mechanisms for cpu-state saving and restoring + task-switching

• Interrupt identification: Interrupt vectors, interrupt states

☞ hardware-supported
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Asynchronism

Interrupts
Interrupt control: 

… at the individual device level

… at the system interrupt controller level

… at the operating system level
• beyond task-level (interrupt service routines)
• communicating interrupts to task
• transforming interrupts to signals

… at the language level
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Interrupts

LM12L458
(National Semiconductor)

☞ only one interrupt signal line available!

☞ in order to identify the interrupt reason, an additional read cycle is required!

Interrupt signal

© 2003 Uwe R. Zimmer, International University Bremen Page 102 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

A/D, D/A & Interfaces

LM12L458
12-Bit + sign, 8 channel, A/D converter, controller and interface

Controller features:

• Programmable acquisition times and conversion rates

• 32-word conversion FIFO

• Self-calibration and diagnostic mode

• 8- or 16-bit wide data bus microprocessor or DSP

Typ. applications:
• Data Logging
• Process Control
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LM12L458 – accessible registers
A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 01) Don�t Care >/< Sign Limit #1

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 10) Don�t Care >/< Sign Limit #2

1 1 1

1 0 0 0 Configuration R/W
Don�t Care DIAG

Test RAM I/O Auto Chan Stand- Full Auto- Reset Start

Register = 0 Pointer Sel Zeroec Mask by CAL Zero

Interrupt Enable R/W Number of Conversions Sequencer INT7 Don�t INT5 INT4 INT3 INT2 INT1 INT0

1 0 0 1 Register in Conversion FIFO Address to Care

to Generate INT2 Generate INT1

Address

R Actual Number of of INST7 �0� INST5 INST4 INST3 INST2 INST1 INST0

1 0 1 0 Interrupt Status Conversion Results Sequencer

Register in Conversion FIFO Instruction

being

Executed

1 0 1 1 Timer R/W Timer Preset High Byte Timer Preset Low Byte

Register

1 1 0 0 Conversion R Address Sign Conversion Conversion Data: LSBs

FIFO or Sign Data: MSBs

1 1 0 1 Limit Status R Limit #2: Status Limit #1: Status
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LM12L458 – instruction RAM

every entry in the instruction RAM consists of:

• Loop (1bit): indicates the last instruction and branches to the first one.

• Pause (1bit): halts the sequencer before this instruction.

• ,  (2*3bit): select the input channels (000 selects ground in )

• Sync (1bit): wait for an external sync. signal before this instruction.

• Timer (1bit): wait for a preset 16-bit counter delay before this instruction.

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 01) Don�t Care >/< Sign Limit #1

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 10) Don�t Care >/< Sign Limit #2

1 1 1

VIN+ VIN- VIN-
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LM12L458 – instruction RAM

every entry in the instruction RAM consists of (cont.):

•  (1bit): selects the resolution (8 bit + sign or 12 bit + sign).

• Watchdog (1bit): activates comparisons with two programmed limits.

• Acquisition time ( ) (4bit): the converter takes  cycles (12bit mode) or
 cycles (8bit mode) to sample to input. Depends on the input resistance:

 for 12 bit conversions.

• Limits (including sign and comparator): used for Watchdog operation.

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 01) Don�t Care >/< Sign Limit #1

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 10) Don�t Care >/< Sign Limit #2

1 1 1

8/12

D 9 2D+
2 2D+
D 0.45 RS kΩ[ ] fCLK MHz[ ]⋅ ⋅≈
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LM12L458 – instruction RAM

type ChannelPlus  is (Ch0, Ch1, Ch2, Ch3, Ch4, Ch5, Ch6, Ch7);
type ChannelMinus is (Gnd, Ch1, Ch2, Ch3, Ch4, Ch5, Ch6, Ch7);
type Resolutions  is (TwelveBit, EightBit);
type Aquisition_D is new Integer range 0..15; -- 9+2D (12bit), 2+2D (8bit)

for ChannelPlus  use (Ch0 => 0, Ch1 => 1, Ch2 => 2, Ch3 => 3,
                      Ch4 => 4, Ch5 => 5, Ch6 => 6, Ch7 => 7);
for ChannelMinus use (Gnd => 0, Ch1 => 1, Ch2 => 2, Ch3 => 3,
                      Ch4 => 4, Ch5 => 5, Ch6 => 6, Ch7 => 7);
for Resolutions  use (TwelveBit => 0, EightBit => 1);

type Instruction is record
        EndOfLoop, Pause, Sync, Timer, Watchdog : Boolean;
        Vplus                                   : ChannelPlus;
        Vminus                                  : ChannelMinus;
        Resolution                              : Resolutions;
        AquisitionTime                          : Aquisition_D;
     end record;

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1
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LM12L458 – instruction RAM

Units_Per_Word : constant Integer := Word_Size / Storage_Unit;

for Instruction use record
       EndOfLoop      at 0*Units_Per_Word range  0.. 0;
       Pause          at 0*Units_Per_Word range  1.. 1;
       Vplus          at 0*Units_Per_Word range  2.. 4;
       Vminus         at 0*Units_Per_Word range  5.. 7;
       Sync           at 0*Units_Per_Word range  8.. 8;
       Timer          at 0*Units_Per_Word range  9.. 9;
       Resolution     at 0*Units_Per_Word range 10..10;
       Watchdog       at 0*Units_Per_Word range 11..11;
       AquisitionTime at 0*Units_Per_Word range 12..15;
    end record;

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1
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LM12L458 – instruction RAM

for Instruction'Size      use 16; -- Bits
for Instruction'Alignment use 2;  -- Storage_Units (Bytes)
for Instruction'Bit_Order use High_Order_First;

type Instructions is array (0..7) of Instruction;
   pragma Pack (Instructions);

ADC_Instructions : Instructions;
for ADC_Instructions'Address use To_Address (16#0000132D#);

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1
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LM12L458 – instruction RAM

ADC_Instructions (0) := (EndOfLoop      => False,
                         Pause          => False,
                         Vplus          => Ch0,
                         Vminus         => Gnd,
                         Sync           => True,
                         Timer          => False,
                         Resolution     => EightBit,
                         Watchdog       => False,
                         AquisitionTime => 10);

ADC_Instructions (1) := (EndOfLoop      => True,  -- last instruction
                         Pause          => False,
                         Vplus          => Ch1,
                         Vminus         => Ch2,
                         Sync           => False,
                         Timer          => False,
                         Resolution     => TwelveBit,
                         Watchdog       => False,
                         AquisitionTime => 0);

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1
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LM12L458 – instruction RAM

Data structures in ‘C’:
enum ChannelPlus  {Ch0=0, Ch1, Ch2, Ch3, Ch4, Ch5, Ch6, Ch7};
enum ChannelMinus {Gnd=0, Ch1, Ch2, Ch3, Ch4, Ch5, Ch6, Ch7};
enum Resolutions  {TwelveBit=0, EightBit};

struct {
   unsigned int EndOfLoop      : 1;
   unsigned int Pause          : 1;
   ChannelPlus  Vplus          : 3;
   ChannelMinus Vminus         : 3;
   unsigned int Sync           : 1;
   unsigned int Timer          : 1;
   Resolutions  Resolution     : 1;
   unsigned int Watchdog       : 1;
   unsigned int AquisitionTime : 4;
} Instruction;

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1
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LM12L458 – instruction RAM

Data structures in ‘C’:
struct {
   unsigned int EndOfLoop      : 1;
   unsigned int Pause          : 1;
   ChannelPlus  Vplus          : 3;
   ChannelMinus Vminus         : 3;
   unsigned int Sync           : 1;
   unsigned int Timer          : 1;
   Resolutions  Resolution     : 1;
   unsigned int Watchdog       : 1;
   unsigned int AquisitionTime : 4;
} Instruction;   

Instruction    InstructionsA[8];
InstructionsA *Instructions;
Instructions = 0x0000132D;

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1
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LM12L458 – instruction RAM

Data structures in ‘C’:
*Instructions (0).EndOfLoop      = 0;
*Instructions (0).Pause          = 0;
*Instructions (0).Vplus          = Ch0;
*Instructions (0).Vminus         = Gnd;
*Instructions (0).Sync           = 1;
*Instructions (0).Timer          = 0;
*Instructions (0).Resolution     = EightBit;
*Instructions (0).Watchdog       = 0;
*Instructions (0).AquisitionTime = 10;

If this works, you were lucky two times: 

• The compiler implemented the struct-fields in the intended places and order.

• The bit ordering in your device is the way the compiler assumed it.

don’t!
A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1
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LM12L458 – instruction RAM

☞  Macro-Assembler style programming:
In order to produce portable code in ‘C’, it is necessary to set bits manually:

unsigned int setbits (unsigned int *r, 
                      unsigned int n,          /* set n bits     */
                      unsigned int p,          /* at position p  */
                      unsigned int x)          /* to bitstring x */
{
   unsigned int mask;

   mask  = ~(~0 << n);
   *r   &= ~(mask << p);
   *r   |= (x & mask) << p;
   return (*r);
}

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1
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Asynchronism

Interrupts
Interrupt control: 

… at the individual device level

… at the system interrupt controller level

… at the operating system level
• beyond task-level (interrupt service routines)
• communicating interrupts to task
• transforming interrupts to signals

… at the language level
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Asynchronism

Interrupt service routines
(available only in some OSs, e.g. VxWorks)

Purpose:
• Allow full access to the interrupt controller (interrupt vectors, priorities).

• Change to an interrupt service routine in a predictable amount of time.

☞ Cannot operate on the level of threads or tasks!

☞ Limitations regarding the accessibility of some OS-facilities (task level system calls).
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Asynchronism

Interrupt service routines
(available only in some OSs, e.g. VxWorks)

Some VxWorks OS entries:

these calls are employed by the language run-time environment or used directly from ‘C’-code

intConnect Connect a routine to an interrupt vector

intLevelSet Set the interrupt mask level

intLock Disable interrupts (besides NMI)

intUnlock Enable interrupts

intVecBaseSet Set the interrupt vector base address

intVecBaseGet Get the interrupt vector base address

intVecSet Set an interrupt vector

intVecGet Get an interrupt vector
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Asynchronism

Interrupt service routines
(available only in some OSs, e.g. VxWorks)

Minimal hardware support (supplied by the cpu):

save essential CPU registers (IP, condition flags)
jump to the vectorized interrupt service routine

Minimal wrapper (supplied by the operating system):

save remaining CPU registers (or switch to another register set)
save stack-frame

--> execute user level interrupts service code

restore stack-frame
restore CPU registers (or switch back to the former register set)
restore IP
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Asynchronism

Interrupt service routines
(available only in some OSs, e.g. VxWorks)

Interrupt service routine to task communication methods:
• Shared memory and ring buffers: 

most low level communication scheme (should be avoided)

• Semaphore: trigger a semaphore, where a task has been blocked before.

• Monitors: 
free a task, which is blocked at a monitor entry (standard Ada-method: protected object).

• Message queues: Send messages to a task (if queue is not full).

• Pipes: Write to a pipe (if pipe is not full).

• Signals: indicate an asynchronous task switch to the scheduler
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Asynchronism

Interrupt service routines
(available only in some OSs, e.g. VxWorks)

Interrupt service routine to task communication methods:
• Shared memory and ring buffers: 

most low level communication scheme (should be avoided)

• Semaphore: trigger a semaphore, where a task has been blocked before.

• Monitors: 
free a task, which is blocked at a monitor entry (standard Ada-method: protected object).

• Message queues: Send messages to a task (if queue is not full).

• Pipes: Write to a pipe (if pipe is not full).

• Signals: indicate an asynchronous task switch to the scheduler

☞ in all of the above: the interrupt service routines cannot block!
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Asynchronism

Interrupts ➪  ‘Signals’
Interrupt control: 

… at the individual device level

… at the system interrupt controller level

… at the operating system level
• beyond task-level (interrupt service routines)
• communicating interrupts to task
• transforming interrupts to signals

… at the language level
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Asynchronism

Interrupts ➪  ‘Signals’

Some characteristics of signals:
• Involve a full task-switch operation

☞ Hard to predict timing behaviour 

• Limited information about the interrupt-source 

• Traditionally used to ‘kill’ processes

• Concept stems from a time before thread models,
therefore the signal-to-thread propagation is implementation dependent and sometimes tricky.
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Asynchronism

Interrupts ➪  ‘Signals’
Some common UNIX OS entries:

POSIX 1003.1b BSD-UNIX

signal (…) signal (…) Specify the handler associated with a signal

sigaction (…) sigvec (…) Examine or set the signal handler for a signal

kill (…) kill (…) Send a signal (overwrite all other pending signals)

sigqueue (…) N/A Send a queued signal

sigsuspend (…) pause (…) Wait for a signal

sigwaitinfo (…)
sigtimedwait (…)

Wait for a signal, but do not involve the handler

sigemptyset (…)
sigsetmask (…)

Manipulate and 
set the mask of blocked signals

sigprocmask (…)
sigblock (…) Add to a set of blocked signals
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Asynchronism

Interrupts ➪  ‘Signals’

• Signals are originally process-level synchronization methods (‘kill’) and have been expanded to
be used for everything from hardware-interrupts and timers to asynchronous task messaging.

☞ Signals are passed through a global task-scheduler.

☞ in many OSs: unpredictable ‘work-arounds’ for missing direct hardware interrupt propagation.

☞ make sure that you understand the attached strings in your OS,
before employing any signals.
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Asynchronism

Interrupts
Interrupt control: 

… at the individual device level

… at the system interrupt controller level

… at the operating system level
• beyond task-level (interrupt service routines)
• communicating interrupts to task
• transforming interrupts to signals

… at the language level
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Asynchronism

Exception/Trap/Interrupt indication
Four cases of modern exception indication:

raised:
from:

run-time 
environment

task

synchronously run-time exceptions exceptions or traps

asynchronously interrupts / signals
asynchronous transfer 

of control
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Asynchronism

Exception/Trap/Interrupt indication
Ada95:

raised:
from:

run-time 
environment

task

synchronously exceptions

asynchronously interrupt/signal 
handler

asynchronous transfer 
of control
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Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

   type Interrupt_ID          is implementation-defined;
   type Parameterless_Handler is access protected procedure;

   function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
   function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

   function  Current_Handler  (Interrupt : Interrupt_ID) 
                                        return Parameterless_Handler;
   procedure Attach_Handler   (New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
                               New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Detach_Handler   (Interrupt   : in  Interrupt_ID);

   function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;
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Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

   type Interrupt_ID          is implementation-defined;
   type Parameterless_Handler is access protected procedure;

   function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
   function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

   function  Current_Handler  (Interrupt : Interrupt_ID) 
                                        return Parameterless_Handler;
   procedure Attach_Handler   (New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
                               New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Detach_Handler   (Interrupt   : in  Interrupt_ID);

   function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;

Protected procedures need to qualify as 
an interrupt handler:

1. use pragma Interrupt_Handler

2. let the compiler evaluate the suitability
of the routine as an interrupt handler.
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Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

   type Interrupt_ID          is implementation-defined;
   type Parameterless_Handler is access protected procedure;

   function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
   function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

   function  Current_Handler  (Interrupt : Interrupt_ID) 
                                        return Parameterless_Handler;
   procedure Attach_Handler   (New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
                               New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Detach_Handler   (Interrupt   : in  Interrupt_ID);

   function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;

Protected procedures can also be 
attached statically to an interrupt:

use pragma 
Interrupt_Handler_Attach

© 2003 Uwe R. Zimmer, International University Bremen Page 130 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

   type Interrupt_ID          is implementation-defined;
   type Parameterless_Handler is access protected procedure;

   function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
   function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

   function  Current_Handler  (Interrupt : Interrupt_ID) 
                                        return Parameterless_Handler;
   procedure Attach_Handler   (New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
                               New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Detach_Handler   (Interrupt   : in  Interrupt_ID);

   function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;

The mechanism to invoke an interrupt handler may be different 
from calling a protected procedure from a task.

Implementation advice: Whenever possible, the implementation 
should allow interrupt handlers to be called directly by the hardware.
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Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

   type Interrupt_ID          is implementation-defined;
   type Parameterless_Handler is access protected procedure;

   function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
   function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

   function  Current_Handler  (Interrupt : Interrupt_ID) 
                                        return Parameterless_Handler;
   procedure Attach_Handler   (New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
                               New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Detach_Handler   (Interrupt   : in  Interrupt_ID);

   function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;

Metrics: The implementation shall document the worst case over-
head for an interrupt handler invocation (in clock cycles).
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Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

   type Interrupt_ID          is implementation-defined;
   type Parameterless_Handler is access protected procedure;

   function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
   function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

   function  Current_Handler  (Interrupt : Interrupt_ID) 
                                        return Parameterless_Handler;
   procedure Attach_Handler   (New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
                               New_Handler : in  Parameterless_Handler;
                               Interrupt   : in  Interrupt_ID);
   procedure Detach_Handler   (Interrupt   : in  Interrupt_ID);

   function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;

Direct access to the invocation address: 
May be used to connect task-entries to interrupts 
☞  risky! — use with special care.
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What is an operating system?

