

Operating System & Networks 2003

Uwe R. Zimmer – International University Bremen

© 2003 Uwe R. Zimmer, International University Bremen Page 2 of 432 (chapter 0: to 12)

Real-Time & Embedded SystemsOperating Systems & Networks

what is offered here?

Overviews, Paths, Definitions, Terminology,
 Foundations, Methods, Algorithms
 Realities,
 Current research trends, Projects,
 Perspectives,
 … and some theory

into/for/about

 Operating Systems & Networks

© 2003 Uwe R. Zimmer, International University Bremen Page 3 of 432 (chapter 0: to 12)

Real-Time & Embedded SystemsOperating Systems & Networks

who could be interested in this?

anybody who …

… would like to see
how rich, diverse and deep the real world of operating systems goes

… would like to learn how to create predictability
and fault-tolerant operating systems

… would like to know more about the usage of
95% of all µprocessors (and thus operating systems)

© 2003 Uwe R. Zimmer, International University Bremen Page 4 of 432 (chapter 0: to 12)

Real-Time & Embedded SystemsOperating Systems & Networks

who are these people? – introduction

This course will be given by

Holger Kenn

 for the networks sections

and

Uwe R. Zimmer

for the operating systems sections

© 2003 Uwe R. Zimmer, International University Bremen Page 5 of 432 (chapter 0: to 12)

Real-Time & Embedded SystemsOperating Systems & Networks

how will this all be done?

☞

Lectures (

320-202

):

• 2 per week … all the nice stuff and theory
Tuesday, 8:00-9:15; Friday, 11-12:15 – all in Conrad Naber lecture hall

☞

Labs (Advanced CS lab), independent course, but related (

320-222

):

• 2 sessions per week … all the rough stuff and practice
Monday 15:30-19:30; Tuesday 15:30-19:30

☞

Resources:

• introduced in the lectures and collected on the course page:

http://www.faculty.iu-bremen.de/course/FundCS2/

… as well as schedules, slides, code, etc. pp. … keep an eye on these pages!

☞

Assessment:

• Two exams, 50% each, one oral exam, one written exam – assignments for self-checking

© 2003 Uwe R. Zimmer, International University Bremen Page 6 of 432 (chapter 0: to 12)

Real-Time & Embedded SystemsOperating Systems & Networks

Topics in operating systems

1.

 Introduction

2.

 Hardware basics

3.

 Processes

4.

 Memory management

© 2003 Uwe R. Zimmer, International University Bremen Page 7 of 432 (chapter 0: to 12)

Real-Time & Embedded SystemsOperating Systems & Networks

Table of contents

2. Hardware Fundamentals

• General computer architecture

• CPU

• Registers
• Traps/Interrupts & protected modes

• Memory

• General memory layout
• Caching

• I/O systems

• I/O controllers, I/O buses, device programming

• Some examples of µprocessors

• Small scale µcontroller (68HC05)
• Full scale integrated processor (MCP565)

© 2003 Uwe R. Zimmer, International University Bremen Page 8 of 432 (chapter 0: to 12)

Real-Time & Embedded SystemsOperating Systems & Networks

Table of contents

3. Processes

• Processes and threads

• Architectures, definitions, process states

• Synchronization

• Shared memory based synchronization
• Message based synchronization

• Deadlocks

• Detection, avoidance, and prevention (& recovery)

• Scheduling

• Basic performance based scheduling
• Basic predictable scheduling
• Aperiodic, sporadic, and synchronized tasks

© 2003 Uwe R. Zimmer, International University Bremen Page 9 of 432 (chapter 0: to 12)

Real-Time & Embedded SystemsOperating Systems & Networks

Table of contents

3.1 Synchronization methods

• Shared memory based synchronization

• Semaphores

☞

 ‘C’, POSIX — Dijkstra
• Conditional critical regions

☞

 Edison (experimental)
• Monitors

☞

 Modula-1, Mesa — Dijkstra, Hoare, …
• Mutexes & conditional variables

☞

 POSIX
• Synchronized methods

☞

 Real-time Java
• Protected objects

☞

 Ada95

• Message based synchronization

• Asynchronous messages

☞

 e.g. POSIX, …
• Synchronous messages

☞

 e.g. Ada95, CHILL, Occam2
• Remote invocation, remote procedure call

☞

 e.g. Ada95, …
• Synchronization in distributed systems

☞

 e.g. CORBA, …

© 2003 Uwe R. Zimmer, International University Bremen Page 10 of 432 (chapter 0: to 12)

Real-Time & Embedded SystemsOperating Systems & Networks

Table of contents

3.2 Deadlocks

• Ignorance & recovery

•

☞

 ‘kill some seemingly persistently blocked processes from time to time’ (exasperation)

• Deadlock detection & recovery

•

☞

 multiple methods for detection, e.g. resource allocation graphs, Banker’s algorithm
•

☞

 recovery is mostly ‘ugly’

• Deadlock avoidance

•

☞

 check system safety before allocating resources, e.g. Banker’s algorithm

•

Deadlock prevention

•

☞

 eliminate one of the pre-conditions for deadlocks

© 2003 Uwe R. Zimmer, International University Bremen Page 11 of 432 (chapter 0: to 12)

Real-Time & Embedded SystemsOperating Systems & Networks

Table of contents

3.3 Scheduling

• Basic performance based scheduling

• is not known: first-come-first-served (FCFS), round robin (RR),
and feedback-scheduling

• is known: shortest job first (SJF), highest response ration first (HRRF),
shortest remaining time first (SRTF)-scheduling

• Basic predictable scheduling

• Fixed Priority Scheduling (FPS) with Rate Monotonic (RMPO)
• Earliest Deadline First (EDF)

• Real-world extensions

• Aperiodic, sporadic, soft real-time tasks
• Synchronized talks (priority inheritance, priority ceiling protocols)

Ci

Ci

© 2003 Uwe R. Zimmer, International University Bremen Page 12 of 432 (chapter 0: to 12)

Real-Time & Embedded SystemsOperating Systems & Networks

Table of contents

4. Memory
• Requirements & hardware structures

• MMU features & requirements

• Partitioning, segmentation, paging & virtual memory

• Simple segmentation
• Simple paging, multi-level paging, combined segmentation & paging
• Translation look aside buffers
• Hashed tables, Inverted page tables

• Virtual memory management algorithms

• Fetching & placement
• Replacement
• Resident set management
• Cleaning
• Load control

1
Introduction

Uwe R. Zimmer – International University Bremen

© 2003 Uwe R. Zimmer, International University Bremen Page 14 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

References for this chapter

[Silberschatz01]
Abraham Silberschatz, Peter Bear Galvin,
Greg Gagne
Operating System Concepts
John Wiley & Sons, Inc., 2001

[Stallings2001]
William Stallings
Operating Systems
Prentice Hall, 2001

[Tanenbaum97]
Andrew S. Tanenbaum, Albert S. Woodhull
Operating Systems: Design and Implementation
Prentice Hall, 1997

[Tanenbaum95]
Andrew S. Tanenbaum
Distributed Operating Systems
Prentice Hall, 1995

all references and some links are available on the course page

© 2003 Uwe R. Zimmer, International University Bremen Page 15 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

What are operating system based on?

Hardware environments / configurations:

• stand-alone, universal, single-processor machines

• symmetrical multiprocessor-machines

• local distributed systems

• open, web-based systems

• dedicated/embedded computing

What is the common ground for operating systems?

What is an operating system?

© 2003 Uwe R. Zimmer, International University Bremen Page 16 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

What is an operating system?

1. A virtual machine!
… offering a more comfortable, robust, reliable, flexible … machine

Hardware

OS

Tasks

Typ. general OS

Hardware
RT-OS

Tasks

Typ. real-time system

Hardware

Tasks

Typ. embedded system

run-time
environment

© 2003 Uwe R. Zimmer, International University Bremen Page 17 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

What is an operating system?

2. A resource manager!
… dealing with all sorts of devices and coordinating access

Operating systems deal with

• processors,

• memory

• mass storage

• communication channels

• devices
(timers, special purpose processors, interfaces, …)

☞ and many tasks/processes/programs, which are applying for access to these resources

© 2003 Uwe R. Zimmer, International University Bremen Page 18 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

What is an operating system?

Is there a standard set of features for an operating system?
☞ no,

the term ‘operating systems’ covers 4KB kernels,
as well as 1GB installations of general purpose OSs.

Is there a minimal set of features?
☞ almost,

memory management, process management and inter-process communication/synchronization
will be considered essential in most systems.

Is there always an explicit operating system?
☞ no,

some languages and development systems operate with stand-alone run-time-environments.

© 2003 Uwe R. Zimmer, International University Bremen Page 19 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

The evolution of operating systems

• in the beginning: single user, single program, single task, serial processing ☞ no OS

• 50s: System monitors / batch processing
☞ the monitor ordered the sequence of jobs and triggered their sequential execution

• 50s-60s: Advanced system monitors / batch processing:
☞ the monitor is handling interrupts and timers
☞ first support for memory protection
☞ first implementations of privileged instructions (accessible by the monitor only).

• early 60s: Multiprogramming systems:
☞ employ the long device I/O delays for switches to other, runable programs

• early 60s: Multiprogramming, time-sharing systems:
☞ assign time-slices to each program and switch regularly

• early 70s: Multitasking systems – multiple developments resulting in UNIX (besides others)

• early 80s: single user, single tasking systems, with emphasis on user interface (MacOS) or APIs.
MS-DOS, CP/M, MacOS and others first employed ‘small scale’ CPUs (personal computers).

• mid-80s: Distributed/multiprocessor operating systems - modern UNIX systems (SYSV, BSD)

© 2003 Uwe R. Zimmer, International University Bremen Page 20 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

The evolution of communication systems

• 1901: first wireless data transmission (Morse-code from ships to shore)

• ‘56: first transmission of data through phone-lines

• ‘62: first transmission of data via satellites (Telstar)

• ‘69: ARPA-net (predecessor of the current internet)

• 80s: introduction of fast local networks (LANs): ethernet, token-ring

• 90s: mass introduction of wireless networks (LAN and WAN)

Currently: standard consumer computers come with

• High speed network connectors (e.g. GB-ethernet)
• Wireless LAN (e.g. IEEE802.11)
• Local device bus-system (e.g. firewire)
• Wireless local device network (e.g. bluetooth)
• Infrared communication (e.g. IrDA)
• Modem

© 2003 Uwe R. Zimmer, International University Bremen Page 21 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Types of current operating systems

Personal computing systems and workstations:
• late 70s: Workstations starting by porting UNIX or VMS to ‘smaller’ computers.

• 80s: PCs starting with almost none of the classical OS-features and services,
but with an user-interface (MacOS) and simple device drivers (MS-DOS)

☞ last 20 years: evolving and expanding into current general purpose OSs:

• Solaris (based on SVR4, BSD, and SunOS)
• LINUX (open source UNIX re-implementation for x86 processors and others)
• current Windows (proprietary, partly based on Windows NT, which is ‘related’ to VMS)
• MacOS X (Mach kernel with BSD Unix and an proprietary user-interface)

• Multiprocessing is supported by all these OSs to some extend.

• None of these OSs is very suitable for embedded systems, also trials have been performed.

• All of these OSs are not suitable at all for distributed or real-time systems.

© 2003 Uwe R. Zimmer, International University Bremen Page 22 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Types of current operating systems

Parallel operating systems
• support for a large number of processors, either:

• symmetrical:
each CPU has a full copy of the operating system

or
• asymmetrical:

only one CPU carries the full operating system,
the others are operated by small operating system stubs to transfer code or tasks.

© 2003 Uwe R. Zimmer, International University Bremen Page 23 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Types of current operating systems

Distributed operating systems
• all CPUs carry a small kernel operating system for communication services.

• all other OS-services are distributed over available CPUs

• services may migrate

• services can be multiplied in order to

• guarantee availability (hot stand-by)
• or to increase throughput (heavy duty servers)

© 2003 Uwe R. Zimmer, International University Bremen Page 24 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Types of current operating systems

Real-time operating systems

• Fast context switches? ☞ should be fast anyway

• Small size? ☞ should be small anyway

• Quick responds to external interrupts? ☞ not ‘quick’, but predictable

• Multitasking? ☞ real time systems are often multitasking systems

• ‘low level’ programming interfaces? ☞ needed in many operating systems

• Interprocess communication tools? ☞ needed in almost all operating systems

• High processor utilization? ☞ fault tolerance builds on redundancy!

© 2003 Uwe R. Zimmer, International University Bremen Page 25 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Types of current operating systems

Real-time operating systems requesting …

☞ the logical correctness of the results as well as

☞ the correctness of the time, when the results are delivered

☞ Predictability!
(not performance!)

☞ All results are to be delivered just-in-time – not too early, not too late.

Timing constraints are specified in many different ways …
… often as a response to ‘external’ events ☞ reactive systems

© 2003 Uwe R. Zimmer, International University Bremen Page 26 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Types of current operating systems

Embedded operating systems
• usually real-time systems, often hard real-time systems

• very small footprint (often a few KBs)

• none or limited user-interaction

☞ 90-95% of all processors are working here!

© 2003 Uwe R. Zimmer, International University Bremen Page 27 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Roots of current commercial operating systems

Basic
methods, algorithms, terminologies

(50s to mid 80s)

Advanced topics,
Current research

projects

Current general
purpose OSs

Dedicated operating systems
(real-time, embedded, distributed)

© 2003 Uwe R. Zimmer, International University Bremen Page 28 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Typical structures of operating systems

‘Monolithic’ or ‘the big mess’
• non-portable

• hard to maintain

• lacks reliability

• all services are in the kernel (on the same privilege level)

☞ may reach very high efficiency

e.g. most early UNIX implementations (70s),
MS-DOS (80s), Windows (basically all versions besides NT and NT-based editions),
MacOS (until version 9),

Hardware

OS

Tasks

Monolithic

APIs

© 2003 Uwe R. Zimmer, International University Bremen Page 29 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Typical structures of operating systems

‘Monolithic & modular’
• Modules can be platform independent

• Easier to maintain and to develop

• Reliability is increased

• all services are still in the kernel (on the same privilege level)

☞ may reach very high efficiency

e.g. current LINUX versions

Hardware

OS

Tasks

Modular

APIs

M1 M1 Mn…

© 2003 Uwe R. Zimmer, International University Bremen Page 30 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Typical structures of operating systems

‘Monolithic & layered’
• easily portable

• significantly easier to maintain

• crashing layers do not necessarily stop the whole OS

• possibly reduced efficiency through many interfaces

• rigorous implementation of the stacked virtual machine perspective
on OSs

e.g. some current UNIX implementations (e.g. Solaris) to a certain degree,
many research OSs (e.g. ‘THE system’, Dijkstra ‘68)

Hardware

Tasks

Layered

M0

M1

Mn
OS

APIs

…

layers

© 2003 Uwe R. Zimmer, International University Bremen Page 31 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Typical structures of operating systems

‘µkernels and virtual machines’
• µkernel implements essential

process, memory, and message handling

• all ‘higher’ services are dealt with outside the
kernel ☞ no threat for the kernel stability

• significantly easier to maintain

• multiple OSs can be executed at the same time

• µkernel is highly hardware dependent
☞ only the µkernel need to be ported.