3. A virtual machine, which is handling exceptions!

Tasks

Hardware

OS

Typ. general OS

TasksTasksTasks
Traps / Exceptions RTI

Interrupts

Interrupt service routines
Signals (task switch)
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Hardware Fundamentals

A common computer architecture:

• Memory:

• Hierarchy, Caching, Mapping

CPUIn
te

rf
ac

eSequencer

ALU

Registers

Control
Address

Data

Memory I/O
Interface

Memory I/O
Interface

......
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Hardware Fundamentals

Memory sizes and access times: (typical workstation)

Basic memory hierarchy

CPU

Register set

Level 1 cache

Level 2 cache

Main memory

Disks

< 1 ns

< 1-2 ns

< 4 ns

< 8 ns> 256 MB

> 512 KB

> 64 KB

> 1 KB

< 8 ms> 60 GB

Typical memory sizes Typical access times
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Hardware Fundamentals

Main memory layout:

Basic memory hierarchy

CPU

Register set

Level 1 cache

Level 2 cache

I/O

Disks

< 1 ns

< 1-2 ns

< 4 ns> 512 KB

> 64 KB

> 1 KB

< 8 ms> 60 GB

Typical memory sizes Typical access times

ROM RAM RAM V-RAM I/O
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Hardware Fundamentals

Caching
• Introduce a intermediate memory (cache), 

which is:

• faster than the original memory
• organized in ‘cache lines’
• addressed via tags and a 

fast matching hardware
(e.g. associative memory)

Caché is actually French, meaning ‘hidden’, 
hence the cache memory is supposed to be ‘invisible’ to the 

user (the ‘shadow memory’). 

0
1
2
3

l

0 1 2 3 k-1

Cache
0
1
2
3

k-1
k

k+1
k+2
k+3

2k-1

(n-1)k
(n-1)k+1
(n-1)k+2
(n-1)k+3

nk-1

Tag

Cache line
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Hardware Fundamentals

Cache misses
Memory read requests to cells, which are not 
currently stored in the cache, result in:

1. transfer of the full cache line into an empty
of replaceable cache entry.

2. transfer of the data directly from the main
memory to the requester.

0
1
2
3

l

0 1 2 3 k-1

Cache miss
0
1
2
3

k-1
k

k+1
k+2
k+3

2k-1

(n-1)k
(n-1)k+1
(n-1)k+2
(n-1)k+3

nk-1

m
m

Tag

Cache line

Read from address m
Deliver memory cell m
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Hardware Fundamentals

Cache hits
Memory read requests to cells, which are cur-
rently stored in the cache, result in:

• transfer of the requested data from the 
cache memory to the requester.

• no access to the main memory

0
1
2
3

l

0 1 2 3 k-1

Cache hit
0
1
2
3

k-1
k

k+1
k+2
k+3

2k-1

(n-1)k
(n-1)k+1
(n-1)k+2
(n-1)k+3

nk-1

m+1m+1

Tag

Cache line

Read from address m+1
Deliver memory cell m+1
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Hardware Fundamentals

Cache write through
Write requests to cells, which are currently 
stored in the cache, result in:

1. update of the cache entry

2. update of the main memory cell

0
1
2
3

l

0 1 2 3 k-1

Cache write through
0
1
2
3

k-1
k

k+1
k+2
k+3

2k-1

(n-1)k
(n-1)k+1
(n-1)k+2
(n-1)k+3

nk-1

m
m

Tag

Cache line

Write to address m

Write through to main memory
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Hardware Fundamentals

Cache, delayed writes
Write requests to cells, which are currently 
stored in the cache, result in:

1. update of the cache entry

2. transfer of the full cache line 
(or the ‘touched’ entries)
at a later point in time.

☞ Critical in multi-processor 
/ shared memory environments!

0
1
2
3

l

0 1 2 3 k-1

Cache write (delayed)
0
1
2
3

k-1
k

k+1
k+2
k+3

2k-1

(n-1)k
(n-1)k+1
(n-1)k+2
(n-1)k+3

nk-1

m
m

Tag

Cache line

Write to address m

delayed write
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Hardware Fundamentals

Caching considerations
• Caches (two-level memories) are meant 

to maximize the throughput – not the predictability of a system.

• Cache performance is relying on:

• Spatial locality:
nearby memory cells are likely to be accessed soon

• Temporal locality:
recently addressed memory cells are likely to be accessed again soon

☞ The length of the cache lines are given by the relation between spatial and temporal locality

• According to some practical evaluations, 
the locality radius seems to be independent of the size of the main memory

☞  thus there is an absolute maximum cache-size, beyond which the performance is no longer
improving (memory caches of up to about 128KB are considered adequate in most cases).
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Hardware Fundamentals

More on memory locality
• Imperative programming will generate linear sequences of instructions mostly 

(☞  spatial locality).

• Functional and declarative programming turns out to generate more ‘jumpy’ code, 
but due to extensive usage of recursions it will show strong temporal locality.

• Under all programming paradigms CPU-time is often spent in relatively small loops/iterations
(☞  spatial & temporal locality)

• Languages, which are using explicit data structures (like arrays and records) 
will store this data in a compact format (☞  spatial locality).

☞ The locality assumptions will thus be justified in the vast majority of all cases 

… still it’s an heuristic.

© 2003 Uwe R. Zimmer, International University Bremen Page 144 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

A common computer architecture:

• I/O interfaces:

• devices, controllers, communication with CPU, basic device programming

CPUIn
te

rf
ac

eSequencer

ALU

Registers

Control
Address

Data

Memory I/O
Interface

Memory I/O
Interface

......
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Hardware Fundamentals

I/O devices

☞ the essential parts of a computer system, 
which (may) make the computations meaningful.

• Some typical classes of I/O devices:

• clocks, timers
• user-interface devices
• document I/O devices (scanners, printers, …)
• audio & video equipment
• network interfaces
• mass storage devices
• all kinds of sensors and actuators in control applications
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Hardware Fundamentals

I/O controllers
• Interfacing between a local bus-system 

(system bus, peripheral bus) 
and an concrete hardware device

• Accessible from the CPU via 
control, status and data registers

• Major tasks:

• convert electrical signals
• buffer data in case of different signal speeds
• multiplexing different channels
• communicate with the external device independently of the CPU as far as possible 

☞  often up to the level of a complete embedded µcontroller
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Hardware Fundamentals

I/O interfaces via dedicated I/O-buses

• I/O protection is given by protected CPU instructions ☞  need to be done in protected mode. 

• Potentially less efficient, since all I/O operations need to be done in the OS-kernel
no obvious DMA - everything needs to be transferred via the CPU, I/O bus is processor specific

CPUIn
te

rf
ac

eSequencer

ALU

Registers
......Memory I/O

Interface
Memory I/O

Interface

Interrupts

System bus

I/O bus
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Hardware Fundamentals

I/O interfaces via system-bus

• I/O protection requires / is identical with memory protection, DMA possibilities, expandible

• System bus can be a bottle-neck, I/O interfaces are processor dependent

CPUIn
te

rf
ac

eSequencer

ALU

Registers
......Memory I/O

Interface
Memory I/O

Interface

Interrupts

System bus

© 2003 Uwe R. Zimmer, International University Bremen Page 149 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

I/O interfaces via system-bus and I/O bus controller

• I/O protection requires / is identical with memory protection, DMA possibilities, expandible

• System bus load can be reduced, I/O bus is platform independent, e.g. PCI, SCSI, …

CPUIn
te

rf
ac

eSequencer

ALU

Registers
......Memory I/O

Interface
Memory I/O

Interface

I/O
bus

contr.System bus

Interrupts

I/O bus
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Hardware Fundamentals

Basic I/O device programming
• Status driven: the computer polls for information 

(used in dedicated µcontrollers and pre-scheduled hard real-time environments)

• Interrupt driven: The data generating device may issue an interrupt 
when new data had been detected / converted or when internal buffers are full

• Program controlled: The interrupts are handled by the CPU directly 
(by changing tasks, calling a procedure, raising an exception, 
free tasks on a semaphore, sending a message to a task, …)

• Program initiated: The interrupts are handled by a DMA-controller. 
No processing is performed. Depending on the DMA setup, 
cycle stealing can occur and needs to be considered for the worst case computing times.

• Channel program controlled: The interrupts are handled by a dedicated channel
device. The data is transferred and processed. Optional memory-based communication
with the CPU. ☞  the channel controller is usually itself a dedicated µengine / µcontroller.
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Hardware Fundamentals

Concurrency is an intrinsic feature of real architectures!

☞ Operating systems need to take care of all asynchronous and concurrent resources.

☞ Concurrency and synchronization are fundamentals of operating systems design!

CPUIn
te

rf
ac

eSequencer

ALU

Registers
......Memory I/O

Interface
Memory I/O

Interface

I/O
bus

contr.System bus

Interrupts

I/O bus
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µControllers

MC68HC05
• Clock: max. 2.1MHz internal (4.2MHz external)

• Registers: PC, SP (16 bit); Accu, Index, CC (8 bit)

• RAM: 176bytes

• ROM: 5936bytes

• EEPROM: 256bytes

• Power saving modes (stop, wait, slow)

• Serial: 46-76800 baud (at 2.4576MHz)

• Parallel I/O: 3*8bit; Parallel in: 1*8bit

• Timers: 1*16bit

• A/D: 8 channels, 8bit

• PWM: 2 generators

P
or

t A

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

P
or

t B

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

P
or

t C

PC0

PC1

PC2/ECLK

PC3

PC4

PC5

PC6

PC7

16-bit
programmable

timer

P
or

t D

PD0/AN0

PD1/AN1

PD2/AN2

PD3/AN3

PD4/AN4

PD5/AN5

PD6/AN6

PD7/AN7

Oscillator

176 bytes
RAM

COP watchdog
RESET

IRQ

VDD

VSS

OSC1

OSC2

M68HC05
CPU

SCI
A/D converter

PLM

TCAP1

TCAP2

TCMP1

TCMP2

VRH

VRL

RDI

SCLK

TDO

VPP1

256 bytes
EEPROM

Charge pump

÷ 2 / ÷ 32

PLMA D/A

PLMB D/A

8-bit

432 bytes

User ROM
5950 bytes

self check ROM

(including 14 bytes
User vectors)
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MAIN BRCLR 6,TSR,MAIN ;Loop here till Output Compare flag set
LDA OCMP+1 ;Low byte of Output Compare register
ADD #$D4 ;Add 
STA TEMPA ;Save till high half calculated
LDA OCMP ;High byte of Output Compare register
ADC #$30 ;Add  (+carry)
STA OCMP ;Update high byte of Output Compare register
LDA TEMPA ;Get low half of updated value
STA OCMP+1 ;Update low half and reset Output Compare flag
LDA TIC ;Get current TIC value
INCA ;TIC := TIC + 1
STA TIC ;Update TIC
CMP #20 ;20th TIC?, 1 second passed?
BLO NOSEC ;If not, skip next clear
CLR TIC ;Clear TIC on 20th

NOSEC EQU *
JSR TIME ;Update time-of-day & day-of-week
JSR KYPAD ;Check/service keypad
JSR A2D ;Check Temp Sensors
JSR HVAC ;Update Heat/Air Cond Outputs
JSR LCD ;Update LCD display
BRA MAIN ;End of main loop

∆tl 50ms 4µs⁄( )mod28 $D4= =

∆th 50ms 4µs⁄( )div28 $30= =
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µControllers

MPC565
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µControllers MPC565

• -40º - +125ºC, power dissipation: 0.8 - 1.12W

• CPU: PowerPC core (incl. FPU & BBC), 40/56MHz

• Memory: flash: 1M, static: 36K, 32 32-bit registers

• Time processing units: 3 (via dual-ported RAM)

• Timers: 22 channels (PWM & RTC supported)

• A/D convertors: 40 channels, 10bit, 250kHz

• Can-bus: 3 TOUCAN modules

• Serial: 2 interfaces

• Interrupt controller: 48 sources on 32 levels

• Data link controller: 
SAE J1850 class B communications module

• Real-time embedded application development
interface: NEXUS debug port (IEEE-ISTO 5001-1999)

• Packing: 352/388 ball PBGA
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µControllers MPC565

Time processing unit
a special-purpose µcontroller:

• Independent µengine.

• 16 digital I/O channels with 
independent match and 
capture capabilities.

• Meant to operate these 
I/O channels for timing 
control purposes.

• Predefined µengine command
set (ROM functions 
in control store).

• 2 16-bit time bases
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Summary 

Hardware Fundamentals
• General computer architecture

• CPU

• Registers
• Traps/Interrupts & protected modes

• Memory

• General memory layout
• Caching

• I/O systems

• I/O controllers, I/O buses, device programming

• Some examples of µprocessors

• Small scale µcontroller (68HC05)
• Full scale integrated processor (MCP565)

3
Processes

Uwe R. Zimmer – International University Bremen
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Introduction to processes and threads

1 CPU 
per control-flow

for specific configurations only:

• distributed µcontrollers

• physical process control 
systems:
1 cpu per task, 
connected via a typ. fast 
bus-system (VME, PCI)

☞ no need for process 
management
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Introduction to processes and threads

1 CPU
for all control-flows

• OS: emulate one CPU for 
every control-flow

☞ multi-tasking 
operating system

• support for memory 
protection becomes essential
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Introduction to processes and threads

Processes 

• Process ::= 
address space 
+ control flow(s)

• Kernel has full knowledge
about all processes as well as
their requirements 
and current resources 
(see below)
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Introduction to processes and threads

Threads
Threads (individual control-flows) 
can be handled:

• inside the kernel:

• kernel scheduling
• I/O block-releases 

according to external 
signal

• outside the kernel:

• user-level scheduling
• no signals to threads
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Introduction to processes and threads

Multi-processor-
systems

• The kernel may execute 
multiple processes at a time.

☞ Address space and resource 
restrictions of individual 
CPUs and processes/threads 
need to be considered.

☞ Caching, synchronization, 
and memory protection need 
to be adapted.
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Introduction to processes and threads

Symmetric Multi-
processing (SMP)

• all CPUs share the same 
physical address space 
(and access to resources)

☞ processes/threads can be 
executed on 
any available CPU
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Introduction to processes and threads

Processes ↔ Threads
Also processes can share memory 
and the exact interpretation of threads is different in different operating systems:

☞ Threads can be regarded as a group of processes, which share some resources 
(☞  process-hierarchy)

☞ Due to the overlap in resources, 
the attributes attached to threads are less than for ‘first-class-citizen-processes’

☞ Thread switching and inter-thread communications 
can be more efficient than on full-process-level

☞ Scheduling of threads depends on the actual thread implementations:

• e.g. user-level control-flows, which the kernel has no knowledge about at all
• e.g. kernel-level control-flows, which are handled as processes with some restrictions
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Introduction to processes and threads

Process Control Blocks
• Process Id

• Process state: 
{created, ready, executing, blocked, suspended, …}

• Scheduling info: 
priorities, deadlines, consumed CPU-time, …

• CPU state:
saved/restored information while context switches
(incl. the program counter, stack pointer, …)

• Memory spaces / privileges:
memory base, limits, shared areas, …

• Allocated resources / privileges:
open and requested devices and files

… PCBs are usually enqueued at a certain state or condition

Process Id

Process state

Saved registers
(complete CPU state)

Scheduling info

Memory spaces /
privileges 

Allocated resources /
privileges

Process Control Blocks (PCBs)
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Process states

• created: the task is ready to run, 
but not yet considered by any dispatcher 
– waiting for admission

• ready: ready to run 
– waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run 
– waiting for a a resource to become 
available
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Process states

• created: the task is ready to run, 
but not yet considered by any dispatcher 
– waiting for admission

• ready: ready to run 
– waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run 
– waiting for a resource

• suspended states: swapped out of main 
memory (not time critical processes)
– waiting for main memory space 
(and other resources) 
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Process states

• created: the task is ready to run, 
but not yet considered by any dispatcher 
– waiting for admission

• ready: ready to run 
– waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run 
– waiting for a resource

• suspended states: swapped out of main 
memory (not time critical processes)
– waiting for main memory space 
(and other resources)

☞   dispatching and suspending
can be independent modules here
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Process states

CPU
creation

batch ready

ready, suspended

blocked, suspended

blocked

pre-emption or cycle done

termination

block or synchronize

executing
admitted dispatch

unblock suspend (swap-out)

swap-in

swap-out

unblock

suspend (swap-out)
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Synchronization

Synchronization methods
• Shared memory based synchronization

• Semaphores ☞  ‘C’, POSIX — Dijkstra
• Conditional critical regions ☞  Edison (experimental)
• Monitors ☞  Modula-1, Mesa — Dijkstra, Hoare, …
• Mutexes & conditional variables ☞  POSIX
• Synchronized methods ☞  Real-time Java
• Protected objects ☞  Ada95

• Message based synchronization

• Asynchronous messages ☞  e.g. POSIX, …
• Synchronous messages ☞  e.g. Ada95, CHILL, Occam2
• Remote invocation, remote procedure call ☞  e.g. Ada95, …
• Synchronization in distributed systems ☞  e.g. CORBA, …
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Synchronization in operating systems
☞ There are many concurrent entities in operating systems:

• Interrupt handlers
•    Processes
•       Dispatchers
•             Timers
•                         …

… and … operating systems need to be expandible or very robust …

Thus all data is declared …

☞ … either local (and protected by language-, or hardware-mechanisms)

☞ … or it is ‘out in the open’ and all access need to be synchronized!
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The need for synchronization
Synchronization: the run-time overhead?
☞ Is the potential overhead justified for simple data-structures:

                                  int i;

                                    ……

         i++;  {in one thread}        |        i=0; {in another thread}

• Are those operations atomic?