• possibly reduced efficiency through increased
communications

e.g. wide spread concept: as early as the CP/M, VM/370 (‘79)
or as recent as MacOS X (mach kernel + BSD unix)

Hardware

µkernel, virtual machine

µkernel

Tasks

M0

M1

Mn
OS

APIs

…

layersOS

Tasks

APIs

M1 M1 Mn…OS

Tasks

APIs

© 2003 Uwe R. Zimmer, International University Bremen Page 32 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Typical structures of operating systems

‘µkernels and client-server models’
• µkernel implements essential

process, memory, and message handling

• all ‘higher’ services are user-level servers

• kernel ensures the reliable message passing
between clients and servers

• highly modular and flexible

• servers can be redundant and easily replaced

• possibly reduced efficiency through increased
communications

e.g. current µkernel research projects

Hardware

µkernel, client server structure

µkernel

service mservice 1task 1 task n

© 2003 Uwe R. Zimmer, International University Bremen Page 33 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Typical structures of operating systems

‘µkernels and distributed systems’
• µkernel implements essential

process, memory, and message handling

• all ‘higher’ services are user-level servers

• kernel ensures the reliable message passing
between clients and servers:
locally and via a communication system

• highly modular and flexible

• servers can be redundant and easily replaced

• possibly reduced efficiency through increased
communications

e.g. Java machines, distributed real-time operat-
ing systems + current distributed OSs research projects

µkernel, distributed systems

task 1 task n service 1

µkernel µkernel

service m

µkernel

Hardware

Network

© 2003 Uwe R. Zimmer, International University Bremen Page 34 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Basic programming styles

• Imperative (sequential) ☞ Ada, JAVA, Eiffel, C…

• Functional (recursive) ☞ Lisp, OCaml, …

• Declarative (logic) ☞ Prolog, …

• Data-flow machines ☞ Lustre, Signal, …

• (hierarchical) Finite state machines ☞ synchronous languages: Esterel, syncEifel, synERJY, …

Programming styles alternatives
Imperative ↔ Functional ↔ Declarative ↔ Data-flow ↔ Finite state machines

Static ↔ Dynamic
 Modular ↔ Concurrent ↔ Distributed

Synchronous ↔ Continuous time
Control oriented ↔ Data oriented

© 2003 Uwe R. Zimmer, International University Bremen Page 35 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Programming styles

What makes a language suitable for operating systems?

• Precise expressions on machine level ☞ address physical memory + I/O

• Concurrency ☞ support for tasking/threading

• Distribution ☞ support for message passing or rpc

• Reliability ☞ detect errors at compile-time or in the run-time environment

• Large systems ☞ scalable, modular, or object-oriented + separate compilation

• Predictability
☞ no operations which will lead to unforeseeable timing behaviours (e.g. garbage collection)

© 2003 Uwe R. Zimmer, International University Bremen Page 36 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Programming styles

Languages considered in this course

• C/C++ (for the lab-assignments)

• Ada95 (for your understanding)

• JAVA (for some distribution and object orientated features)

• POSIX (as the IEEE standard for (UNIX-) OS interfaces)

… others in places

© 2003 Uwe R. Zimmer, International University Bremen Page 37 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Ada95 is a standardized (ISO/IEC 8652:1995(E)) ‘general purpose’ language
with core language primitives for

• strong typing, separate compilation (specification and implementation),
object-orientation,

• concurrency, monitors, rpcs, timeouts, scheduling, priority ceiling locks

• strong run-time environments

… and standardized language-annexes for

• additional real-time features, distributed programming,
system-level programming, numeric, informations systems,
safety and security issues.

© 2003 Uwe R. Zimmer, International University Bremen Page 38 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

A crash course
… refreshing:

• specification and implementation (body) parts, basic types

• exceptions

• information hiding in specifications (‘private’)

• generic programming

• class-wide programming (‘tagged types’)

• monitors and synchronisation (‘protected’, ‘entries’, ‘selects’, ‘accepts’)

• abstract types and dispatching

© 2003 Uwe R. Zimmer, International University Bremen Page 39 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Basics
… introducing:

• specification and implementation (body) parts

• constants

• some basic types (integer specifics)

• some type attributes

• parameter specification

© 2003 Uwe R. Zimmer, International University Bremen Page 40 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A simple queue specification

package Queue_Pack_Simple is

 QueueSize : constant Positive := 10;
 type Element is new Positive range 1_000..40_000;
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_Type is record
 Top, Free : Marker := Marker'First;
 Elements : List;
 end record;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

end Queue_Pack_Simple;

© 2003 Uwe R. Zimmer, International University Bremen Page 41 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A simple queue implementation

package body Queue_Pack_Simple is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 end Dequeue;

end Queue_Pack_Simple;

© 2003 Uwe R. Zimmer, International University Bremen Page 42 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A simple queue test program

with Queue_Pack_Simple; use Queue_Pack_Simple;

procedure Queue_Test_Simple is

 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (2000, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce an unpredictable result!
end Queue_Test_Simple;

© 2003 Uwe R. Zimmer, International University Bremen Page 43 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Exceptions
… introducing:

• exception handling

• enumeration types

• functional type attributes

© 2003 Uwe R. Zimmer, International University Bremen Page 44 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A queue specification with proper exceptions

package Queue_Pack_Exceptions is

 QueueSize : constant Integer := 10;
 type Element is (Up, Down, Spin, Turn);
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 Queueoverflow, Queueunderflow : exception;

end Queue_Pack_Exceptions;
© 2003 Uwe R. Zimmer, International University Bremen Page 45 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A queue implementations with proper exceptions

package body Queue_Pack_Exceptions is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Marker'Pred (Queue.Free);
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Marker'Pred (Queue.Top);
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

end Queue_Pack_Exceptions;

© 2003 Uwe R. Zimmer, International University Bremen Page 46 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A queue test program with proper exceptions

with Queue_Pack_Exceptions; use Queue_Pack_Exceptions;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Exceptions is

 Queue : Queue_Type;
 Item : Element;

begin
 Enqueue (Turn, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
 when Queueunderflow => Put ("Queue underflow");
 when Queueoverflow => Put ("Queue overflow");

end Queue_Test_Exceptions;

© 2003 Uwe R. Zimmer, International University Bremen Page 47 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Information hiding (private parts)
… introducing:

• private ☞ assignments and comparisons are allowed

• limited private ☞ entity cannot be assigned or compared

© 2003 Uwe R. Zimmer, International University Bremen Page 48 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A queue specification with proper information hiding

package Queue_Pack_Private is

 QueueSize : constant Integer := 10;
 type Element is new Positive range 1..1000;
 type Queue_Type is limited private;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 Queueoverflow, Queueunderflow : exception;

private
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;
end Queue_Pack_Private;

© 2003 Uwe R. Zimmer, International University Bremen Page 49 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A queue implementation with proper information hiding

package body Queue_Pack_Private is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

end Queue_Pack_Private;

identical

© 2003 Uwe R. Zimmer, International University Bremen Page 50 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A queue test program with proper information hiding

with Queue_Pack_Private; use Queue_Pack_Private;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Private is

 Queue, Queue_Copy : Queue_Type;
 Item : Element;

begin
 Queue_Copy := Queue;
 -- compiler-error: left hand of assignment must not be limited type
 Enqueue (Item => 1, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
 when Queueunderflow => Put ("Queue underflow");
 when Queueoverflow => Put ("Queue overflow");
end Queue_Test_Private;

© 2003 Uwe R. Zimmer, International University Bremen Page 51 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Generic packages
… introducing:

• specification of generic packages

• instantiation of generic packages

© 2003 Uwe R. Zimmer, International University Bremen Page 52 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A generic queue specification

generic
 type Element is private;

package Queue_Pack_Generic is

 QueueSize: constant Integer := 10;
 type Queue_Type is limited private;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 Queueoverflow, Queueunderflow : exception;

private
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;
end Queue_Pack_Generic;

© 2003 Uwe R. Zimmer, International University Bremen Page 53 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A generic queue implementation
package body Queue_Pack_Generic is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

end Queue_Pack_Generic;

identical

© 2003 Uwe R. Zimmer, International University Bremen Page 54 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A generic queue test program

with Queue_Pack_Generic;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Generic is

 package Queue_Pack_Positive is
 new Queue_Pack_Generic (Element => Positive);
 use Queue_Pack_Positive;

 Queue : Queue_Type;
 Item : Positive;

begin
 Enqueue (Item => 1, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
 when Queueunderflow => Put ("Queue underflow");
 when Queueoverflow => Put ("Queue overflow");
end Queue_Test_Generic;

© 2003 Uwe R. Zimmer, International University Bremen Page 55 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Object oriented programming I
… introducing:

• tagged types ☞ the Ada-way to say that this type can be extended

• derivation of tagged types

• method overwriting

• usage of parent entities

© 2003 Uwe R. Zimmer, International University Bremen Page 56 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

An open queue base class specification

package Queue_Pack_Object_Base is

 QueueSize : constant Integer := 10;
 type Element is new Positive range 1..1000;
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is tagged record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 Queueoverflow, Queueunderflow : exception;

end Queue_Pack_Object_Base;
© 2003 Uwe R. Zimmer, International University Bremen Page 57 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

An open queue base class implementation

package body Queue_Pack_Object_Base is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

end Queue_Pack_Object_Base;

identical

© 2003 Uwe R. Zimmer, International University Bremen Page 58 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A derived open queue class specification

with Queue_Pack_Object_Base; use Queue_Pack_Object_Base;

package Queue_Pack_Object is

 type Ext_Queue_Type is new Queue_Type with record
 Reader : Marker := Marker'First;
 Reader_State : Queue_State := Empty;
 end record;

 procedure Enqueue (Item: in Element; Queue: in out Ext_Queue_Type);
 procedure Read_Queue (Item: out Element; Queue: in out Ext_Queue_Type);

end Queue_Pack_Object;

© 2003 Uwe R. Zimmer, International University Bremen Page 59 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A derived open queue class implementation

package body Queue_Pack_Object is

 procedure Enqueue (Item: in Element; Queue: in out Ext_Queue_Type) is
 begin
 Enqueue (Item, Queue_Type (Queue));
 Queue.Reader_State := Filled;
 end Enqueue;

 procedure Read_Queue (Item: out Element; Queue: in out Ext_Queue_Type) is
 begin
 if Queue.Reader_State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Reader);
 Queue.Reader := Queue.Reader - 1;
 if Queue.Reader = Queue.Free then Queue.Reader_State := Empty; end if;
 end Read_Queue;

end Queue_Pack_Object;
© 2003 Uwe R. Zimmer, International University Bremen Page 60 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

An open class test program

with Queue_Pack_Object_Base; use Queue_Pack_Object_Base;
with Queue_Pack_Object; use Queue_Pack_Object;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Object is

 Queue : Ext_Queue_Type;
 Item : Element;

begin
 Enqueue (Item => 1, Queue => Queue);
 Read_Queue (Item, Queue);
 Enqueue (Item => 5, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
 when Queueunderflow => Put ("Queue underflow");
 when Queueoverflow => Put ("Queue overflow");
end Queue_Test_Object;

© 2003 Uwe R. Zimmer, International University Bremen Page 61 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Object oriented programming II
… introducing:

• private tagged types

• objects which are protected against their children also

© 2003 Uwe R. Zimmer, International University Bremen Page 62 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

An encapsulated queue base class specification

package Queue_Pack_Object_Base_Private is

 QueueSize : constant Integer := 10;
 type Element is new Positive range 1..1000;
 type Queue_Type is tagged limited private;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type);
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type);

 Queueoverflow, Queueunderflow : exception;

private
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is tagged limited record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;

end Queue_Pack_Object_Base_Private;
© 2003 Uwe R. Zimmer, International University Bremen Page 63 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

An encapsulated queue base class implementation

package body Queue_Pack_Object_Base_Private is

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

end Queue_Pack_Object_Base_Private;

identical

© 2003 Uwe R. Zimmer, International University Bremen Page 64 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A derived encapsulated queue class specification

with Queue_Pack_Object_Base_Private; use Queue_Pack_Object_Base_Private;

package Queue_Pack_Object_Private is

 type Ext_Queue_Type is new Queue_Type with private;
 subtype Depth_Type is Positive range 1..QueueSize;

 procedure Look_Ahead (Item: out Element;
 Depth: in Depth_Type; Queue: in out Ext_Queue_Type);

private
 type Ext_Queue_Type is new Queue_Type with null record;

end Queue_Pack_Object_Private;

© 2003 Uwe R. Zimmer, International University Bremen Page 65 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A derived encapsulated queue class implementation

package body Queue_Pack_Object_Private is

 procedure Look_Ahead (Item: out Element;
 Depth: in Depth_Type; Queue: in out Ext_Queue_Type) is

 Storage : Queue_Type;
 ShuffleItem : Element;

 begin
 for I in 1..Depth - 1 loop
 Dequeue (ShuffleItem, Queue);
 Enqueue (ShuffleItem, Storage);
 end loop;
 Dequeue (Item, Queue);
 Enqueue (Item, Storage);
(…)

© 2003 Uwe R. Zimmer, International University Bremen Page 66 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

(…)

 Read_The_Rest:
 begin
 for I in 1..QueueSize - Depth loop
 Dequeue (ShuffleItem, Queue);
 Enqueue (ShuffleItem, Storage);
 end loop;
 exception
 when Queueunderflow => null; -- read the rest is done
 end Read_The_Rest;
 Restore_The_Queue:
 begin
 for I in 1..QueueSize loop
 Dequeue (ShuffleItem, Storage);
 Enqueue (ShuffleItem, Queue);
 end loop;
 exception
 when Queueunderflow => null; -- restore is done
 end Restore_The_Queue;

 end Look_Ahead;

end Queue_Pack_Object_Private;

bad

© 2003 Uwe R. Zimmer, International University Bremen Page 67 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

An encapsulated class test program

with Queue_Pack_Object_Base_Private; use Queue_Pack_Object_Base_Private;
with Queue_Pack_Object_Private; use Queue_Pack_Object_Private;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Object_Private is

 Queue : Ext_Queue_Type;
 Item : Element;

begin
 Enqueue (Item => 1, Queue => Queue);
 Enqueue (Item => 1, Queue => Queue);
 Look_Ahead (Item => Item, Depth => 2, Queue => Queue);
 Enqueue (Item => 5, Queue => Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue);
 Dequeue (Item, Queue); -- will produce a 'Queue underflow'

exception
 when Queueunderflow => Put ("Queue underflow");
 when Queueoverflow => Put ("Queue overflow");
end Queue_Test_Object_Private;

© 2003 Uwe R. Zimmer, International University Bremen Page 68 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Tasks & Monitors
… introducing:

• protected types

• tasks (definition, instantiation and termination)

• task synchronisation

• entry guards

• entry calls

• accept and selected accept statements

© 2003 Uwe R. Zimmer, International University Bremen Page 69 of 432 (chapter 1: to 89)

A protected queue specification

Package Queue_Pack_Protected is

 QueueSize : constant Integer := 10;
 subtype Element is Character;
 type Queue_Type is limited private;

 Protected type Protected_Queue is

 entry Enqueue (Item: in Element);
 entry Dequeue (Item: out Element);

 private
 Queue : Queue_Type;

 end Protected_Queue;

private
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Queue_Type is record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;
end Queue_Pack_Protected;

© 2003 Uwe R. Zimmer, International University Bremen Page 70 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A protected queue implementation

package body Queue_Pack_Protected is

 protected body Protected_Queue is

 entry Enqueue (Item: in Element) when
 Queue.State = Empty or Queue.Top /= Queue.Free is
 begin
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 entry Dequeue (Item: out Element) when
 Queue.State = Filled is
 begin
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

 end Protected_Queue;
end Queue_Pack_Protected;

© 2003 Uwe R. Zimmer, International University Bremen Page 71 of 432 (chapter 1: to 89)

A multitasking protected queue test program

with Queue_Pack_Protected; use Queue_Pack_Protected;
with Ada.Text_IO; use Ada.Text_IO;

procedure Queue_Test_Protected is

 Queue : Protected_Queue;

 task Producer is entry shutdown; end Producer;
 task Consumer is end Consumer;

 task body Producer is
 Item : Element;
 Got_It : Boolean;
 begin
 loop
 select
 accept shutdown; exit; -- main task loop
 else
 Get_Immediate (Item, Got_It);
 if Got_It then
 Queue.Enqueue (Item); -- task might be blocked here!
 else
 delay 0.1; --sec.
 end if;
 end select;
 end loop;
 end Producer;

(…)
© 2003 Uwe R. Zimmer, International University Bremen Page 72 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A multitasking protected queue test program (cont.)