• Do we really need to introduce full featured synchronization methods here?

© 2003 Uwe R. Zimmer, International University Bremen Page 175 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

The need for synchronization
                                  int i;

                                    ……

         i++;  {in one thread}        |        i=0; {in another thread}

• Depending on the hardware and the compiler, it might be atomic, it might be not:

☞ Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic
… but perhaps it is an 8-bit integer.

☞ Any manipulations on the main memory will not be atomic 
… but perhaps it is a register.

☞ Broken down to a load-operate-store cycle, the operations will not be atomic
… but perhaps the processor supplies atomic operations for the actual case.

☞ Assuming that all ‘perhapses’ are applying: how to expand this code?
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Synchronization

The need for synchronization
                                  int i;

                                    ……

         i++;  {in one thread}        |        i=0; {in another thread}

☞ Unfortunately: the chances that such programming errors turn out are usually small and some
implicit by chance synchronization in the rest of the system might prevent them at all.

• Many effects stemming from asynchronous memory accesses are interpreted as (hardware)
‘glitches’, since they are rare and effect usually only some parts of the data. 

• On assembler level: synchronization by employing knowledge about the atomicity of 
CPU-operations and interrupt structures is nevertheless possible and done frequently.

In anything higher than assembler level on small, predictable µcontrollers:

☞  Measures for synchronization are required!
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Some synchronization terms:

• Condition synchronization: 
synchronize a task with an event given by another task.

• Critical sections: 
code fragments which contain access to shared resources and need to be executed without
interference with other critical sections, sharing the same resources.

• Mutual exclusion: 
protection against asynchronous access to critical sections.

• Atomic operations: 
the set of operations, which atomicity is guaranteed by the underlying system (e.g. hardware). 

☞  there must be a set of atomic operations to start with!
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Synchronization by flags
Word-access atomicity:

Assuming that any access to a word in the system is an atomic operation:

e.g. assigning two values (not wider than the size of word) to a memory cell simultaneously:

Task 1:    x := 0;       |       Task 2:    x := 5;

will result in either x = 0 xor x = 5 — and no other value is ever observable.
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Synchronization

Synchronization by flags
Assuming further that there is a shared memory area between two processes:

• A set of processes agree on a (word-size) atomic variable operating 
as a flag to indicate synchronization conditions.
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Synchronization

Condition synchronization by flags

var Flag : boolean := false;

process P1;
   statement X;

   repeat until Flag;

   statement Y;
end P1;

process P2;
   statement A;

   Flag := true;

   statement B;
end P2;

Sequence of operations: [A | X] ➠ [B | Y]
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Synchronization

Synchronization by flags
Assuming further that there is a shared memory between two processes:

• A set of processes agree on a (word-size) atomic variable operating 
as a flag to indicate synchronization conditions:

Memory flag method is ok for simple condition synchronization, but …

☞ … is not sufficient for general mutual exclusion in critical sections!

☞ … busy-waiting is required to poll the synchronization condition!

☞  More powerful synchronization operations 
are required for critical sections
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Synchronization

Synchronization by semaphores
(Dijkstra 1968)

Assuming further that there is a shared memory between two processes:

• a set of processes agree on a variable S operating 
as a flag to indicate synchronization conditions … and …

• an atomic operation P on S — P stands for ‘passeren’ (Dutch for ‘pass’):

• P: [if S > 0 then S := S - 1] also: ‘Wait’, ‘Suspend_Until_True’

• an atomic operation V on S — V stands for ‘vrygeven’ (Dutch for ‘to release’):

• V: [S := S + 1] also: ‘Signal’, ‘Set_True’

☞ the variable S is then called a semaphore.

OS-level: P is usually also suspending the current task until S > 0.
CPU-level: P indicates whether it was successful, but the operation is not blocking.
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Synchronization

Condition synchronization by semaphores

var sync : semaphore := 0;

process P1;
   statement X;

   wait (sync);

   statement Y;
end P1;

process P2;
   statement A;

   signal (sync);

   statement B;
end P2;

Sequence of operations: [A | X] ➠ [B | Y]
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Synchronization

Mutual exclusion by semaphores

var mutex : semaphore := 1;

process P1;
   statement X;

   wait (mutex);
      statement Y;
   signal (mutex);

   statement Z;
end P1;

process P2;
   statement A;

   wait (mutex);
      statement B;
   signal (mutex);

   statement C;
end P2;

Sequence of operations: [A | X] ➠ [B ➠  Y xor Y ➠  B] ➠ [C | Z]
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Synchronization

Semaphores

Types of semaphores:
• General semaphores (counting semaphores): non-negative number; (range limited by the system)
P and V increment and decrement the semaphore by one.

• Binary semaphores: restricted to [0, 1]; Multiple V (Signal) calls have the same effect than 1 call.

• binary semaphores are sufficient to create all other semaphore forms.
• atomic ‘test-and-set’ operations at hardware level are usually binary semaphores.

• Quantity semaphores: The increment (and decrement) value for the semaphore is specified as a
parameter with P and V.
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Semaphores in Ada95
package Ada.Synchronous_Task_Control is

   type Suspension_Object is limited private;

   procedure Set_True  (S : in out Suspension_Object);
   procedure Set_False (S : in out Suspension_Object);

   function Current_State (S : Suspension_Object) return Boolean;

   procedure Suspend_Until_True (S : in out Suspension_Object);

private
   … -- not specified by the language
end Ada.Synchronous_Task_Control;
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Synchronization

Semaphores in Ada95
package Ada.Synchronous_Task_Control is

   type Suspension_Object is limited private;

   procedure Set_True  (S : in out Suspension_Object);
   procedure Set_False (S : in out Suspension_Object);

   function Current_State (S : Suspension_Object) return Boolean;

   procedure Suspend_Until_True (S : in out Suspension_Object);

private
   … -- not specified by the language
end Ada.Synchronous_Task_Control;

• only one task can be blocked at Suspend_Until_True! (‘strict version of a binary semaphore’)
(Program_Error will be raised with the second task trying to suspend itself)

☞ no queues! ☞  minimal run-time overhead
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Synchronization

Semaphores in Ada95
package Ada.Synchronous_Task_Control is

   type Suspension_Object is limited private;

   procedure Set_True  (S : in out Suspension_Object);
   procedure Set_False (S : in out Suspension_Object);

   function Current_State (S : Suspension_Object) return Boolean;

   procedure Suspend_Until_True (S : in out Suspension_Object);

private
   … -- not specified by the language
end Ada.Synchronous_Task_Control;

• only one task can be blocked at Suspend_Until_True! (strict version of a binary semaphore)
(Program_Error will be raised with the second task trying to suspend itself)

☞ no queues ☞  minimal run-time overhead

for v
ery sp

ecial cases o
nly, 

in general:

medieval
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Semaphores in POSIX

int sem_init      (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy   (sem_t *sem_location);

int sem_wait      (sem_t *sem_location);
int sem_trywait   (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post      (sem_t *sem_location);

int sem_getvalue  (sem_t *sem_location, int *value);



© 2003 Uwe R. Zimmer, International University Bremen Page 190 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Semaphores in POSIX

int sem_init      (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy   (sem_t *sem_location);

int sem_wait      (sem_t *sem_location);
int sem_trywait   (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post      (sem_t *sem_location);

int sem_getvalue  (sem_t *sem_location, int *value);

generate semaphore for usage between processes
(otherwise for threads of the same process only)
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Semaphores in POSIX

int sem_init      (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy   (sem_t *sem_location);

int sem_wait      (sem_t *sem_location);
int sem_trywait   (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post      (sem_t *sem_location);

int sem_getvalue  (sem_t *sem_location, int *value);

delivers the number of waiting processes as a negative integer, 
if there are processes waiting on this semaphore
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Semaphores in POSIX
void allocate (priority_t P)
{
   sem_wait (&mutex);
   if (busy) {
      sem_post (&mutex);
      sem_wait (&cond[P]);
   }
   busy = 1;
   sem_post (&mutex);
}

—————
sem_t mutex, cond[2];
typedef emun {low, high} priority_t;
int waiting
int busy

void deallocate (priority_t P)
{
   sem_wait (&mutex);
   busy = 0;
   sem_getvalue (&cond[high], 
                 &waiting);
   if (waiting < 0) {
      sem_post (&cond[high]);
   }
   else {
      sem_getvalue (&cond[low], 
                    &waiting);
      if (waiting < 0) {
         sem_post (&cond[low]);
      }
      else {
         sem_post (&mutex);
}  }  }
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Deadlock by semaphores
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;

X, Y : Suspension_Object;

task B;

task body B is

begin
   …

   Suspend_Until_True (Y);
   Suspend_Until_True (X);
   …
end B;

task A;

task body A is

begin
   …

   Suspend_Until_True (X);
   Suspend_Until_True (Y);
   …
end A;

☞ could raise a Program_Error in Ada95.

☞ produces a potential deadlock when implemented with general semaphores.

☞ Deadlocks can be generated by all kinds of synchronization methods.
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Criticism of semaphores

• Semaphores are not bound to any resource or method or region
☞  Adding or deleting a single semaphore operation some place might stall the whole system

• Semaphores are scattered all over the code 
☞  hard to read, error-prone

☞ Semaphores are considered not adequate for complex systems.

(all concurrent and real-time languages offer more abstract and safer synchronization methods).
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Conditional critical regions

Basic idea:
• Critical regions are a set of code sections in different processes,

which are guaranteed to be executed in mutual exclusion:

• Shared data structures are grouped in named regions 
and are tagged as being private resources.

• Processes are prohibited from entering a critical region, 
when another process is active in any associated critical region.

• Condition synchronisation is provided by guards:

• When a process wishes to enter a critical region it evaluates the guard (under mutual
exclusion). If the guard evaluates false, the process is suspended / delayed.

• As with semaphores, no access order can be assumed.
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Conditional critical regions
buffer : buffer_t;

resource critial_buffer_region : buffer;

process producer;

   loop

      region critial_buffer_region
         when buffer.size < N do

            -- place in buffer etc.

      end region

   end loop;
end producer

process consumer;

   loop

      region critial_buffer_region 
         when buffer.size > 0 do

            -- take from buffer etc.

      end region

   end loop;
end consumer
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Criticism of conditional critical regions
• All guards need to be re-evaluated, 

when any conditional critical region is left:

☞  all involved processes are activated to test their guards
☞  there is no order in the re-evaluation phase ☞  potential livelocks

• As with semaphores the conditional critical regions 
are scattered all over the code.

☞  on a larger scale: same problems as with semaphores.

The language Edison uses conditional critical regions
for synchronization in a multiprocessor environment
(each process is associated with exactly one processor).

© 2003 Uwe R. Zimmer, International University Bremen Page 198 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors
(Modula-1, Mesa — Dijkstra, Hoare)

Basic idea:
• Collect all operations and data-structures shared in critical regions in one place, the monitor.

• Formulate all operations as procedures or functions.

• Prohibit access to data-structures, other than by the monitor-procedures.

• Assure mutual exclusion of the monitor-procedures.
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Monitors
monitor buffer;

   export append, take;

   var (* declare protected vars *)

   procedure append (I : integer);
      …

   procedure take (var I : integer);
      …

begin
   (* initialisation *)
end; How to realize conditional synchronization?
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Monitors with condition synchronization
(Hoare)

Hoare-monitors:

• Condition variables are implemented by semaphores (Wait and Signal).

• Queues for tasks suspended on condition variables are realized.

• A suspended task releases its lock on the monitor, enabling another task to enter.

☞ More efficient evaluation of the guards: 
the task leaving the monitor can evaluate all guards and the right tasks can be activated.

☞ Blocked tasks may be ordered and livelocks prevented.
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Monitors with condition synchronization
monitor buffer;
   export append, take;
   var BUF                       : array [ … ] of integer;
   top, base                     : 0..size-1; 
   NumberInBuffer                : integer;
   spaceavailable, itemavailable : condition;

   procedure append (I : integer);
      begin
         if NumberInBuffer = size then

            wait (spaceavailable);

         end if;
         BUF[top] := I; NumberInBuffer := NumberInBuffer+1;
         top := (top+1) mod size;

         signal (itemavailable)

      end append;   …
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Monitors with condition synchronization 
… 
   procedure take (var I : integer);
      begin
         if NumberInBuffer = 0 then

            wait (itemavailable);

         end if;
         I := BUF[base];
         base := (base+1) mod size;
         NumberInBuffer := NumberInBuffer-1;

         signal (spaceavailable);

      end take;

begin (* initialisation *)
   NumberInBuffer := 0;
   top := 0; base := 0
end;

The signalling and the 
waiting process are both 

active in the monitor!
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Monitors with condition synchronization

Suggestions to overcome the multiple-tasks-in-monitor-problem:

• A signal is allowed only as the last action of a process before it leaves the monitor.

• A signal operation has the side-effect of executing a return statement.

• Hoare, Modula-1, POSIX: a signal operation which unblocks another process 
has the side-effect of blocking the current process; 
this process will only execute again once the monitor is unlocked again.

• A signal operation which unblocks a process does not block the caller, 
but the unblocked process must gain access to the monitor again.
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Monitors in Modula-1

• wait (s, r): 
delays the caller until condition variable s is true (r is the rank (or ‘priority’) of the caller).

• send (s):
If a process is waiting for the condition variable s, 
then the process at the top of the queue of the highest filled rank is activated 
(and the caller suspended). 