(…)

 task body Consumer is
 Item : Element;
 begin
 loop
 Queue.Dequeue (Item); -- task might be blocked here!
 Put ("Received: "); Put (Item); Put_Line ("!");
 if Item = 'q' then
 Put_Line ("Shutting down producer"); Producer.Shutdown;
 Put_Line ("Shutting down consumer"); exit; -- main task loop
 end if;
 end loop;
 end Consumer;

begin
 null;
end Queue_Test_Protected;

© 2003 Uwe R. Zimmer, International University Bremen Page 73 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Abstract types & dispatching
… introducing:

• abstract tagged types

• abstract subroutines

• concrete implementation of abstract types

• dispatching to different packages, tasks, and partitions
according to concrete types

© 2003 Uwe R. Zimmer, International University Bremen Page 74 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

An abstract queue specification

package Queue_Pack_Abstract is

 subtype Element is Character;
 type Queue_Type is abstract tagged limited private;

 procedure Enqueue (Item: in Element; Queue: in out Queue_Type) is
 abstract;
 procedure Dequeue (Item: out Element; Queue: in out Queue_Type) is
 abstract;

private
 type Queue_Type is abstract tagged limited null record;
end Queue_Pack_Abstract;

© 2003 Uwe R. Zimmer, International University Bremen Page 75 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A concrete queue specification

with Queue_Pack_Abstract; use Queue_Pack_Abstract;

package Queue_Pack_Concrete is

 QueueSize : constant Integer := 10;
 type Real_Queue is new Queue_Type with private;

 procedure Enqueue (Item: in Element; Queue: in out Real_Queue);
 procedure Dequeue (Item: out Element; Queue: in out Real_Queue);

 Queueoverflow, Queueunderflow : exception;

private
 type Marker is mod QueueSize;
 type List is array (Marker'Range) of Element;
 type Queue_State is (Empty, Filled);
 type Real_Queue is new Queue_Type with record
 Top, Free : Marker := Marker'First;
 State : Queue_State := Empty;
 Elements : List;
 end record;
end Queue_Pack_Concrete;

© 2003 Uwe R. Zimmer, International University Bremen Page 76 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A concrete queue implementation

package body Queue_Pack_Concrete is

 procedure Enqueue (Item: in Element; Queue: in out Real_Queue) is
 begin
 if Queue.State = Filled and Queue.Top = Queue.Free then
 raise Queueoverflow;
 end if;
 Queue.Elements (Queue.Free) := Item;
 Queue.Free := Queue.Free - 1;
 Queue.State := Filled;
 end Enqueue;

 procedure Dequeue (Item: out Element; Queue: in out Real_Queue) is
 begin
 if Queue.State = Empty then
 raise Queueunderflow;
 end if;
 Item := Queue.Elements (Queue.Top);
 Queue.Top := Queue.Top - 1;
 if Queue.Top = Queue.Free then Queue.State := Empty; end if;
 end Dequeue;

end Queue_Pack_Concrete;
© 2003 Uwe R. Zimmer, International University Bremen Page 77 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

A multitasking dispatching test program

with Queue_Pack_Abstract; use Queue_Pack_Abstract;
with Queue_Pack_Concrete; use Queue_Pack_Concrete;

procedure Queue_Test_Dispatching is

 type Queue_Class is access all Queue_Type'class;

 task Queue_Holder is -- could be on an individual partition
 entry Queue_Filled;
 end Queue_Holder;

 task Queue_User is -- could be on an individual partition
 entry Send_Queue (Remote_Queue: in Queue_Class);
 end Queue_User;
(…)

© 2003 Uwe R. Zimmer, International University Bremen Page 78 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

 task body Queue_Holder is
 Local_Queue : Queue_Class;
 Item : Element;
 begin
 Local_Queue := new Real_Queue; -- could be a different implementation!
 Queue_User.Send_Queue (Local_Queue);
 accept Queue_Filled do
 Dequeue (Item, Local_Queue.all); -- Item will be 'r'
 end Queue_Filled;
 end Queue_Holder;

 task body Queue_User is
 Local_Queue : Queue_Class;
 Item : Element;
 begin
 Local_Queue := new Real_Queue; -- could be a different implementation!
 accept Send_Queue (Remote_Queue: in Queue_Class) do
 Enqueue ('r', Remote_Queue.all); -- potentially a rpc!
 Enqueue ('l', Local_Queue.all);
 end Send_Queue;
 Queue_Holder.Queue_Filled;
 Dequeue (Item, Local_Queue.all); -- Item will be 'l'
 end Queue_User;

begin null; end Queue_Test_Dispatching;

© 2003 Uwe R. Zimmer, International University Bremen Page 79 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Ada95

Ada95 language status
• Established language standard with free and

commercial compilers available for all major OSs.

• Stand-alone runtime environments for embedded systems
(some are only available commercially).

• Special (yet non-standard) extensions (i.e. language reductions and
proof systems) for extreme small footprint embedded systems or high
integrity real-time environments available ☞ Ravenscar profile systems.

☞ has been used and is in use in numberless large scale projects
(e.g. in the international space station, and in some spectacular crashes: e.g. Ariane 5)

© 2003 Uwe R. Zimmer, International University Bremen Page 80 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

POSIX

Portable Operating System Interface
for Computing Environments

• IEEE/ANSI Std 1003.1 and following

• Program Interface (API) [C Language]

• more than 30 different POSIX standards
(a system is ‘POSIX compliant’, if it implements parts of just one of them!)

© 2003 Uwe R. Zimmer, International University Bremen Page 81 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

POSIX – some of the real-time relevant standards

1003.1
12/01

OS Definition
single process, multi process, job control, signals, user groups, file system, file attributes, file
device management, file locking, device I/O, device-specific control, system database, pipes,
FIFO, …

1003.1b
10/93

Real-time
Extensions

real-time signals, priority scheduling, timers, asynchronous I/O, prioritized I/O, synchronized
I/O, file sync, mapped files, memory locking, memory protection, message passing, sema-
phore, …

1003.1c
6/95

Threads
multiple threads within a process; includes support for: thread control, thread attributes, pri-
ority scheduling, mutexes, mutex priority inheritance, mutex priority ceiling, and condition
variables

1003.1d
10/99

Additional Real-
time Extensions

new process create semantics (spawn), sporadic server scheduling, execution time monitor-
ing of processes and threads, I/O advisory information, timeouts on blocking functions, de-
vice control, and interrupt control

1003.1j
1/00

Advanced Real-
time Extensions

typed memory, nanosleep improvements, barrier synchronization, reader/writer locks, spin
locks, and persistent notification for message queues

1003.21
-/-

Distributed
Real-time

buffer management, send control blocks, asynchronous and synchronous operations,
bounded blocking, message priorities, message labels, and implementation protocols

© 2003 Uwe R. Zimmer, International University Bremen Page 82 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

POSIX – 1003.1b

Frequently employed POSIX features include:
• Timers: delivery is accomplished using POSIX signals

• Priority scheduling: fixed priority, 32 priority levels

• Real-time signals: signals with multiple levels of priority

• Semaphore: named semaphore

• Memory queues: message passing using named queues

• Shared memory: memory regions shared between multiple processes

• Memory locking: no virtual memory swapping of physical memory pages

Real-Time & Embedded SystemsOperating Systems & Networks

POSIX – support in some OSs

POSIX 1003.1
(Base POSIX)

POSIX 1003.1b
(Real-time

extensions)

POSIX 1003.1c
(Threads)