• awaited (s):
check for waiting processes on s. 
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Monitors in Modula-1
INTERFACE MODULE resource_control;

   DEFINE allocate, deallocate;
   VAR busy : BOOLEAN; free : SIGNAL;

   PROCEDURE allocate;
   BEGIN
      IF busy THEN WAIT (free) END;
      busy := TRUE;
   END;

   PROCEDURE deallocate;
   BEGIN
      busy := FALSE;
      SEND (free); -- or: IF AWAITED (free) THEN SEND (free);
   END;

BEGIN
   busy := false;
END.
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Monitors in ‘C’ / POSIX
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init      (      pthread_mutex_t     *mutex,
                             const pthread_mutexattr_t *attr);
int pthread_mutex_destroy   (      pthread_mutex_t     *mutex);

int pthread_cond_init       (      pthread_cond_t      *cond,
                             const pthread_condattr_t  *attr);
int pthread_cond_destroy    (      pthread_cond_t      *cond);

…
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Monitors in ‘C’ / POSIX
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init      (      pthread_mutex_t     *mutex,
                             const pthread_mutexattr_t *attr);
int pthread_mutex_destroy   (      pthread_mutex_t     *mutex);

int pthread_cond_init       (      pthread_cond_t      *cond,
                             const pthread_condattr_t  *attr);
int pthread_cond_destroy    (      pthread_cond_t      *cond);

…

Attributes include:

• semantics for trying to lock a mutex which
is locked already by the same thread

• sharing of mutexes and 
condition variables between processes

• priority ceiling

• clock used for timeouts

• … … …
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Monitors in ‘C’ / POSIX
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init      (      pthread_mutex_t     *mutex,
                             const pthread_mutexattr_t *attr);
int pthread_mutex_destroy   (      pthread_mutex_t     *mutex);

int pthread_cond_init       (      pthread_cond_t      *cond,
                             const pthread_condattr_t  *attr);
int pthread_cond_destroy    (      pthread_cond_t      *cond);

…

Undefined, if locked

Undefined, if threads are waiting
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Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock      (      pthread_mutex_t     *mutex);
int pthread_mutex_trylock   (      pthread_mutex_t     *mutex);
int pthread_mutex_timedlock (      pthread_mutex_t     *mutex,
                             const struct timespec     *abstime);
int pthread_mutex_unlock    (      pthread_mutex_t     *mutex);

int pthread_cond_wait       (      pthread_cond_t      *cond,
                                   pthread_mutex_t     *mutex);
int pthread_cond_timedwait  (      pthread_cond_t      *cond,
                                   pthread_mutex_t     *mutex, 
                             const struct timespec     *abstime);

int pthread_cond_signal     (      pthread_cond_t      *cond);
int pthread_cond_broadcast  (      pthread_cond_t      *cond);
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Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock      (      pthread_mutex_t     *mutex);
int pthread_mutex_trylock   (      pthread_mutex_t     *mutex);
int pthread_mutex_timedlock (      pthread_mutex_t     *mutex,
                             const struct timespec     *abstime);
int pthread_mutex_unlock    (      pthread_mutex_t     *mutex);

int pthread_cond_wait       (      pthread_cond_t      *cond,
                                   pthread_mutex_t     *mutex);
int pthread_cond_timedwait  (      pthread_cond_t      *cond,
                                   pthread_mutex_t     *mutex, 
                             const struct timespec     *abstime);

int pthread_cond_signal     (      pthread_cond_t      *cond);
int pthread_cond_broadcast  (      pthread_cond_t      *cond);

unblocking ‘at least one’ thread

unblocking all threads
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Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock      (      pthread_mutex_t     *mutex);
int pthread_mutex_trylock   (      pthread_mutex_t     *mutex);
int pthread_mutex_timedlock (      pthread_mutex_t     *mutex,
                             const struct timespec     *abstime);
int pthread_mutex_unlock    (      pthread_mutex_t     *mutex);

int pthread_cond_wait       (      pthread_cond_t      *cond,
                                   pthread_mutex_t     *mutex);
int pthread_cond_timedwait  (      pthread_cond_t      *cond,
                                   pthread_mutex_t     *mutex, 
                             const struct timespec     *abstime);

int pthread_cond_signal     (      pthread_cond_t      *cond);
int pthread_cond_broadcast  (      pthread_cond_t      *cond);

undefined, 

if called out of order!
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Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock      (      pthread_mutex_t     *mutex);
int pthread_mutex_trylock   (      pthread_mutex_t     *mutex);
int pthread_mutex_timedlock (      pthread_mutex_t     *mutex,
                             const struct timespec     *abstime);
int pthread_mutex_unlock    (      pthread_mutex_t     *mutex);

int pthread_cond_wait       (      pthread_cond_t      *cond,
                                   pthread_mutex_t     *mutex);
int pthread_cond_timedwait  (      pthread_cond_t      *cond,
                                   pthread_mutex_t     *mutex, 
                             const struct timespec     *abstime);

int pthread_cond_signal     (      pthread_cond_t      *cond);
int pthread_cond_broadcast  (      pthread_cond_t      *cond);

can be called any time, anywhere
(multiple lock reaction can be specified)
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Monitors in ‘C’ / POSIX
(example, definitions)

#define BUFF_SIZE 10

typedef struct {
   pthread_mutex_t mutex;
   pthread_cond_t  buffer_not_full;
   pthread_cond_t  buffer_not_empty;
   int             count, first, last;
   int             buf[BUFF_SIZE];
} buffer;
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Monitors in ‘C’ / POSIX
(example, operations)

int append (int item, buffer *B) {

   PTHREAD_MUTEX_LOCK (&B->mutex);
   while (B->count == BUFF_SIZE) {
      PTHREAD_COND_WAIT (
         &B->buffer_not_full, 
         &B->mutex); 
   }
   PTHREAD_MUTEX_UNLOCK (&B->mutex);
   PTHREAD_COND_SIGNAL (
      &B->buffer_not_empty);
   return 0;
}

int take (int *item, buffer *B) {

   PTHREAD_MUTEX_LOCK (&B->mutex);
   while (B->count == 0) {
      PTHREAD_COND_WAIT (
         &B->buffer_not_empty, 
         &B->mutex);
   }
   PTHREAD_MUTEX_UNLOCK (&B->mutex);
   PTHREAD_COND_SIGNAL (
      &B->buffer_not_full);
   return 0;
}
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Monitors in Java
Java provides two mechanisms to construct monitors:

• Synchronized methods and code blocks
all methods and code blocks which are using the synchronized tag 
are mutually exclusive with respect to the addressed class.

• Notification methods: wait, notify, and notifyAll
can be used only in synchronized regions and are waking any or all threads, 
which are waiting in the same synchronized object.
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Monitors in Java
Considerations:

1. Synchronized methods and code blocks:
• In order to implement a monitor all methods in an object need to be synchronized.

☞  any other standard method can break the monitor and enter at any time.

• Methods outside the monitor-object can synchronize at this object.

☞  it is impossible to analyse a monitor locally, since lock accesses can exist all over the system.

• Static data is shared between all objects of a class.

☞  access to static data need to be synchronized over the whole class.

Either in static synchronized blocks: synchronized (this.getClass()) {…} 
or in static methods: public synchronized static <method> {…}
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Monitors in Java
Considerations:

2. Notification methods: wait, notify, and notifyAll

• wait suspends the thread and releases the local lock only

☞  nested wait-calls will keep all enclosing locks.

• notify and notifyAll does not release the lock. 

☞  methods, which are activated via notification need to wait for lock-access.

• wait-suspended threads are hold in a queue (Real-time Java only!), 
thus notify{All} is waking the threads in order ☞  livelocks are prevented at this level .

• There are no explicit conditional variables.

☞  every notified thread needs 
to wait for the lock to be released and to re-evaluate its entry condition
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Monitors in Java
(multiple-readers-one-writer-example)

each of the readers uses these monitor.calls:

startRead ();
   // read the shared data only
stopRead ();

each of the writers uses these monitor.calls:

startWrite ();
   // manipulate the shared data
stopWrite ();

☞  construct a monitor, which allows 
multiple readers 

or 
one writer 

at a time inside the critical regions
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Monitors in Java
(multiple-readers-one-writer-example: wait-notifyAll method)

public class ReadersWriters

{

   private int     readers        = 0;
   private int     waitingWriters = 0;
   private boolean writing        = false;
   
…
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Monitors in Java
(multiple-readers-one-writer-example: wait-notifyAll method)

…  public synchronized void StartWrite () throws InterruptedException
   {
      while (readers > 0 || writing)
      {
         waitingWriters++; 
         wait(); 
         waitingWriters--;
      }
      writing = true;
   }

   public synchronized void StopWrite()
   {
      writing = false;
      notifyAll ();
   } …
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Monitors in Java
(multiple-readers-one-writer-example: wait-notifyAll method)

…  public synchronized void StartRead () throws InterruptedException
   {
      while (writing || waitingWriters > 0) 
      {
         wait();
      }
      readers++;
   }

   public synchronized void StopRead()
   {
      readers--;
      if (readers == 0) notifyAll();
   }
}

whenever a synchronized region is left:

• all thread are notified

• all threads are 
re-evaluating their guards
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Monitors in Java
Standard monitor solution:

• declare the monitored data-structures private to the monitor object (non-static).

• introduce a class ConditionVariable:

     public class ConditionVariable {
        public boolean wantToSleep = false;
     }

• introduce synchronization-scopes in monitor-methods: 
☞  synchronize on the adequate conditional variables first and 
☞  synchronize on the monitor-object second.

• make sure that all methods in the monitor are implementing the correct synchronizations.

• make sure that no other method in the whole system is synchronizing on this monitor-object.
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Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

public class ReadersWriters
{

   private int     readers        = 0;
   private int     waitingReaders = 0;
   private int     waitingWriters = 0;
   private boolean writing        = false;

   ConditionVariable OkToRead  = new ConditionVariable ();
   ConditionVariable OkToWrite = new ConditionVariable ();

…
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Monitors in Java
…  public void StartWrite () throws InterruptedException
   {
      synchronized (OkToWrite) 
      {
         synchronized (this) 
         {
            if (writing | readers > 0) {
               waitingWriters++;
               OkToWrite.wantToSleep = true;
            } else {
               writing = true;
               OkToWrite.wantToSleep = false;
            }
         } 
         if (OkToWrite.wantToSleep) OkToWrite.wait ();
   }  } …
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Monitors in Java
…  public void StopWrite ()
   {
      synchronized (OkToRead)
      {
         synchronized (OkToWrite)
         {
            synchronized (this)
            {
               if (waitingWriters > 0) {
                  waitingWriters--;
                  OkToWrite.notify (); // wakeup one writer
               } else {
                  writing = false;
                  OkToRead.notifyAll (); // wakeup all readers
                  readers = waitingReaders;
                  waitingReaders = 0;
               }
   }  }  }  } …
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Monitors in Java
…  public void StartRead () throws InterruptedException
   {
      synchronized (OkToRead) 
      {
         synchronized (this)
         {
            if (writing | waitingWriters > 0) {
               waitingReaders++;
               OkToRead.wantToSleep = true;
            } else {
               readers++;
               OkToRead.wantToSleep = false;
            }
         }
         if (OkToRead.wantToSleep) OkToRead.wait ();
   }  } …
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Monitors in Java
…  public void StopRead ()
   {
      synchronized (OkToWrite)
      {
         synchronized (this)
         {
            readers--;
            if (readers == 0 & waitingWriters > 0) {
               waitingWriters--;
               OkToWrite.notify ();
            }
         }
      }
   }
}
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Object-orientation and synchronization

Since mutual exclusion, notification, and condition synchronization schemes need to be designed 
and analysed considering the implementation of all involved methods and guards:

☞ new methods cannot be added without re-evaluating the whole class!

In opposition to the general re-usage idea of object-oriented programming, 
the re-usage of synchronized classes (e.g. monitors) need to be considered carefully.

☞ The parent class might need to be adapted in order to suit the global synchronization scheme.

☞ Inheritance anomaly (Matsuoka & Yonezawa ‘93)

Methods to design and analyse expandible synchronized systems exist, 
but are fairly complex and are not provided in any current object-oriented language.
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Monitors in POSIX & Java

☞  flexible and universal,
but relies on conventions rather than compilers

POSIX offers conditional variables

Java is more supportive than POSIX 
in terms of data-encapsulation

Extreme care must be taken when employing 
object-oriented programming and monitors
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Nested monitor calls
Assuming a thread in a monitor is calling an operation in another monitor 
and is suspended at a conditional variable there:

☞ the called monitor is aware of the suspension and allows other threads to enter.

☞ the calling monitor is possibly not aware of the suspension and keeps its lock!

☞ the unjustified locked calling monitor 
reduces the system performance and leads to potential deadlocks.

Suggestions to solve this situation:

• Maintain the lock anyway: e.g. POSIX, Real-time Java

• Prohibit nested procedure calls: e.g. Modula-1

• Provide constructs which specify the release of a monitor lock for remote calls, e.g. Ada95
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Criticism of monitors

• Mutual exclusion is solved elegantly and safely.

• Conditional synchronization is on the level of semaphores still
☞  all criticism on semaphores apply

☞ mixture of low-level and high-level synchronization constructs.

© 2003 Uwe R. Zimmer, International University Bremen Page 232 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects
Combine 

• the encapsulation feature of monitors 

with 

• the coordinated entries of conditional critical regions

to 

☞  Protected objects

• all controlled data and operations are encapsulated
• all operations are mutual exclusive
• entry guards are attached to operations
• the protected interface allows for operations on data
• no protected data is accessible (other than by defined operations)
• tasks are queued (according to their priorities)
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Synchronization by protected objects in Ada95
(simultaneous read-access)

Some read-only operations do not need to be mutual exclusive:

protected type Shared_Data (Initial : Data_Item) is

   function  Read return Data_Item;
   procedure Write (New_Value : in Data_Item);

private
   The_Data : Data_Item := Initial;
end Shared_Data_Item;

• protected functions can have ‘in’ parameters only and are not allowed to alter the private data
(enforced by the compiler).

☞ protected functions allow simultaneous access (but mutual exclusive with other operations).

• there is no defined priority between functions and other protected operations in Ada95.
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Synchronization by protected objects in Ada95
Condition synchronization is realized in the form of protected procedures 
combined with boolean conditional variables (barriers): ☞  entries in Ada95:

Buffer_Size : constant Integer := 10;

type    Index    is mod Buffer_Size;
subtype Count    is Natural range 0 .. Buffer_Size;
type    Buffer_T is array (Index) of Data_Item;

protected type Bounded_Buffer is

   entry Get (Item : out Data_Item);
   entry Put (Item : in Data_Item);
private
   First  : Index := Index'First;
   Last   : Index := Index'Last;
   Num    : Count := 0;
   Buffer : Buffer_T;

end Bounded_Buffer;
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Synchronization by protected objects in Ada95
(barriers)

protected body Bounded_Buffer is

   entry Get (Item : out Data_Item) when Num > 0 is
      begin
         Item  := Buffer (First);
         First := First + 1;
         Num   := Num - 1;
      end Get;

   entry Put (Item : in Data_Item) when Num < Buffer_Size is
      begin
         Last          := Last + 1;
         Buffer (Last) := Item;
         Num           := Num + 1;
      end Put;

end Bounded_Buffer;
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Synchronization by protected objects in Ada95
Protected entries are used like task entries:

Buffer : Bounded_Buffer;

select
   Buffer.Put (Some_Data); 
or 
   delay 10.0; 
      -- do something after 10 s.
end select;

select
   Buffer.Get (Some_Data);
else
   -- do something else
end select;

select
   delay 10.0;
then abort
   Buffer.Put (Some_Data); 
      -- try to enter for 10 s.
end select;

select
   Buffer.Get (Some_Data);
then abort
   -- meanwhile try something else
end select;
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Synchronization by protected objects in Ada95
(barrier evaluation)

Barrier evaluations and task activations:

• on calling a protected entry, the associated barrier is evaluated 
(only those parts of the barrier which might have changed since the last evaluation).

• on leaving a protected procedure or entry, related barriers with tasks queued are evaluated
(only those parts of the barriers which might have been altered by this procedure / entry 
or which might have changed since the last evaluation).

Barriers are not evaluated while inside a protected object or on leaving a protected function.
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Synchronization by protected objects in Ada95
(operations on entry queues)

The count attribute indicate the number of tasks waiting at a specific queue:

protected Blocker is

   entry Proceed;

private
   Release : Boolean := False;
end Blocker;

protected body Blocker is

   entry Proceed 
      when Proceed’count = 5 
        or Release is
   begin
      Release := Proceed’count > 0;
   end Proceed;

end Blocker;

© 2003 Uwe R. Zimmer, International University Bremen Page 239 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(operations on entry queues)

The count attribute indicate the number of tasks waiting at a specific queue:

protected type Broadcast is

   entry Receive  (M: out Message);
   procedure Send (M: in  Message);

private

   New_Message : Message;
   Arrived     : Boolean := False;

end Blocker;

protected body Broadcast is

   entry Receive (M: out Message)
      when Arrived is
   begin
      M := New_Message
      Arrived := Receive’count > 0;
   end Proceed;

   procedure Send (M: in  Message) is
   begin
      New_Message := M;
      Arrived := Receive’count > 0;
   end Send;

end Blocker;
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Synchronization by protected objects in Ada95
(entry families, requeue & private entries)

Further refinements on task control by:

• Entry families: 
a protected entry declaration can contain a discrete subtype selector, which can be evaluated 
by the barrier (other parameters cannot be evaluated by barriers) and implements an 
array of protected entries.

• Requeue facility: 
protected operations can use ‘requeue’ to redirect tasks to other internal, external, or private
entries. The current protected operation is finished and the lock on the object is released.

‘Internal progress first’-rule: internally requeued tasks are placed at the head of the waiting queue!

• Private entries: 
protected entries which are not accessible from outside the protected object, 
but can be employed as destinations for requeue operations.
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Synchronization by protected objects in Ada95
(requeue & private entries)

How to implement a queue, at which every task 
can be released only once per triggering event?

package Single_Release is

   entry     Wait;
   procedure Trigger;

end Single_Release;

© 2003 Uwe R. Zimmer, International University Bremen Page 242 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks
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Synchronization by protected objects in Ada95
(requeue & private entries)

How to implement a queue, at which every task 
can be released only once per triggering event?