Solaris Full support Full support Full support

IRIX Conformant Full support Full support

LynxOS Conformant Full support Conformant (Version 3.1)

QNX
Neutrino

Full support
Partial support

(no memory locking)
Full support

Linux Full support
Partial support

(no timers,
no message queues)

Full support

VxWorks Partial support
(different process model)

Partial support
(different process model)

Supported through third
party product

© 2003 Uwe R. Zimmer, International University Bremen Page 84 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

POSIX – other languages

POSIX is a ‘C’ standard …
… but bindings to other languages are also (suggested) POSIX standards:

• Ada: 1003.5*, 1003.24 (some PAR approved only, some withdrawn)

• Fortran: 1003.9 (6/92)

• Fortran90: 1003.19 (withdrawn)

… and there are POSIX standards for task-specific POSIX profiles, e.g.:

• Super computing: 1003.10 (6/95)

• Realtime: 1003.13, 1003.13b (3/98)

- profiles 51-54: combinations of the above RT-relevant POSIX standards ☞ RT-Linux

• Embedded Systems: 1003.13a (PAR approved only)

© 2003 Uwe R. Zimmer, International University Bremen Page 85 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

POSIX – example: setting a timer

void timer_create(int num_secs, int num_nsecs)
{
 struct sigaction sa;
 struct sigevent sig_spec;
 sigset_t allsigs;
 struct itimerspec tmr_setting;
 timer_t timer_h;

 /* setup signal to respond to timer */
 sigemptyset(&sa.sa_mask);
 sa.sa_flags = SA_SIGINFO;
 sa.sa_sigaction = timer_intr;

 if (sigaction(SIGRTMIN, &sa, NULL) < 0)
 perror(‘sigaction’);

 sig_spec.sigev_notify = SIGEV_SIGNAL;
 sig_spec.sigev_signo = SIGRTMIN;

Real-Time & Embedded SystemsOperating Systems & Networks

POSIX – example: setting a timer (cont.)

 /* create timer, which uses the REALTIME clock */
 if (timer_create(CLOCK_REALTIME, &sig_spec, &timer_h) < 0)
 perror(‘timer create’);

 /* set the initial expiration and frequency of timer */
 tmr_setting.it_value.tv_sec = 1;
 tmr_setting.it_value.tv_nsec = 0;
 tmr_setting.it_interval.tv_sec = num_secs;
 tmr_setting.it_interval.tv_sec = num_nsecs;
 if (timer_settime(timer_h, 0, &tmr_setting,NULL) < 0)
 perror(‘settimer’);

 /* wait for signals */
 sigemptyset(&allsigs);
 while (1) {
 sigsuspend(&allsigs);
 }
}

/* routine that is called when timer expires */
void timer_intr(int sig, siginfo_t *extra, void *cruft)
{
 /* perform periodic processing and then exit */
}

Real-Time & Embedded SystemsOperating Systems & Networks

POSIX – example: setting a timer (cont.)

 /* create timer, which uses the REALTIME clock */
 if (timer_create(CLOCK_REALTIME, &sig_spec, &timer_h) < 0)
 perror(‘timer create’);

 /* set the initial expiration and frequency of timer */
 tmr_setting.it_value.tv_sec = 1;
 tmr_setting.it_value.tv_nsec = 0;
 tmr_setting.it_interval.tv_sec = num_secs;
 tmr_setting.it_interval.tv_sec = num_nsecs;
 if (timer_settime(timer_h, 0, &tmr_setting,NULL) < 0)
 perror(‘settimer’);

 /* wait for signals */
 sigemptyset(&allsigs);
 while (1) {
 sigsuspend(&allsigs);
 }
}

/* routine that is called when timer expires */
void timer_intr(int sig, siginfo_t *extra, void *cruft)
{
 /* perform periodic processing and then exit */
}

remember the Pearl timers?

AFTER
 30 M

IN AL
L 5 M

IN DU
RING

1 HRS
 ACTI

VATE
Help;

© 2003 Uwe R. Zimmer, International University Bremen Page 88 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Languages

Languages used in this course

Ada RT-Java C/C++ Posix

Predictability ***
(specific

run-time env.)

(OOP)

implementation
dependent

implementation
dependent

low-level interfaces *** - ** **

Concurrency *** ** --- **

Distribution ** *** --- *

Error detection
(compiler, tools)

**
(strong typing)

** --- ---

Large systems
*** ***

OOP C++ style
(no support in C)

/

© 2003 Uwe R. Zimmer, International University Bremen Page 89 of 432 (chapter 1: to 89)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Introduction to operating systems
• Features (and non-features) of operating system

• Common grounds for operating systems

• Historical perspectives

• Types of current operating systems

• Design principles for system software (monoliths & µkernels)

• Examples of languages considered for system level programming:

• Java
• Ada95
• POSIX interfaces
• C/C++

2
Hardware Fundamentals

Uwe R. Zimmer – International University Bremen

© 2003 Uwe R. Zimmer, International University Bremen Page 91 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

References for this chapter

[Silberschatz01] – Chapter 2
Abraham Silberschatz, Peter Bear Galvin,
Greg Gagne
Operating System Concepts
John Wiley & Sons, Inc., 2001

[Stallings2001] – Chapter 1
William Stallings
Operating Systems
Prentice Hall, 2001

all references and some links are available on the course page

© 2003 Uwe R. Zimmer, International University Bremen Page 92 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

A common computer architecture:

• Bus-systems carry device, address information and data (8-64bit wide)
as well as control lines in groups such as:

• arbitration, synchronization, requests, interrupts, priorities

CPUIn
te

rf
ac

eSequencer

ALU

Registers

Control
Address

Data

Memory I/O
Interface

Memory I/O
Interface

......

© 2003 Uwe R. Zimmer, International University Bremen Page 93 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

The CPU

• CPU components relevant for this course:

• register-set, sequencer (‘normal operation’), interrupt controller, protected modes

CPUIn
te

rf
ac

eSequencer

ALU

Registers

Control
Address

Data

Memory I/O
Interface

Memory I/O
Interface

......

© 2003 Uwe R. Zimmer, International University Bremen Page 94 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

Register set
• SR: Status / Condition codes (CC), e.g.:

privilege level, interrupt level, result of last operation

• IR: current instruction

• PC: Address of current (next) instruction

• SP: Top of stack address

• Special privileged registers, e.g.:
page table entries, memory protection maps

• Dedicated registers, e.g.:
registers which can by employed in some contexts only

• Universal registers:
registers, which can be employed for any purpose
(addressing, storage, index, parameters, …)

Status (SR)
or Condition codes (CC)

Register structure

Instruction (IR)

Program counter (PC)

Stack pointer (SP)

Universal registers

Special registers
(privileged,

e.g. page table pointers)

Dedicated registers
(mostly used in specific

addressing modes)

© 2003 Uwe R. Zimmer, International University Bremen Page 95 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

Register set
• Often divided into a

privileged and non-privileged section

• Switch from non-privileged to privileged mode
only via traps or interrupts (later in this chapter)

☞ SR, IR, PC, SP
+ some general registers (or at least one ‘accumulator’)

are found in all current processor designs

• Special and dedicated registers are
not used in all architectures

Status (SR)
or Condition codes (CC)

Register structure

Instruction (IR)

Program counter (PC)

Stack pointer (SP)

Universal registers

Special registers
(privileged,

e.g. page table pointers)

Dedicated registers
(mostly used in specific

addressing modes)

P
ri

vi
le

ge
d

N
o

n
-p

ri
vi

le
ge

d

© 2003 Uwe R. Zimmer, International University Bremen Page 96 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

Memory layout
• Classical usage of the

RAM areas in most processors

• Main storage of data in

• heap
• stack
• or local static

depends on the usage of the
programming language

Code

Main memory layout

Static variables

Stack

Heap

I/O

SP

PC

© 2003 Uwe R. Zimmer, International University Bremen Page 97 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

Stack frames
• Every sub-program call

leaves an entry on the stack
with all relevant information:

• parameters
• context (not in ‘C’)
• return address

• Parameters may
be removed by:

• the calling routine (‘C’)
• or the called routine

• Special architectures
support faster parameter
passing (e.g. register-bands)

Code

Main memory layout

Static variables

Stack

Heap

I/O

SP

PC SP

Parameters

Return address

Context reference

Context reference

Return address

Parameters

Context reference

Return address

Return address

Local variables

Local variables

Saved environment

© 2003 Uwe R. Zimmer, International University Bremen Page 98 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

Privileged instructions
Purpose:

• prevent user level tasks from by-passing the operating system

• restrict access form user-level tasks to resources, which are managed by the operating system:

• Memory
• I/O
• Structures which are used to administer memory or I/O access

(e.g. special registers, MMUs, etc.)