☞ e.g. by employing a second (private) entry:

package Single_Release is

   entry     Wait;
   procedure Trigger;

private
   Front_Door,
   Main_Door  : Boolean := False;

   entry Queue;

end Single_Release;
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Synchronization by protected objects in Ada95
(requeue & private entries)

package body Single_Release is

   entry Wait
      when Front_Door is

      begin
         if Wait'Count = 0 then
            Front_Door := False;
            Main_Door  := True;
         end if;

         requeue Queue;

      end Wait;

   entry Queue
      when Main_Door is

      begin
         if Queue’count = 0 then
            Main_Door := False;
         end if;;
      end Queue;

   procedure Trigger is
      begin
         Front_Door := True;
      end Trigger;

end Single_Release;opening the main door 
before requeuing?
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Synchronization by protected objects in Ada95
(restrictions applying to protected operations)

Code inside a protected procedure, function or entry is bound to non-blocking operations 
(which would keep the whole protected object locked).

Thus the following operations are prohibited:

• entry call statements

• delay statements

• task creations or activations

• calls to sub-programs which contains a potentially blocking operation

• select statements

• accept statements

☞  The requeue facility allows for a potentially blocking operation, 
but releases the current lock!
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Summary

Shared memory based 
synchronization

General

Criteria:

• level of abstraction

• centralized vs. distributed concepts

• support for consistency
and correctness validations

• error sensitivity

• predictability

• efficiency

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods 

(mutual exclusion)
Conditional 

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)
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Summary

Shared memory based 
synchronization

POSIX

• all low level constructs available.

• no connection with the 
actual data-structures.

• error-prone.

• non-determinism introduced by 
‘release some’ semantics of 
conditional variables (cond_signal). Semaphores

(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods 

(mutual exclusion)
Conditional 

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)
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Summary

Shared memory based 
synchronization

Java

• mutual exclusion 
(synchronized methods) 
as the only support.

• general notification feature 
(no conditional variables)

• non-restricted object oriented extension 
introduces hard to predict timing 
behaviours.

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods 

(mutual exclusion)
Conditional 

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)
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Summary

Shared memory based 
synchronization

Modula-1, CHILL

• full monitor implementation 
(Dijkstra-Hoare monitor concept).

… no more, no less, …

☞ all features of and criticism 
about monitors apply.

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods 

(mutual exclusion)
Conditional 

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)
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Summary

Shared memory based 
synchronization

Ada95

• complete synchronization support

• low-level semaphores 
for very special cases.

• predictable timing (☞  scheduler).

☞ most memory oriented synchronization 
conditions are realized by the compiler 
or the run-time environment directly 
rather then the programmer. 

(Ada95 is currently without any mainstream 
competitor in this field)

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods 

(mutual exclusion)
Conditional 

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)
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Synchronization

Message-based synchronization
• Synchronization model

• Asynchronous
• Synchronous
• Remote invocation

• Addressing (name space)

• direct communication
• mail-box communication

• Message structure

• arbitrary
• restricted to ‘basic’ types
• restricted to un-typed communications
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Message-based synchronization
Asynchronous messages

If there is a listener: 

☞ send the message directly

async. send async. receiveasync. send async. receive

timetime

P2P1
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Synchronization

Message-based synchronization
Asynchronous messages

If the receiver becomes available at a later stage: 

☞ the message need to be buffered

async. send

async. receive

async. send

async. receive

timetime

P2P1
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Synchronization

Message-based synchronization
Synchronous messages

Delay the sender:

• until the receiver got the message

sync. send sync. receive

timetime

P2P1
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Synchronization

Message-based synchronization
Synchronous messages

Delay the sender:

• until the receiver got the message

☞ two asynchronous messages required

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

timetime

P2P1
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Synchronization

Message-based synchronization
Synchronous messages

Delay the sender until:

• a receiver is available 

• a receiver got the message

sync. send

sync. receive

timetime

P2P1
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Synchronization

Message-based synchronization
Synchronous messages

If the receiver becomes available at a later stage: 

☞ messages need to be buffered

async. send async. receive

async. sendasync. receive

async. send

async. receive

async. sendasync. receive

timetime

P2P1
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Synchronization

Message-based synchronization
Remote invocation

Delay the sender, until:

• a receiver got the message

• a receiver executed an addressed routine

rem. invoc. invocation

timetime

P2P1
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Synchronization

Message-based synchronization
Remote invocation

Delay the sender, until:

• a receiver got the message

• a receiver executed an addressed routine

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

timetime

P2P1
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Synchronization

Message-based synchronization
Remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver executed an addressed routine

rem. invoc.

invocation

timetime

P2P1
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Synchronization

Message-based synchronization
Remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver executed an addressed routine

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

async. send

async. receive

async. sendasync. receive

timetime

P2P1
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Synchronization

Message-based synchronization
Asynchronous remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

rem. invoc.

invocation

timetime

P2P1
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Synchronization

Message-based synchronization
Asynchronous remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

async. send async. receive

async. sendasync. receive

async. send

async. receive

async. sendasync. receive

timetime

P2P1
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Synchronization

Synchronous vs. asynchronous communications
Purpose ‘synchronization’: ☞  synchronous messages / remote invocations
Purpose ‘in-time delivery’: ☞  asynchronous messages / asynchronous remote invocations

☞ ‘Real’ synchronous message passing in distributed systems requires hardware support.

☞ Asynchronous message passing requires the usage of (infinite?) buffers.

• Synchronous communications are emulated 
by a combination of asynchronous messages in some systems.

• Asynchronous communications can be emulated in synchronized message passing systems by 
introducing ‘buffer-tasks’ (de-coupling sender and receiver as well as allowing for broadcasts).
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Synchronization

Addressing (name space)
Direct vs. indirect:

send     <message> to   <process-name>
wait for <message> from <process-name>
send     <message> to   <mailbox>
wait for <message> from <mailbox>

Asymmetrical addressing:

send     <message> to …
wait for <message>

☞ Client-server paradigm
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Synchronization

Addressing (name space)

Communication medium:

Connections Functionality

one-to-one buffer, queue, synchronization

one-to-many multicast

one-to-all broadcast

many-to-one local server, synchronization

all-to-one general server, synchronization

many-to-many general network- or bus-system
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Synchronization

Message structure
• Machine dependent representations need to be taken care of in a distributed environment.

• Communication system is often outside the typed language environment.

Most communication systems are handling streams (packets) of a basic element type only.

☞ Conversion routines for data-structures other then the basic element type are supplied …

… manually (POSIX)
… semi-automatic (Real-time CORBA)
… automatic and are typed-persistent (Ada95)
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Synchronization

Message structure (Ada95)
package Ada.Streams is
   pragma Pure (Streams);

   type Root_Stream_Type is abstract tagged limited private;

   type Stream_Element is mod implementation-defined;

   type Stream_Element_Offset is range implementation-defined;

   subtype Stream_Element_Count is
      Stream_Element_Offset range 0..Stream_Element_Offset'Last;

   type Stream_Element_Array is
      array (Stream_Element_Offset range <>) of Stream_Element;

   procedure Read  (…) is abstract;
   procedure Write (…) is abstract;

private
   … -- not specified by the language
end Ada.Streams;
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Synchronization

Message structure (Ada95)
Reading and writing values of any type to a stream:

procedure S'Write(
   Stream : access Ada.Streams.Root_Stream_Type'Class; Item : in  T);
procedure S'Class'Write(
   Stream : access Ada.Streams.Root_Stream_Type'Class; Item : in  T'Class);

procedure S'Read(
   Stream : access Ada.Streams.Root_Stream_Type'Class; Item : out T);
procedure S'Class'Read(
   Stream : access Ada.Streams.Root_Stream_Type'Class; Item : out T'Class)

Reading and writing values, bounds and discriminants of any type to a stream:

procedure S'Output(
   Stream : access Ada.Streams.Root_Stream_Type'Class; Item : in  T);

function  S'Input(
   Stream : access Ada.Streams.Root_Stream_Type'Class) return T;
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Message-based synchronization
Practical message-passing systems:

POSIX:
“message queues”:
☞  ordered indirect [asymmetrical | symmetrical] asynchronous
byte-level many-to-many message passing

CHILL:
“buffers”, ”signals”:
☞  ordered indirect [asymmetrical | symmetrical] [synchronous | asynchronous] 
typed [many-to-many | many-to-one] message passing

Occam2:
“channels”:
☞  indirect symmetrical synchronous fully-typed one-to-one message passing

Ada95:
“(extended) rendezvous”:
☞  ordered direct asymmetrical [synchronous | asynchronous] 
fully-typed many-to-one remote invocation

Java: no communication via messages available
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Synchronization

Message-based synchronization
Practical message-passing systems:
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POSIX: * * * * * bytes * message passing

CHILL: * * * * * * typed * * message passing

Occam2: * * * fully typed * message passing

Ada95: * * * * * fully typed * remote invocation

Java: no communication via messages available



© 2003 Uwe R. Zimmer, International University Bremen Page 271 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Occam2
Communication is ensured by means of a ‘channel’, which:

• can be used by one writer and one reader process only

• and is synchronous:

CHAN OF INT SensorChannel:

PAR
   INT reading:
   SEQ i = 0 FOR 1000
      SEQ
         -- generate reading
         SensorChannel ! reading

   INT data:
   SEQ i = 0 FOR 1000
      SEQ
         SensorChannel ? data
         -- employ data

 tasks are synchronized 
at these points
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Message-based synchronization in CHILL
CHILL is the ‘CCITT High Level Language’,
where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.
The CHILL language development was started in 1973 and standardized in 1979.

☞ strong support for concurrency, synchronization, and communication 
(monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;
…
send SensorBuffer (reading);     |         receive case
                                 |            (SensorBuffer in data) : …
                                 |         esac;

signal SensorChannel = (int) to consumertype;
…
send SensorChannel (reading)     |         receive case
   to consumer                   |            (SensorChannel in data): …
                                 |         esac;
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Synchronization

Message-based synchronization in CHILL
CHILL is the ‘CCITT High Level Language’,
where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.
The CHILL language development was started in 1973 and standardized in 1979.

☞ strong support for concurrency, synchronization, and communication 
(monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;
…
send SensorBuffer (reading);     |         receive case
                                 |            (SensorBuffer in data) : …
                                 |         esac;

signal SensorChannel = (int) to consumertype;
…
send SensorChannel (reading)     |         receive case
   to consumer                   |            (SensorChannel in data): …
                                 |         esac;

asynchronous

synchronous
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Message-based synchronization in Ada95
Ada95 supports remote invocations ((extended) rendezvous) in form of:

• entry points in tasks

• full set of parameter profiles supported

If the local and the remote task are on different architectures, 
or if an intermediate communication system is employed:

☞ parameters incl. bounds and discriminants are ‘tunnelled’ through byte-stream-formats.

Synchronization:

• both tasks are synchronized at the beginning of the remote invocation (☞  ‘rendezvous’)

• the calling task if blocked until the remote routine is completed (☞  ‘extended rendezvous’)
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Synchronization

Message-based synchronization in Ada95
Remote invocation

(Rendezvous)

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver started an addressed routine

rem. invoc.

invocation

timetime

P2P1

synchronized
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Synchronization

Message-based synchronization in Ada95
Remote invocation

(Extended rendezvous)

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver executed an addressed routine

• a receiver passed the results

rem. invoc.

invocation

timetime

P2P1

send results

get results

synchronized

released
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Synchronization

Message-based synchronization in Ada95
(Rendezvous)

…
<entry_name> [(index)] <parameters>
… -- waiting for synchronization
… -- 
… --
… --
…
…
…
…
…

…
…
…
…
…
accept <entry_name> [(index)]
          <parameter_profile>;
… 
… 
… 
…
…

synchronized
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Synchronization

Message-based synchronization in Ada95
(Rendezvous)

…
…
…
…
…
<entry_name> [(index)] <parameters>
…
…
…
…

…
accept <entry_name> [(index)]
          <parameter_profile>;
… -- waiting for synchronization
… -- 
… --
…
… 
… 
… 

synchronized

© 2003 Uwe R. Zimmer, International University Bremen Page 279 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
(Extended rendezvous)

…
<entry_name> [(index)] <parameters>
… -- waiting for synchronization
… --
… --
… --
      … --
      … -- blocked
      … --
      … --
…

…
…
…
…
…
accept <entry_name> [(index)]
          <parameter_profile> do
   … --
   … -- remote invocation
   … -- 
end <entry_name>;
…

synchronizedsynchronized

synchronizedreturn results
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Synchronization

Message-based synchronization in Ada95
(Extended rendezvous)

…
… 
… 
… 
… 
<entry_name> [(index)] <parameters>
      … --
      … -- blocked
      … --
      … --
…

…
accept <entry_name> [(index)]
          <parameter_profile> do
… -- waiting for synchronization
… --
… --
   … --
   … --
   … -- remote invocation
   … -- 
end <entry_name>;
…

synchronizedsynchronized

synchronizedreturn results
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Synchronization

Message-based synchronization in Ada95
Some things to consider for task-entries:

• In contrast to protected-object-entries, task-entries can call other blocking operations.

• Accept statements can be nested (but need to be different).

☞  helpful e.g. to synchronize more than two tasks.

• Accept statements can have a dedicated exception handler (like any other code-block).

Exceptions, which are not handled during the rendezvous phase 
are propagated to all involved tasks.

• Parameters cannot be direct ‘access’ parameters, but can be access-types.
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Synchronization

Message-based synchronization in Ada95
Some things to consider for task-entries:

• In contrast to protected-object-entries, task-entries can call other blocking operations.

• Accept statements can be nested (but need to be different).

☞  helpful e.g. to synchronize more than two tasks.

• Accept statements can have a dedicated exception handler (like any other code-block).

Exceptions, which are not handled during the rendezvous phase 
are propagated to all involved tasks.

• Parameters cannot be direct ‘access’ parameters, but can be access-types.

• ‘count on task-entries is defined, but is only accessible from inside the tasks owning the entry.

• Entry families (arrays of entries) are supported.

• Private entries (accessible for internal tasks) are supported.

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Selective waiting
Dijkstra’s guarded commands:

if x <= y -> m := x
❏   x >= y -> m := y
fi

☞ the programmer needs to design the alternatives as ‘parallel’ options: 
all cases need to be covered and overlapping conditions need to lead to the same result

Extremely different philosophy: ‘C’-switch:

switch (x) {
   case 1: r := 3;
   case 2: r := 2; break;
   case 3: r := 1;
}

☞ the sequence of alternatives has a crucial role.

selection is 
non-deterministic!

© 2003 Uwe R. Zimmer, International University Bremen Page 284 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based selective synchronization in Ada95
Forms of selective waiting:

select_statement ::= selective_accept       |
                     conditional_entry_call |
                     timed_entry_call       |
                     asynchronous_select

… underlying concept: Dijkstra’s guarded commands

selective_accept implements …

• … wait for more than a single rendezvous at any one time

• … time-out if no rendezvous is forthcoming within a specified time

• … withdraw its offer to communicate if no rendezvous is available immediately

• … terminate if no clients can possibly call its entries
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Synchronization

Message-based selective synchronization in Ada95
selective_accept in its full syntactical form in Ada95:

selective_accept ::= select
                             [guard] selective_accept_alternative
                      { or   [guard] selective_accept_alternative
                      [ else sequence_of_statements ]
                     end select;

guard ::= when <condition> =>

selective_accept_alternative ::= accept_alternative    | 
                                 delay_alternative     |
                                 terminate_alternative

accept_alternative    ::= accept_statement [ sequence_of_statements ]
delay_alternative     ::= delay_statement [ sequence_of_statements ]
terminate_alternative ::= terminate;
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Basic forms of selective synchronization
(select-or)

select
   accept … do …
   end …
or
   accept … do …
   end …
or
   accept … do …
   end …
or
   accept … do …
   end …
…
end select;

• If none of the named entries have been
called, the task is suspended until one of the
entries is addressed by another task.

• The selection of an accept is non-determinis-
tic, in case that multiple entries are called.

☞ The selection can be controlled by means of
the real-time systems annex.

• The select statement is completed, when at
least one of the entries has been called and
those accept-block has been executed.
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Basic forms of selective synchronization
(guarded select-or)

select
   when <condition> =>
      accept … do …
      end …
or
   when <condition> =>
      accept … do …
      end …
or
   when <condition> =>
      accept … do …
      end …
…
end select;

• Analogue to Dijkstra’s guarded commands

• all accepts closed will raise a Program_Error

☞ set of conditions need to be complete
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Synchronization

Basic forms of selective synchronization
(guarded select-or-else)

select
   [ when <condition> => ]
      accept … do …
      end …
or
   [ when <condition> => ]
      accept … do …
      end …
or
   [ when <condition> => ]
      accept … do …
      end …
else
   <statements>
…
end select;

• If none of the open entries can be accepted
immediately, the else alternative is selected.

• There can be only one else alternative and it
cannot be guarded.
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Synchronization

Basic forms of selective synchronization
(guarded select-or-delay)

select
   [ when <condition> => ]
      accept … do …
      end …
or
   [ when <condition> => ]
      delay …
      <statements>
or
   [ when <condition> => ]
      delay …
      <statements>
…
end select;

• If none of the open entries has been called
before the amount of time specified in the
earliest open delay alternative, this delay al-
ternative is selected.

• There can be multiple delay alternatives if
more than one delay alternative expires si-
multaneously, either one may be chosen.

• delay and delay until can be employed.
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Synchronization

Basic forms of selective synchronization
(guarded select-or-terminate)

select
   [ when <condition> => ]
      accept … do …
      end …
or
   [ when <condition> => ]
      accept … do …
      end …
or
   [ when <condition> => ]
      terminate;
…
end select;

The terminate alternative is chosen if none of the 
entries can ever be called again, i.e.:

• all tasks which can possibly call any of the
named entries are terminated.

or 

• all remaining active tasks which can possibly
call any of the named entries are waiting on
selective terminate statements and none of
their open entries can be called any longer.

☞ This task and all its dependent waiting-for-
termination tasks are terminated together.
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Synchronization

Basic forms of selective synchronization
(guarded select-or-else select-or-delay select-or-terminate)

select
   [ when <condition> => ]
      accept … do …
      end …
or
   [ when <condition> => ]
      accept … do …
      end …
else
   <statements>
…
end select;

select
   [ when <condition> => ]
      accept … do …

      end …
or
   [ when <condition> => ]
      delay …
      <statements>
…
end select;

select
   [ when <condition> => ]
      accept … do …
      end …
or
   [ when <condition> => ]
      terminate;
…
end select;

else - delay - terminate
alternatives 

cannot be mixed!
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Synchronization

Non-determinism in selective synchronizations
☞ If equal alternatives are given, then the program correctness (incl. the timing specifications)

must not be affected by the actual selection.

• If alternatives have different priorities, 
this can be expressed e.g. by means of the Ada real-time annex.

• Non-determinism in concurrent systems is or can be also introduced by:

• non-ordered monitor or other queues
• buffering / routing message passing systems
• non-deterministic schedulers
• timer quantization
• … any form of asynchronism
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Synchronization

Conditional & timed entry-calls
conditional_entry_call ::=
   select
      entry_call_statement
      [sequence_of_statements]
   else
      sequence_of_statements
   end select;

select
   Light_Monitor.Wait_for_Light;
   Lux := True;
else
   Lux := False;
end;

timed_entry_call ::=
   select
      entry_call_statement
      [sequence_of_statements]
   or
      delay_alternative
   end select;

select
   Controller.Request (Medium)
      (Some_Item);
   -- process data
or
   delay 45.0;
   -- try something else
end select;
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Synchronization

Conditional & timed entry-calls
conditional_entry_call ::=
   select
      entry_call_statement
      [sequence_of_statements]
   else
      sequence_of_statements
   end select;

select
   Light_Monitor.Wait_for_Light;
   Lux := True;
else
   Lux := False;
end;

timed_entry_call ::=
   select
      entry_call_statement
      [sequence_of_statements]
   or
      delay_alternative
   end select;

select
   Controller.Request (Medium)
      (Some_Item);
   -- process data
or
   delay 45.0;
   -- try something else
end select;

There is only 
one entry call

and either 
one ‘else ‘

or 
one ‘or delay’
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Synchronization

Conditional & timed entry-calls
conditional_entry_call ::=
   select
      entry_call_statement
      [sequence_of_statements]
   else
      sequence_of_statements
   end select;

select
   Light_Monitor.Wait_for_Light;
   Lux := True;
else
   Lux := False;
end;

timed_entry_call ::=
   select
      entry_call_statement
      [sequence_of_statements]
   or
      delay_alternative
   end select;

select
   Controller.Request (Medium)
      (Some_Item);
   -- process data
or
   delay 45.0;
   -- try something else
end select;

The idea in both cases is to withdraw a synchronization request
and not to implement polling or busy-waiting.
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Summary

Synchronization

• Shared memory based synchronization

• Flags, condition variables, semaphores, …
… conditional critical regions, monitors, protected objects.

• Guard evaluation times, nested monitor calls, deadlocks, …
… simultaneous reading, queue management.

• Synchronization and object orientation, blocking operations and re-queuing.

• Message based synchronization

• Synchronization models, addressing modes, message structures
• Selective accepts, selective calls
• Indeterminism in message based synchronization
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Deadlocks

Synchronization may lead to

☞  DEADLOCKS

… a closer look on deadlocks 
and what can be done about them …
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Deadlocks

Reserving resources in reverse order

var reserve_1, reserve_2: semaphore := 1;

process P1;
   statement X;

   wait (reserve_1);
   wait (reserve_2);
      statement Y; - employ resources
   signal (reserve_2);
   signal (reserve_1);

   statement Z;
end P1;

process P2;
   statement A;

   wait (reserve_2);
   wait (reserve_1);
      statement B; - employ resources
   signal (reserve_1);
   signal (reserve_2);

   statement C;
end P2;

Sequence of operations : [A | X] ➠ {[B ➠  Y] xor [Y ➠  B]} ➠ [C | Z]
or : [A | X] ➠ deadlocked!
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Deadlocks

Circular dependencies

var reserve_1, reserve_2, reserve_3: semaphore := 1;

process P1;
   statement X;

   wait (reserve_1);
   wait (reserve_2);
      statement Y;
   signal (reserve_2);
   signal (reserve_1);

   statement Z;
end P1;

process P2;
   statement A;

   wait (reserve_2);
   wait (reserve_3);
      statement B;
   signal (reserve_3);
   signal (reserve_2);

   statement C;
end P2;

process P3;
   statement K;

   wait (reserve_3);
   wait (reserve_1);
      statement L;
   signal (reserve_1);
   signal (reserve_3);

   statement M;
end P3;

Sequence of operations : [A | X | K] ➠ {[B ➠  Y➠  L] xor …} ➠ [C | Z | M]
or : [A | X | K] ➠ deadlocked!
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Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion: 
resources cannot be used simultaneously

2. Hold and wait: 
a process applies for a resource, while it is holding another resource (sequential requests)

3. No pre-emption: 
resources cannot be pre-empted; only the process itself can release resources

4. Circular wait: 
a ring list of processes exists, where every process waits for release of a resource by the next one

☞  system may be deadlocked, when all these conditions apply!
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Deadlocks

Deadlock strategies:

1. Ignorance
☞  Kill unresponsive processes

2.Deadlock detection & recovery
☞  find deadlocked processes and recover the system in a coordinated way

3.Deadlock avoidance
☞  the resulting system state is checked before any resources are actually assigned

4.Deadlock prevention
☞  the system prevents deadlocks by its structure
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Deadlocks

Deadlock prevention
(remove one of the four deadlock conditions)

1. Mutual exclusion: 
Applicable to specific cases only; usually this can only be removed by replication of resources.

2. Hold and wait: 
Processes are forced to allocate all their required resources at once, 
often at the time of admittance to the main dispatcher – done in many static realtime-systems.

3. No pre-emption: 
If the current state of a resource can be stored and restored easily, then they can be pre-empted.
Usually resources are pre-empted from processes, which are currently not ready to run.

4. Circular wait: 
A circular wait can be avoided by a global ordering of all resources, e.g. resources can only be 
requested in a specific order – hard to maintain in a dynamic system configuration.
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

 ; vertices and edges

 ; vertices are processes or resource types:

 ; processes

 ; resource types

 ; claims, requests and assignments

 ; claims

 ; requests

 ; assignments

Note: a resourcefully may have more than one instance

Pi

Rj

Pi

Rj

Pi

Rj

holds

requests

claims

RAG V E,{ }=
V P R∪=

P P1 P2 … Pn, , ,{ }=
R R1 R2 …Rk, ,{ }=

E Er Ea Ec∪ ∪=

Ec Pi Rj …,→{ }=
Er Pi Rj …,→{ }=
Ea Ri Pj …,→{ }=

© 2003 Uwe R. Zimmer, International University Bremen Page 304 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

the two process, reverse allocation deadlock:
P1

R1

Rj

P2

R2
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Is this a deadlock situation? ☞
P1

R1

Rj

R3

P2

R2

P3
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

no, there is no circular dependency
P1

R1

Rj

R3

P2

R2

P3
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Is this a deadlock situation? ☞
P1

R1

Rj

R3

P2 P3

R2
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

yes, there are circular dependencies:

as well as: 

☞  IF some processes are deadlocked, THEN 
there are cycles in the resource allocation graph

P1

R1

Rj

R3

P2 P3

R2P1 R1 P2 R3 P3 R2 P1→ → → → → →

P2 R3 P3 R2 P2→ → → →
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Assuming all claims of  are known in advance,

☞  Could the deadlock situation be avoided?

P1

R1

Rj

R3

P2 P3

R2

P3
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

yes, when resources are assigned so that there 
are no resulting circular dependencies:

☞ in this case: assign  to  (instead of )

P1

R1

Rj

R3

P2 P3

R2

R3 P2 P3
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

as well as: 

☞  ARE some processes deadlocked, IF 
there are cycles in the resource allocation graph?

P1

R1

Rj

R3

P2 P3

R2

P1 R1 P2 R3 P3 R2 P1→ → → → → →

P2 R3 P3 R2 P2→ → → →
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

yes, 
if there is only one instance per resource type:

☞  IF there are cycles in the 
resource allocation graph 

AND there is only one instance per resource type, 
THEN some processes are deadlocked!

P1

R1

Rj

P2

R2
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

no, 
if there is more than one instance 

per resource type:

☞  IF there are cycles in the 
resource allocation graph 

AND there is more than one instance per resource 
type, THEN some processes may be deadlocked!

P1

R1

Rj

R3

P2 P3

P4

R2
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Deadlocks

How to detect deadlocks 
in the general case?
(of multiple instances per resource)

P1

R1

Rj

R3

P2 P3

R2
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Deadlocks

Banker’s algorithm
There are   processes and  resource types in the system. Let  and :

•
☞  the number of resources of type  allocated by process .

•
☞  the number of available resources of type .

•
☞  the number of resources of type  required by process  to complete eventually.

•
☞  the number of currently requested resources of type  by process .

Temporary variables:

• : boolean vector indicating processes, which may complete right now.

• : available resources, if some processes complete and de-allocate.

n m i 1…n∈ j 1…m∈

Allocated i j,[ ]
j i

Free j[ ]
j

Claimed i j,[ ]
j i

Request i j,[ ]
j i

Completed i[ ]
Simulated_Free j[ ]



© 2003 Uwe R. Zimmer, International University Bremen Page 316 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Banker’s algorithm
Checking for a deadlock situation

1. ; : 

2.While : 
   and :  do: {request i can be granted}
 
           : 
           

3. If :  then the system is deadlock-free!
(otherwise all processes  with  are deadlocked)

Simulated_Free Free⇐ i∀ Completed i[ ] False⇐

i∃ Completed i[ ]¬
j∀ Requested i j,[ ] Simulated_Free j[ ]<

j∀ Simulated_Free j[ ] Simulated_Free j[ ] Allocated i j,[ ]+⇐
Completed i[ ] True⇐

i∀ Completed i[ ]
i Completed i[ ] False=
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Deadlocks

Banker’s algorithm
Checking the current system state

1. ; : 

2.While : 
   and :  do: {meaning process i can complete}
 
           : 
           

3. If :  then the system is safe!
(e.g. no process is currently deadlocked and no process can be deadlocked in any future state)

Simulated_Free Free⇐ i∀ Completed i[ ] False⇐

i∃ Completed i[ ]¬
j∀ Claimed i j,[ ] Simulated_Free j[ ]<

j∀ Simulated_Free j[ ] Simulated_Free j[ ] Allocated i j,[ ]+⇐
Completed i[ ] True⇐

i∀ Completed i[ ]
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Deadlocks

Banker’s algorithm

Checking the validity of a resource request

If (Request < Claimed) and (Request < Free) then

   Free      := Free      - Request;
   Claimed   := Claimed   - Request;
   Allocated := Allocated + Request;

   ☞  Apply system state check (as above)
   If System_is_safe then

      ☞  Actually grant request
   else
      -- restore former system state (Free, Claimed, Allocated)

   end if;
end if;
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Deadlocks

Deadlock recovery

☞ Stop or restart one or multiple of the deadlocked processes and reclaim its resources

☞ Pre-empt one of the involved resources (and restore an earlier state of the victim process)

Deadlock recovery does not deal with the source of the problem!
(the system may deadlock again right away)

☞ use deadlock prevention or deadlock avoidance instead
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Summary

Deadlocks
• Ignorance & recovery

• ☞  ‘kill some seemingly persistently blocked processes from time to time’ (exasperation)

• Deadlock detection & recovery

• ☞  multiple methods for detection, e.g. resource allocation graphs, Banker’s algorithm
• ☞  recovery is mostly ‘ugly’

• Deadlock avoidance

• ☞  check system safety before allocating resources, e.g. Banker’s algorithm

• Deadlock prevention

• ☞  eliminate one of the pre-conditions for deadlocks
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Scheduling

Purpose of scheduling
A scheduling scheme provides two features:

• Ordering the use of resources (e.g. CPUs, networks)
• Predicting the worst-case behaviour of the system 

when the scheduling algorithm is applied
… in case that some or all information about the expected resource requests are known

A prediction can then be used

☞ at compile-run: to confirm the overall resource requirements of the application, or

☞ at run-time: to permit acceptance of additional usage/reservation requests.

© 2003 Uwe R. Zimmer, International University Bremen Page 322 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Criteria for scheduling methods 

Performance criteria:
minimize the …

Predictability criteria:
minimize the diversion from given

         Process / user perspective:

Waiting time maximum / average / variance minimal and maximal waiting times

Response time maximum / average / variance minimal and maximal response times

Turnaround time maximum / average / variance deadlines

         System perspective:

Throughput
maximum / average / variance 

of CPU time per process
—

Utilization CPU idle time —
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Scheduling

Time scales of scheduling

CPU
creation

batch ready

ready, suspended

blocked, suspended

blocked

pre-emption or cycle done

terminate.

block or synchronize

executingadmit

dispatch

suspend (swap-out)

swap-in

swap-out

unblock

suspend (swap-out)

Long-term

Short-term

Medium-term
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Scheduling

Example: Requested times

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

First come, first served (FCFS) – bad case: (arrival order: , , )

Waiting time: 0…11; average: 5.95 – Turnaround time: 3…12; average: 8.47

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

First come, first served (FCFS) – nice case: (arrival order: , , )

Waiting time: 0…11; average: 5.47 – Turnaround time: 3…12; average: 8.00

☞ The actual average waiting time for FCFS may vary here between: 5.47 and 5.95 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Round robin (RR) – pre-emption

Waiting time: 0…4; average: 1.21 – Turnaround time: 1…19; average: 5.63

☞ Waiting and average turnaround time is going down, but maximal turnaround time is going up

… assuming that task-switching is free and always possible

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Feedback with 2i pre-emption intervals – pre-emption

• implement multiple 
hierarchical ready-queues

• fetch processes from the highest 
filled ready queue

• dispatch more CPU time for lower 
priorities (  units)

☞ processes on lower ranks may 
suffer starvation

☞ new and short tasks 
will be preferred

C
PU

priority 0

priority 1

executingadmit

dispatch 20

priority i

dispatch 21

dispatch 2i

2i

© 2003 Uwe R. Zimmer, International University Bremen Page 329 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Feedback with 2i pre-emption intervals – pre-emption

Waiting time: 0…6; average: 1.79 – Turnaround time: 1…21; average 5.63

☞ less task switches than RR, 
but long processes can suffer starvation!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Shortest job first (SJF) – Ci is known

Waiting time: 0…10; average: 3.47 – Turnaround time: 1…14; average: 6.00

☞ on average this is doing better than FCFS 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Highest response ratio first (HRRF) – Ci is known

Response ratio:  – Waiting time: 0…9; average: 4.11 – Turnaround time: 1…13; average 6.63

☞ on average this is doing worse than SJF, 
but the maximal waiting and turnaround times and variance might be reduced!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

Wi Ci+( ) Ci⁄
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Scheduling

Shortest remaining time first (SRTF) – Ci is known + pre-emption

Waiting time: 0…6; average: 1.05 – Turnaround time: 1…18; average 4.42

☞ on average this is doing better than FCFS, SJF or HRRF, 
but the maximal turnaround time is going up and there are many task-switches!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Scheduling

Non-realtime scheduling methods

☞ CPU utilization: 100% in all cases.