Implementation:
• declare some instructions privileged

• implement two (or more) protection levels in the CPU

• allow changes to a higher privilege level by means of traps/exceptions/interrupts only.

© 2003 Uwe R. Zimmer, International University Bremen Page 99 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Interrupts

Required mechanisms for interrupt driven programming:

• Interrupt control: grouping, encoding, prioritising, and en-/disabling interrupt sources

• Context switching: mechanisms for cpu-state saving and restoring + task-switching

• Interrupt identification: Interrupt vectors, interrupt states

☞ hardware-supported

© 2003 Uwe R. Zimmer, International University Bremen Page 100 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Interrupts
Interrupt control:

… at the individual device level

… at the system interrupt controller level

… at the operating system level
• beyond task-level (interrupt service routines)
• communicating interrupts to task
• transforming interrupts to signals

… at the language level

© 2003 Uwe R. Zimmer, International University Bremen Page 101 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Interrupts

LM12L458
(National Semiconductor)

☞ only one interrupt signal line available!

☞ in order to identify the interrupt reason, an additional read cycle is required!

Interrupt signal

© 2003 Uwe R. Zimmer, International University Bremen Page 102 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

A/D, D/A & Interfaces

LM12L458
12-Bit + sign, 8 channel, A/D converter, controller and interface

Controller features:

• Programmable acquisition times and conversion rates

• 32-word conversion FIFO

• Self-calibration and diagnostic mode

• 8- or 16-bit wide data bus microprocessor or DSP

Typ. applications:
• Data Logging
• Process Control

Real-Time & Embedded SystemsOperating Systems & Networks

LM12L458 – accessible registers
A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 01) Don�t Care >/< Sign Limit #1

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 10) Don�t Care >/< Sign Limit #2

1 1 1

1 0 0 0 Configuration R/W
Don�t Care DIAG

Test RAM I/O Auto Chan Stand- Full Auto- Reset Start

Register = 0 Pointer Sel Zeroec Mask by CAL Zero

Interrupt Enable R/W Number of Conversions Sequencer INT7 Don�t INT5 INT4 INT3 INT2 INT1 INT0

1 0 0 1 Register in Conversion FIFO Address to Care

to Generate INT2 Generate INT1

Address

R Actual Number of of INST7 �0� INST5 INST4 INST3 INST2 INST1 INST0

1 0 1 0 Interrupt Status Conversion Results Sequencer

Register in Conversion FIFO Instruction

being

Executed

1 0 1 1 Timer R/W Timer Preset High Byte Timer Preset Low Byte

Register

1 1 0 0 Conversion R Address Sign Conversion Conversion Data: LSBs

FIFO or Sign Data: MSBs

1 1 0 1 Limit Status R Limit #2: Status Limit #1: Status

Register © 2003 Uwe R. Zimmer, International University Bremen Page 104 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

LM12L458 – instruction RAM

every entry in the instruction RAM consists of:

• Loop (1bit): indicates the last instruction and branches to the first one.

• Pause (1bit): halts the sequencer before this instruction.

• , (2*3bit): select the input channels (000 selects ground in)

• Sync (1bit): wait for an external sync. signal before this instruction.

• Timer (1bit): wait for a preset 16-bit counter delay before this instruction.

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 01) Don�t Care >/< Sign Limit #1

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 10) Don�t Care >/< Sign Limit #2

1 1 1

VIN+ VIN- VIN-

© 2003 Uwe R. Zimmer, International University Bremen Page 105 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

LM12L458 – instruction RAM

every entry in the instruction RAM consists of (cont.):

• (1bit): selects the resolution (8 bit + sign or 12 bit + sign).

• Watchdog (1bit): activates comparisons with two programmed limits.

• Acquisition time () (4bit): the converter takes cycles (12bit mode) or
 cycles (8bit mode) to sample to input. Depends on the input resistance:

 for 12 bit conversions.

• Limits (including sign and comparator): used for Watchdog operation.

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 01) Don�t Care >/< Sign Limit #1

1 1 1

0 0 0 Instruction RAM R/W

0 to (RAM Pointer = 10) Don�t Care >/< Sign Limit #2

1 1 1

8/12

D 9 2D+
2 2D+
D 0.45 RS kΩ[] fCLK MHz[]⋅ ⋅≈

© 2003 Uwe R. Zimmer, International University Bremen Page 106 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

LM12L458 – instruction RAM

type ChannelPlus is (Ch0, Ch1, Ch2, Ch3, Ch4, Ch5, Ch6, Ch7);
type ChannelMinus is (Gnd, Ch1, Ch2, Ch3, Ch4, Ch5, Ch6, Ch7);
type Resolutions is (TwelveBit, EightBit);
type Aquisition_D is new Integer range 0..15; -- 9+2D (12bit), 2+2D (8bit)

for ChannelPlus use (Ch0 => 0, Ch1 => 1, Ch2 => 2, Ch3 => 3,
 Ch4 => 4, Ch5 => 5, Ch6 => 6, Ch7 => 7);
for ChannelMinus use (Gnd => 0, Ch1 => 1, Ch2 => 2, Ch3 => 3,
 Ch4 => 4, Ch5 => 5, Ch6 => 6, Ch7 => 7);
for Resolutions use (TwelveBit => 0, EightBit => 1);

type Instruction is record
 EndOfLoop, Pause, Sync, Timer, Watchdog : Boolean;
 Vplus : ChannelPlus;
 Vminus : ChannelMinus;
 Resolution : Resolutions;
 AquisitionTime : Aquisition_D;
 end record;

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1

© 2003 Uwe R. Zimmer, International University Bremen Page 107 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

LM12L458 – instruction RAM

Units_Per_Word : constant Integer := Word_Size / Storage_Unit;

for Instruction use record
 EndOfLoop at 0*Units_Per_Word range 0.. 0;
 Pause at 0*Units_Per_Word range 1.. 1;
 Vplus at 0*Units_Per_Word range 2.. 4;
 Vminus at 0*Units_Per_Word range 5.. 7;
 Sync at 0*Units_Per_Word range 8.. 8;
 Timer at 0*Units_Per_Word range 9.. 9;
 Resolution at 0*Units_Per_Word range 10..10;
 Watchdog at 0*Units_Per_Word range 11..11;
 AquisitionTime at 0*Units_Per_Word range 12..15;
 end record;

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1

© 2003 Uwe R. Zimmer, International University Bremen Page 108 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

LM12L458 – instruction RAM

for Instruction'Size use 16; -- Bits
for Instruction'Alignment use 2; -- Storage_Units (Bytes)
for Instruction'Bit_Order use High_Order_First;

type Instructions is array (0..7) of Instruction;
 pragma Pack (Instructions);

ADC_Instructions : Instructions;
for ADC_Instructions'Address use To_Address (16#0000132D#);

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1

Real-Time & Embedded SystemsOperating Systems & Networks

LM12L458 – instruction RAM

ADC_Instructions (0) := (EndOfLoop => False,
 Pause => False,
 Vplus => Ch0,
 Vminus => Gnd,
 Sync => True,
 Timer => False,
 Resolution => EightBit,
 Watchdog => False,
 AquisitionTime => 10);