☞ Pre-emptive methods perform better, assuming that the overhead is negligible.

☞ Knowledge of  (computation times) has a significant impact on scheduler performance.

1 5 15 20 25 30 35 40 4510 50 t

FCFS

RR

FB 2i

SJF

HRRF

SRTF

Ci
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Scheduling

Selection
Pre-

emption

Waiting Turnaround Preferred 
processes

Starvation 
possible? in high load situations

FCFS no possibly long possibly long long no

RR equal share yes bound possibly long none no

Feedback priority queues yes short on average
very short on aver-

age, large maximum
short yes

SJF no short on average short on average short yes

HRRF no
short on average, 

lower variance
short on average, 

lower variance

balanced, 
towards 

short
no

SRTF yes
very short 
on average

very short on aver-
age, large maximum

short yes

max Wi( )

min Ci( )

max
Wi Ci+

Ci
-------------------

 
 
 

min Ci Ei–( )
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Real-time scheduling

Towards predictable scheduling …

☞ Task behaviours are more specified (restricted).

☞ Task requirements from the operating systems are more specific.

☞ Task sets are often fully or mostly static.

☞ Sporadic and urgent requests (e.g. user interaction, alarms) need to be addressed.

¬ CPU-utilization and throughput (system oriented performance measures) are not important!
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Specifying timing requirements

Temporal scopes

Common attributes:
• Minimal & maximal 

delay after creation

• Maximal elapsed time

• Maximal execution time

• Absolute deadline
Task i

t1 5 20 25 3010

deadline

execution time

min. delay
max. delay

activated

suspended

re-activated

terminated

created

elapse time

max. elapse time
max. exec. time
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Specifying timing requirements

Some common scope attributes
Temporal Scopes can be:

Deadlines (absolute, elapse, or execution time) can be:

Periodic – e.g. controllers, samplers, monitors

Aperiodic – e.g. ‘periodic on average’ tasks, burst requests

Sporadic / Transient – e.g. mode changes, occasional services

Hard – single failure leads to severe malfunction

Firm – results are meaningless after the deadline

– only multiple or permanent failures threaten the whole system
Soft

– results may still by useful after the deadline
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Real-time scheduling

A simple process model

• The number of processes in the system is fixed.

• All processes are periodic and all periods are known.

• All deadlines are identical with the process cycle times (periods).

• The worst case execution time is known for all processes.

• All processes are independent.

• All processes are released at once.

• The task-switching overhead is negligible.

☞ this model can only be applied to a specific group of hard real-time systems.
(extensions to this model will be discussed later in this chapter).
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Real-time scheduling

Introducing deadlines

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Dynamic scheduling

Earliest deadline first (EDF)
1. Determine (one of) the processe(s) with the closest deadline.

2. Execute this process 

2-a until it finishes 

2-b or until another process’ deadline is found closer then the current one.

☞ Pre-emptive scheme

☞ Dynamic scheme, 
since the dispatched process is selected at run-time, due to the current deadlines.

© 2003 Uwe R. Zimmer, International University Bremen Page 341 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Earliest deadline first

1. Schedule the earliest deadline first

2. Avoid task switches (in case of equal deadlines)

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)
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Dynamic scheduling: Earliest Deadline First (EDF)

Earliest deadline first: Response times

worst case response times (maximal time in which the request from task  is served): 

☞ can be close or identical to deadlines.

☞ small or none spare capacity, if any task misses its expected computation time.

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

R
RR

Ri Ti
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Dynamic scheduling: Earliest Deadline First (EDF)

Earliest deadline first: Maximal utilization

☞ maximal possible utilization:   ☞  sufficient & necessary test!

with  the computation and cycle times of task i
(the deadlines  are assumed to be identical with the cycles times  here)

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

Ci
Ti
------

i 1=

n

∑ 1≤

Ci Ti,
Di Ti
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Static scheduling

Fixed Priority Scheduling (FPS), rate monotonic
1. Each process is assigned a fixed priority according to its cycle time :

2. At any point in time: dispatch the process with the highest priority

☞ Pre-emptive scheme

☞ Static scheme, 
since the dispatch order of processes is fixed and calculated off-line.

• Rate monotonic ordering is optimal (in the framework of fixed priority schedulers), 
i.e. if a process set is schedulable under a FPS-scheme, 
then it is also schedulable by applying rate monotonic priorities.

Ti

Ti Tj< Pi Pj>⇒
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities

☞ assign task priorities according to the cycle times  (identical to deadline ).

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

����

3
2
1

Ti Di
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities

max. utilization test:           ☞  sufficient, but not necessary test!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

����

3
2
1

Ci
Ti
------

i 1=

n

∑ N 2

1
N
----

1–
 
 
 
 

≤
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities

utilization test:             ☞  not guaranteed!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

����

3
2
1

Ci
Ti
------

i 1=

n

∑ 1= 0.779 N 2

1
N
----

1–
 
 
 
 

≈>
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities (reduced requests)

max. utilization test: 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

3
2
1

Ci
Ti
------

i 1=

n

∑ N 2

1
N
----

1–
 
 
 
 

≤
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities (reduced requests)

☞ utilization: ;             ☞  not guaranteed!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

3
2
1

6
16
------ 3

12
------ 1

4
---+ + 0.875= 0.779 3 2

1
3
---

1–
 
 
 
 

≈>
Ci
Ti
------

i 1=

n

∑ N 2

1
N
----

1–
 
 
 
 

≤
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities (further reduced requests)

☞ utilization: ;             ☞  guaranteed!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

3
2
1

4
16
------ 3

12
------ 1

4
---+ + 0.75= 0.779 3 2

1
3
---

1–
 
 
 
 

≈≤
Ci
Ti
------

i 1=

n

∑ N 2

1
N
----

1–
 
 
 
 

≤
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ calculate the worst case response times for each task individually.

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

3
2
1
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ for the highest priority task: 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R3

3
2
1

R3 C3=
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ for other tasks:  = computation  + interference 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R1

3
2
1

Ri Ci Ii+= Ci Ii
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

for other tasks: 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R1

3
2
1

Ri Ci
Ri

Tj
----- Cj

j i>
∑+=
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis

☞  fixed-point equation!

☞ form recurrent equation:       (1)

☞ starting with 

☞ Iterate (1) until  or 

Ri Ci
Ri

Tj
----- Cj

j i>
∑+=

Ri
k 1+ Ci

Ri
k

Tj
------ Cj

j i>
∑+=

Ri
0 Ci=
Ri

k 1+ Ri
k

= Ri
k 1+ Ti>
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Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis

The worst case for EDF is not necessarily when all tasks are released at once!

☞ all possible combinations in a full hyper -cycle need to be considered!

• The response times are bounded by the cycle times as long as the maximal utilization is ≤ 1.

• Other tasks need to be considered only, if their deadline is closer or equal to the current task.
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Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis

☞  (2)

☞ starting with 

☞ Iterate (2) until 

☞  ;    where 

Ri a( ) a
Ti
---- 1+ Ci

Ri a( )
Tj

------------- 0
a T+ i Tj–

Tj
-------------------------, 1+

 
 
 

max

,
 
 
 

min

Cj
j i≠
∑+=

Ri
k 1+ a( ) a

Ti
---- 1+ Ci

Ri
k a( )
Tj

-------------- 0
a T+ i Tj–

Tj
-------------------------, 1+

 
 
 

max

,
 
 
 

min

Cj
j i≠
∑+=

Ri
0 a( ) a C+ i=
Ri

k 1+ a( ) Ri
k a( )=

Ri Ri a( ) a–{ }max a A∈= A scm Ti{ }=
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ ; ; ;  and 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R1

3
2
1

R3
R2

Ri Ci
Ri

Tj
----- Cj

j i>
∑+= R3 1 ✔= R2 4 ✔= R1 10 ✔=

Ci

Ti
-----

i 1=

n

∑ N 2

1
N
----

1–
 
 
 

✔≤
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (reduced requests)

☞ ; ; ;  but 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

R1

3
2
1

R3
R2

Ri Ci
Ri

Tj
----- Cj

j i>
∑+= R3 1 ✔= R2 4 ✔= R1 12 ✔=

Ci

Ti
-----

i 1=

n

∑ N 2

1
N
----

1–
 
 
 

✖>
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (full requests)

☞ ; ; ;  and 

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

����

3
2
1

Ri Ci
Ri

Tj
----- Cj

j i>
∑+= R3 1 ✔= R2 4 ✔= R1 19 ✖=

Ci

Ti
-----

i 1=

n

∑ N 2

1
N
----

1–
 
 
 

✖>



© 2003 Uwe R. Zimmer, International University Bremen Page 361 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis (full requests)

☞ testing all combinations in a hyper-period: LCM of  — here: 48

:  = ;     :  = ;     :  =

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

R
R

R

Ti{ }

R 16 16 ✔≤ T R 12 12 ✔≤ T R 4 4 ✔≤ T
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Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis (reduced requests)

☞ relaxed task-set changes:

:  = ;     :  = ;     :  =

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

R RR

R 16 12→ 16 ✔≤ T R 12 8→ 12 ✔≤ T R 4 1→ 4 ✔≤ T
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Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis (further reduced requests)

☞ further relaxed task-set changes:

:  = ;     :  = ;     :  =

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R RR

R 12 10→ 16 ✔≤ T R 8 6→ 12 ✔≤ T R 1 1→ 4 ✔≤ T
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Real-time scheduling

Response time analysis (comparison)

Fixed Priority Scheduling Earliest Deadline First

utilization 
test

response 
times 

utilization 
test

response 
times 

✖  (1.000) ✔  (1.000)

✖  (0.875) ✔  (0.875)

✔  (0.750) ✔  (0.750)

check full 
hyper-cycle

Ri{ } Ri{ }

Ti Ci,( ){ } 16 8,( ) 12 3,( ) 4 1,( );;{ }= ✖ 4 1, ,{ } 16 12 4, ,{ }

Ti Ci,( ){ } 16 6,( ) 12 3,( ) 4 1,( );;{ }= 12 4 1, ,{ } 12 8 1, ,{ }

Ti Ci,( ){ } 16 4,( ) 12 3,( ) 4 1,( );;{ }= 10 4 1, ,{ } 10 6 1, ,{ }

Ci
Ti
------

i 1=

n

∑ N 2

1
N
----

1–
 
 
 
 

≤ Ci
Ri
Tj
----- Cj

j i>
∑+

Ci
Ti
------

i 1=

n

∑ 1≤
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Real-time scheduling

Fixed Priority Scheduling ↔ Earliest Deadline First

• EDF can handle higher (full) utilization than FPS.

• FPS is easier to implement and implies less run-time overhead

• Graceful degradation features (resource is over-booked):

• FPS: processes with lower priorities will always miss their deadlines first.
• EDF: any process can miss its deadline ☞  and can trigger a cascade of failed deadlines.

• Response time analysis and utilization tests:

• FPS: O(n) utilization test — response time analysis: fixed point equation
• EDS: O(n) utilization test — response time analysis: fixed point equation in hyper-cycle
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Scheduling

Extensions which we will introduce:

• tasks are periodic
☞  we will introduce sporadic and aperiodic processes

• tasks are independent
☞  we will introduce schedules for interacting tasks

• deadlines are identical with task’s period time 
☞  Real-time course

• pre-emptive scheduling
☞  Real-time course

• worst case execution times are known
☞  Real-time course

D T=( )
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Scheduling — real-world considerations

… including

aperiodic, sporadic & ‘soft’ real-time tasks
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Hard real-time tasks

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(Ti,Ci)

(16,7)

3
2
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Introducing soft real-time tasks

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,    )

(

 

T

 

i

 

,

 

C

 

i

 

)

(16,7)

 

3
2
12
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Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

 

Introducing soft real-time tasks

 

☞

 

set can be scheduled using average computation and period times

 

☞

 

hard real-time tasks can be scheduled under worst case conditions 
(including worst case behaviours of soft real-time tasks)

 

1 5 15 20 25 30 35 40 4510 50 t

 

(4,1)

(12,    )

(

 

T

 

i

 

,

 

C

 

i

 

)

(16,7)

    

����

 

3
2
12  
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Static scheduling: FPS, rate monotonic + server

 

Introducing a server task

 

Server is established at a high priority

 

1 5 15 20 25 30 35 40 4510 50 t

 

(4,1)

(

 

T
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Static scheduling: FPS, rate monotonic + server

 

Introducing a server task: Deferrable Server

 

☞

 

Deferrable Server (DS): Capacity replenished every 

 

T

 

s

 

 (here: 8)
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Static scheduling: FPS, rate monotonic + server

 

Introducing a server task: Sporadic Server

 

☞

 

Sporadic Server (SS): Capacity replenished 

 

T

 

s

 

 units after 

 

t

 

s

 

 

 

☞

 

 POSIX
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Static scheduling: Fixed Priority Scheduling (FPS), dual-priorities

 

Introducing dual priorities

 

☞

 

start hard rt-tasks in low priorities; promote them in time to higher ones

 

1 5 15 20 25 30 35 40 4510 50 t
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Dynamic scheduling: Earliest Deadline First+ aperiodic server

 

Introducing a server task to EDF

 

1 5 15 20 25 30 35 40 4510 50 t

 (4,1)
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Dynamic scheduling: Earliest Deadline First + aperiodic server

 

Introducing a server task to EDF

 

1 5 15 20 25 30 35 40 4510 50 t
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(12,    )

(16,8)
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Dynamic scheduling: Earliest Deadline First + aperiodic tasks

 

Switching between EDF & Earliest Deadline Last (EDL)
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Scheduling — real-world considerations

 

… including

 task interdependencies
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Scheduling: Interdependencies

 

Schedule for independent tasks

 

(independent task set)
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Scheduling: Interdependencies

 

Synchronized via lock

 

(interdependent task set 

 

☞

 

 lock  shared between  and )
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Scheduling: Interdependencies

 

Synchronized via lock 

 

☞

 

 Priority inversion

 

(interdependent task set 

 

☞

 

 lock  shared between  and )
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Scheduling: Interdependencies

 

Priority inheritance

 

Task  inherits the priority of , if:

 1.

2.

 

task  has locked a resource 

 

3.

 

task  is blocked waiting for resource  to be released

ti tj

Pi Pj<

ti Q

tj Q
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Scheduling: Interdependencies

 

Priority inheritance

 
Maximal blocking time for task : 

• with  the number of critical sections

•  a boolean 

 

(0/1)

 

 function indicating that 

 

r 

 

is used by 
at least one  with  and at least one  with 

•  is the worst case computation time in critical section 

a task can only be blocked once for each employed resource!

ti  
B

 
i  

usage r i
 

,( )
 

C r
 

( )
 

r
 

1
 

=
 

R

 ∑  
=

R

usage r i,( )
tj Pj Pi< tk Pk Pi≥

C r( ) r
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Scheduling: Interdependencies

 

Priority inheritance

 

(  inherits priority of , when  is in lock and  is dispatched)
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Scheduling: Interdependencies

A more complex example

(independent task set)

1 5 15 20 25 30 35 40 4510 50 t

3
2
1
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Scheduling: Interdependencies

Interdependencies

☞  Priority inversion

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

Lock 1

��������

Lock 2

����
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Scheduling: Interdependencies

Priority inheritance

(  and  inherit priority of , when in lock and  is dispatched)

no improvement!

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

Lock 1

��������

Lock 2

����
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Scheduling: Interdependencies

One additional lock request 

☞  Deadlock

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

Lock 1

��������

Lock 2
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Scheduling: Interdependencies: Priority ceiling protocols

Immediate ceiling priority protocol (POSIX, Ada, RT-Java)

• Each task  has static default priority .

• Each resource (lock, monitor)  has a static ceiling priority , which is
the maximum of priorities of the tasks  which employ this resource.

• Each task  has a dynamic priority , which is the maximum of its own
static priority and the ceiling priorities of any resource it has locked.

ti Pi

Rk Ck
ti

Ck max employ i k,( ) Pi⋅{ }i=

ti Pi
D

Pi
D max Pi max locked i k,( ) Ck⋅{ }k,{ }=
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Scheduling: Interdependencies: Priority ceiling protocols

Immediate ceiling priority protocol (POSIX, Ada, RT-Java)

( ,  and  inherit the ceiling priority of  or  when entering the lock)

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

Lock 1

��������

Lock 2

��������
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Scheduling: Interdependencies: Priority ceiling protocols

Immediate ceiling priority protocol (POSIX, Ada, RT-Java)

☞ Tasks are dispatched only if all employed resources are available.

☞ Deadlocks are prevented

☞ Number of context switches is reduced
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Scheduling: Interdependencies: Priority ceiling protocols

Immediate ceiling priority protocol (POSIX, Ada, RT-Java)

Maximal blocking time: 

• with  the number of critical sections

•  a boolean (0/1) function indicating that r is used by 
at least one  with  and at least one  with 

•  is the worst case computation time in critical section 

a task can only be blocked once by any lower priority task!

Bi max usage r i,( ) C r( )⋅{ }R
r 1==

R

usage r i,( )
tj Pj Pi< tk Pk Pi≥

C r( ) r
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Summary

Scheduling
• Basic performance based scheduling

•  is not known: first-come-first-served (FCFS), round robin (RR), 
and feedback-scheduling

•  is known: shortest job first (SJF), highest response ration first (HRRF), 
shortest remaining time first (SRTF)-scheduling

• Basic predictable scheduling

• Fixed Priority Scheduling (FPS) with Rate Monotonic (RMPO)
• Earliest Deadline First (EDF)

• Real-world extensions

• Aperiodic, sporadic, soft real-time tasks
• Synchronized talks (priority inheritance, priority ceiling protocols)

Ci

Ci
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Summary 

Processes
• Processes and threads

• Architectures, definitions, process states

• Synchronization

• Shared memory based synchronization
• Message based synchronization

• Deadlocks

• Detection, avoidance, and prevention (& recovery)

• Scheduling

• Basic performance based scheduling
• Basic predictable scheduling
• Aperiodic, sporadic, and synchronized tasks

4
Memory

Uwe R. Zimmer – International University Bremen

432
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Memory

Memory levels and fragments

Basic memory hierarchy

CPU

Register set

Level 1 cache

Level 2 cache

I/O

Disks

< 1 ns

< 1-2 ns

< 4 ns> 512 KB

> 64 KB

> 1 KB

< 8 ms> 60 GB

Typical memory sizes Typical access times

ROM RAM RAM V-RAM I/O
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Memory

What is the challenge?

• Main memory is too small (regardless how large it is)

☞ The operating system needs to place (parts of) processes in and out 
of main memory during the life-time of the system.

• Swapping memory blocks between primary and secondary memory 
is an extremely slow operation.

☞ The operating system needs to supply highly efficient strategies 
to avoid system stalls or unacceptable delays.
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Memory

Goals / optimization criteria

• Supply address spaces, which are independent from the physically available address space.

• Supply multiple memory modes, e.g. allow processes to reside permanently in main memory

• Support for multiple address spaces

• Protection between address spaces

• Supply methods to share address spaces

• Support memory based I/O methods

• Allow for predictable behaviours of memory accesses

• Minimize any overhead for memory accesses and program executions
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Memory

Required support
• Relocation

Assembler level addressing modes as well as compilers and linkers 
need to support relocatable programs and data structures.

• Protection
Memory protection needs hardware support, since the operating system itself has 
no knowledge which memory cells will be addressed by a specific process next.

• Sharing
The protection scheme needs to be flexible enough to allow for shared memory areas.

• Control of secondary memory
Since swapping speeds between primary and secondary memory is a critical factor,
the operating system needs to have close access to the secondary memory interface.

• Project logical structures to memory modules (optional)
It might be useful to supply addressing modes, which allow the 
use of logical structures in the programs itself as the basis for memory structuring.
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Process Mapping

Pros Cons

simple internal & strong 
external fragmentation

no internal 
fragmentation

strong 
external fragmentation

no internal 
fragmentation

external 
fragmentation

no external 
fragmentation

a small amount of 
internal fragmentation

Process

Segments

Pages

Dynamic
partitions

Static
partitions

realtime only
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Virtual addressing

The step from pagination/segmentation to

Virtual addressing
Segmentation / Paging:

• all memory references are logical addresses

• there is support to translate logical to physical addresses at run-time

• processes may be moved in memory and suspended to or loaded from secondary storage

• processes are divided in pages or segments (or both)

• pages or segments can be loaded in any order into primary memory 
(i.e. they need not to be dense or in sequence)

☞  Virtual addressing:

• not all pages or segments need to be loaded in order to run a process
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MMU

Translating virtual to physical addresses

MMU

1. Translate virtual to physical addresses

without any delay in most cases.

2. Provide memory protection

according to the attributes, which are 
attached to individual memory areas 
in form of page or segment descriptors.

CPU MMU

Disk

Misses

Loading page/
segment/

descriptor table

M
ai

n
 m

em
o

ry
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Memory – Segmentation

• Segment lengths is stored in 
segment table ☞  needs to be 
evaluated by the memory 
protection unit.

• Segment base address and 
offset need to be added.

• Parts of segment tables as well 
as segments themselves can 
be suspended to secondary 
memory.

e.g. Intel x86

Seg. table base

Seg # Offset

+
Seg.
table

Segmentation Physical memory

Seg-
ment

+

DiskSegment fault
Load segment

Disk

Segment table  fault

Load page table
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Memory – Paging

• Page frame address and 
address offset can be 
concatenated.

• Parts of page tables as well 
as pages themselves can 
be suspended to secondary 
memory (into ‘frames’).

• Page tables would be very 
large for modern processors 
(32-64bit addressing)

not implemented 
in this pure form.

Page. table base

Page # Offset

+ OffsetFramePage
table

Paging Physical memory

Page
frame

DiskPage fault
Load page

Disk

Page table  fault

Load page table
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Memory – Multi stage page tables

• Reducing
page table 
sizes

• Up to four 
page levels 
(Sparc)

• More 
memory 
accesses
required.

Sparc, PowerPC, 
Alpha, HP

+Root. table base

Page # Page # Offset

+ OffsetFramePage
table

Root page
table

Paging Physical memory

Page
frame

DiskPage fault
Load page

Disk

Page table  fault

Load page table
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Memory – Segmentation & Paging

• Allow 
segmentation
for logical 
structure 

• Allow 
paging for 
effective 
virtual 
memory 
management

x86, (PowerPC)

+Seg. table base

Seg # Page # Offset

+ OffsetFramePage
table

Segment
table

Segmentation Paging Physical memory

Page
frame

DiskPage fault
Load page

Disk

Page table  fault

Load page table
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Memory – Translation look aside buffers

• Accessing page tables for 
each access is ineffective.

☞ Introducing address 
translation caches:
Translation look aside 
buffers (tlb).

• Access 
cache (tlb) - memory - 
disk (in this order) for 
address translation

all modern MMUs

Page # Offset

OffsetFrame

Paging Physical memory

Page
frame

Disk
Load page

Translation 
look aside buffer

TLB miss

+
Page
table

Disk

Page table  fault

Load page table

Pa
ge

. t
ab

le
 b

as
e
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Memory – Inverted page tables

• Forward page tables grow with the size of the 
virtual address space.

• The number of loaded pages is bound by the 
physical memory.

☞ Keep only the loaded pages in the page table 
and resolve the virtual addresses via a 
hash table: ☞  Inverted page tables (ipt)

• IPTs are not suspended to secondary 
memory, but more than one access is 
required to translate the page number.

not implemented in this pure form.

Page # Offset

f

OffsetFrameInverted page
table

Paging Physical memory

Page
frame

DiskPage fault
Load page

Hashing function
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Memory – Translation look aside & Inverted page tables

• Combining translation 
look aside buffers and 
inverted page tables.

• Mostly no delay 
(look aside buffer).

• Short delay if tlb misses
(inverted page table).

• No page table loading.

PowerPC, UltraSparc

Page # Offset

f

OffsetFrameInverted page
table

Paging Physical memory

Page
frame

DiskPage fault
Load page

Hashing function

Translation 
look aside buffer

TLB miss
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Addressing

Some current MMU implementations
Physical 

addresses
Virtual 

addresses
TLB size Segments Pages

Inverted/hashed 
tables

Pentium 4 36bit 32bit 
(per segment)

64
different 

types
4k, 4M
(optional)

-

Itanium 2 50bit 64bit 4*32 - 4k … 4G -

Power PC 604 32bit 52bit 256
< 256MB,
(optional)

4 k yes

Power PC 970 42bit 64bit 1024
< 256MB,
(optional)

4 k yes

UltraSparc 36bit 64bit 64 - 8k … 4M yes

Alpha 41bit 64bit 256 - 8k … 4M -
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Designing an OS memory module

Design alternatives

• Employ virtual memory in the first place?

• Employ segmentation, pagination, or a combination of those?

• Which algorithms should be applied to answer:

• when to load a page/segment? ☞  fetching
• where to place a page/segment? ☞  placement
• which page/segment to suspend? ☞  replacement
• how many pages/segments to load for a specific process? ☞  resident set management
• when to suspend a page/segment? ☞  cleaning
• which processes to run/suspend? ☞  load control
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Designing an OS memory module

Fetching
• Demand paging:

Fetch pages only if and exactly when requested by a reference to an address inside this page.

☞ may lead to a burst of page faults in some situations (e.g. starting a process).

☞ reduces the transfer between primary and secondary storage to a minimum.

• Prepaging:

Predict which pages will also be required in the near future and pre-load them 
(together with the currently requested page).

☞ pages may be loaded, which will be never referenced

☞ multiple page loads can be more efficient if organized as a few transfers of a larger blocks
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Designing an OS memory module

Fetching
• Demand paging:

Fetch pages only if and exactly when requested by a reference to an address inside this page.

☞ may lead to a burst of page faults in some situations (e.g. starting a process).

☞ reduces the transfer between primary and secondary storage to a minimum.

• Prepaging:

Predict which pages will also be required in the near future and pre-load them 
(together with the currently requested page).

☞ pages may be loaded, which will be never referenced

☞ multiple page loads can be more efficient if organized as a few transfers of a larger blocks

MM oo ss tt   ss yy ss tt ee mm ss   ww ii ll ll   
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Designing an OS memory module

Placement

☞ Required for partition or pure segmentation systems

apply standard ‘best-fit’, ‘first-fit’, etc. strategies to minimize fragmentation 
– there is a trade-off between minimal fragmentation and minimal placement overhead

☞ Irrelevant for all paging or mixed segmentation/paging systems

external fragmentation is not an issue here
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Designing an OS memory module

Replacement
In order to load a new page, another page need to be suspended ☞  which one?

• Optimal:
the page which will not be referenced for the longest period of future time

• Least Recently Used (LRU):
the page which has not be referenced for the longest period of past time

• First-In-First-Out (FIFO):
the page which resides in primary memory for the longest period of past time
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Designing an OS memory module

Replacement
The practical implementation aspect of replacement algorithms:

• Optimal:
☞  can only be implemented, if all future memory references are known ☞  ✘

• Least Recently Used (LRU):
☞  can only be implemented, if all past access times/order are known ☞  check hardware support

• First-In-First-Out (FIFO):
☞  can be implemented without any hardware support ☞  ✔
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Designing an OS memory module

Replacement
Full LRU implementations:

• Counter or time-of-access field in the page table:
Update this entry with each reference to this page

☞  need to be supplied by hardware (not implemented in any practical system)

• Page stack:
bring a reference to the page on top of a stack with each access to this page 
(and replace the pages at the bottom of the stack)

☞  need to be supplied by hardware (not implemented in any practical system)
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Designing an OS memory module

Replacement
LRU-approximations:

• Reference-bit-shift-history algorithm:

Shift the reference bit of each page into a bit-field ( ) in each page table entry 
at regular intervals (employing a timer-interrupt).
Interpret the resulting bit-field as an integer and replace the page with the smallest value

☞  requires a reference-bit, which is updates by hardware, as well as a hardware timer
(usually provided).
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Designing an OS memory module

Replacement
LRU-approximations:

• Second-chance (clock) algorithm:

Implement a circular list of all pages. Search the list for a not referenced page:

WHILE page was referenced DO
      reset reference bit and proceed to next page
END WHILE

☞  requires a reference-bit, which is updates by hardware (usually provided).

next check

referenced not referenced
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Designing an OS memory module

Replacement
LRU-approximations:

• Enhanced second-chance (clock) algorithm:

Replace pages applying the priorities:

• not referenced (first scan)
• referenced-but-not-modified (second scan)
• referenced-and-modified

☞  requires a reference and a modified-bit, which is updates by hardware (usually provided).

next check

referenced modified
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Designing an OS memory module

Replacement
Performances:

• Optimal:
obviously the best algorithm — impossible to implement

• Least Recently Used (LRU):
good approximation of the optimal algorithm — cannot be implemented in any current system

• Approximated Least Recently Used (LRU):
approximates the performance of LRU — can be implemented in most systems

• First-In-First-Out (FIFO):
performs worst — can be implemented in any system
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Designing an OS memory module

Resident set management
How many pages are assigned to a specific process:

• too many: 

• the number of resident processes is reduced
• due to localities, there is no noticeable speed-up for the specific process

• too few:

• significant increase in the page-fault rate

☞ Challenge: find the essential working set of pages for each process at any given time
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Designing an OS memory module

Resident set management
Strategies:

• Number of allocated pages per process can be

• fixed 
• or variable

• Replacement can be either

• local (inside each process’ page set) – only possibility for fixed allocation scenes
• prioritized (allow higher priority processes to expand their page sets)
• or global (replace pages regardless of the processes which are using them)
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Designing an OS memory module

Resident set management
☞ Challenge: 

find the essential working page set for each process at any given time

• Calculating the optimal working set, required full knowledge of the future process behaviour

• Many approximations are suggested (and implemented), mostly employing:

Page Fault Frequencies (PFF)
or related statistical information on the past process behaviour

Problems: 
• “the past does not always predict the future” 

i.e. multiple locality assumptions must hold
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Designing an OS memory module

Cleaning
• Demand cleaning:

Clean pages only if and exactly when a free pages is required.

☞ slows down process reaction times, since each page fault will result in a page cleaning.

☞ reduces the total transfer between primary and secondary storage to a minimum.

• Precleaning:

Clean multiple pages according to replacement criteria introduced above 
before a page fault occurs.

☞ too many pages might be cleaned, resulting in an increase of page faults

☞ multiple page cleanings can be more efficient if organized as a few transfers of a larger blocks
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Designing an OS memory module

Cleaning
• Demand cleaning:

Clean pages only if and exactly when a free pages is required.

☞ slows down process reaction times, since each page fault will result in a page cleaning.

☞ reduces the total transfer between primary and secondary storage to a minimum.

• Precleaning:

Clean multiple pages according to replacement criteria introduced above 
before a page fault occurs.

☞ too many pages might be cleaned, resulting in an increase of page faults

☞ multiple page cleanings can be more efficient if organized as a few transfers of a larger blocks
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Designing an OS memory module

Load Control
How many processes will be resident in primary memory?

• More processes in primary memory implies less pages per process

• Beyond a critical threshold of pages per process, the page fault rate rises significantly

☞  Thrashing occurs

• The overall performance of the system is approaching nil, 
since most of the time is spent for page loads

☞ Reduce the number of resident processes immediately
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Designing an OS memory module

Load Control

Which process is to be suspended?

• Lowest priority process

• Process with the highest page fault frequency 

• Process with the smallest current resident page set

• Process with the largest current resident page set

• Last activated process

• Process with the largest remaining execution time (see scheduling)
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Design alternatives

• Employ virtual memory in the first place?

• Employ segmentation, pagination, or a combination of those?

• Which algorithms should be applied to answer:

• when to load a page/segment? ☞  fetching
• where to place a page/segment? ☞  placement
• which page/segment to suspend? ☞  replacement
• how many pages/segments to load for a specific process? ☞  resident set management
• when to suspend a page/segment? ☞  cleaning
• which processes to run/suspend? ☞  load control
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Design alternatives

• Employ virtual memory in the first place?

• Employ segmentation, pagination, or a combination of those?

• Which algorithms should be applied to answer:

• when to load a page/segment? ☞  fetching
• where to place a page/segment? ☞  placement
• which page/segment to suspend? ☞  replacement
• how many pages/segments to load for a specific process? ☞  resident set management
• when to suspend a page/segment? ☞  cleaning
• which processes to run/suspend? ☞  load control

Real-tim
e / predictable systems:

no virtual memory!
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Summary 

Memory
• Requirements & hardware structures

• MMU features & requirements

• Partitioning, segmentation, paging & virtual memory

• Simple segmentation
• Simple paging, multi-level paging, combined segmentation & paging
• Translation look aside buffers
• Hashed tables, Inverted page tables

• Virtual memory management algorithms

• Fetching & placement
• Replacement
• Resident set management
• Cleaning
• Load control