ADC_Instructions (1) := (EndOfLoop => True, -- last instruction
 Pause => False,
 Vplus => Ch1,
 Vminus => Ch2,
 Sync => False,
 Timer => False,
 Resolution => TwelveBit,
 Watchdog => False,
 AquisitionTime => 0);

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1

© 2003 Uwe R. Zimmer, International University Bremen Page 110 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

LM12L458 – instruction RAM

Data structures in ‘C’:
enum ChannelPlus {Ch0=0, Ch1, Ch2, Ch3, Ch4, Ch5, Ch6, Ch7};
enum ChannelMinus {Gnd=0, Ch1, Ch2, Ch3, Ch4, Ch5, Ch6, Ch7};
enum Resolutions {TwelveBit=0, EightBit};

struct {
 unsigned int EndOfLoop : 1;
 unsigned int Pause : 1;
 ChannelPlus Vplus : 3;
 ChannelMinus Vminus : 3;
 unsigned int Sync : 1;
 unsigned int Timer : 1;
 Resolutions Resolution : 1;
 unsigned int Watchdog : 1;
 unsigned int AquisitionTime : 4;
} Instruction;

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1

© 2003 Uwe R. Zimmer, International University Bremen Page 111 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

LM12L458 – instruction RAM

Data structures in ‘C’:
struct {
 unsigned int EndOfLoop : 1;
 unsigned int Pause : 1;
 ChannelPlus Vplus : 3;
 ChannelMinus Vminus : 3;
 unsigned int Sync : 1;
 unsigned int Timer : 1;
 Resolutions Resolution : 1;
 unsigned int Watchdog : 1;
 unsigned int AquisitionTime : 4;
} Instruction;

Instruction InstructionsA[8];
InstructionsA *Instructions;
Instructions = 0x0000132D;

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1

© 2003 Uwe R. Zimmer, International University Bremen Page 112 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

LM12L458 – instruction RAM

Data structures in ‘C’:
*Instructions (0).EndOfLoop = 0;
*Instructions (0).Pause = 0;
*Instructions (0).Vplus = Ch0;
*Instructions (0).Vminus = Gnd;
*Instructions (0).Sync = 1;
*Instructions (0).Timer = 0;
*Instructions (0).Resolution = EightBit;
*Instructions (0).Watchdog = 0;
*Instructions (0).AquisitionTime = 10;

If this works, you were lucky two times:

• The compiler implemented the struct-fields in the intended places and order.

• The bit ordering in your device is the way the compiler assumed it.

don’t!
A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1

© 2003 Uwe R. Zimmer, International University Bremen Page 113 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

LM12L458 – instruction RAM

☞ Macro-Assembler style programming:
In order to produce portable code in ‘C’, it is necessary to set bits manually:

unsigned int setbits (unsigned int *r,
 unsigned int n, /* set n bits */
 unsigned int p, /* at position p */
 unsigned int x) /* to bitstring x */
{
 unsigned int mask;

 mask = ~(~0 << n);
 *r &= ~(mask << p);
 *r |= (x & mask) << p;
 return (*r);
}

A4 A3 A2 A1 Purpose Type D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 Instruction RAM R/W Acquisition Watch-

0 to (RAM Pointer = 00) Time dog 8/12 Timer Sync VIN− VIN+ Pause Loop

1 1 1

© 2003 Uwe R. Zimmer, International University Bremen Page 114 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Interrupts
Interrupt control:

… at the individual device level

… at the system interrupt controller level

… at the operating system level
• beyond task-level (interrupt service routines)
• communicating interrupts to task
• transforming interrupts to signals

… at the language level

© 2003 Uwe R. Zimmer, International University Bremen Page 115 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Interrupt service routines
(available only in some OSs, e.g. VxWorks)

Purpose:
• Allow full access to the interrupt controller (interrupt vectors, priorities).

• Change to an interrupt service routine in a predictable amount of time.

☞ Cannot operate on the level of threads or tasks!

☞ Limitations regarding the accessibility of some OS-facilities (task level system calls).

© 2003 Uwe R. Zimmer, International University Bremen Page 116 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Interrupt service routines
(available only in some OSs, e.g. VxWorks)

Some VxWorks OS entries:

these calls are employed by the language run-time environment or used directly from ‘C’-code

intConnect Connect a routine to an interrupt vector

intLevelSet Set the interrupt mask level

intLock Disable interrupts (besides NMI)

intUnlock Enable interrupts

intVecBaseSet Set the interrupt vector base address

intVecBaseGet Get the interrupt vector base address

intVecSet Set an interrupt vector

intVecGet Get an interrupt vector

© 2003 Uwe R. Zimmer, International University Bremen Page 117 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Interrupt service routines
(available only in some OSs, e.g. VxWorks)

Minimal hardware support (supplied by the cpu):

save essential CPU registers (IP, condition flags)
jump to the vectorized interrupt service routine

Minimal wrapper (supplied by the operating system):

save remaining CPU registers (or switch to another register set)
save stack-frame

--> execute user level interrupts service code

restore stack-frame
restore CPU registers (or switch back to the former register set)
restore IP

© 2003 Uwe R. Zimmer, International University Bremen Page 118 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Interrupt service routines
(available only in some OSs, e.g. VxWorks)

Interrupt service routine to task communication methods:
• Shared memory and ring buffers:

most low level communication scheme (should be avoided)

• Semaphore: trigger a semaphore, where a task has been blocked before.

• Monitors:
free a task, which is blocked at a monitor entry (standard Ada-method: protected object).

• Message queues: Send messages to a task (if queue is not full).

• Pipes: Write to a pipe (if pipe is not full).

• Signals: indicate an asynchronous task switch to the scheduler

© 2003 Uwe R. Zimmer, International University Bremen Page 119 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Interrupt service routines
(available only in some OSs, e.g. VxWorks)

Interrupt service routine to task communication methods:
• Shared memory and ring buffers:

most low level communication scheme (should be avoided)

• Semaphore: trigger a semaphore, where a task has been blocked before.

• Monitors:
free a task, which is blocked at a monitor entry (standard Ada-method: protected object).

• Message queues: Send messages to a task (if queue is not full).

• Pipes: Write to a pipe (if pipe is not full).

• Signals: indicate an asynchronous task switch to the scheduler

☞ in all of the above: the interrupt service routines cannot block!

© 2003 Uwe R. Zimmer, International University Bremen Page 120 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Interrupts ➪ ‘Signals’
Interrupt control:

… at the individual device level

… at the system interrupt controller level

… at the operating system level
• beyond task-level (interrupt service routines)
• communicating interrupts to task
• transforming interrupts to signals

… at the language level

© 2003 Uwe R. Zimmer, International University Bremen Page 121 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Interrupts ➪ ‘Signals’

Some characteristics of signals:
• Involve a full task-switch operation

☞ Hard to predict timing behaviour

• Limited information about the interrupt-source

• Traditionally used to ‘kill’ processes

• Concept stems from a time before thread models,
therefore the signal-to-thread propagation is implementation dependent and sometimes tricky.

© 2003 Uwe R. Zimmer, International University Bremen Page 122 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Interrupts ➪ ‘Signals’
Some common UNIX OS entries:

POSIX 1003.1b BSD-UNIX

signal (…) signal (…) Specify the handler associated with a signal

sigaction (…) sigvec (…) Examine or set the signal handler for a signal

kill (…) kill (…) Send a signal (overwrite all other pending signals)

sigqueue (…) N/A Send a queued signal

sigsuspend (…) pause (…) Wait for a signal

sigwaitinfo (…)
sigtimedwait (…)

Wait for a signal, but do not involve the handler

sigemptyset (…)
sigsetmask (…)

Manipulate and
set the mask of blocked signals

sigprocmask (…)
sigblock (…) Add to a set of blocked signals

© 2003 Uwe R. Zimmer, International University Bremen Page 123 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Interrupts ➪ ‘Signals’

• Signals are originally process-level synchronization methods (‘kill’) and have been expanded to
be used for everything from hardware-interrupts and timers to asynchronous task messaging.

☞ Signals are passed through a global task-scheduler.

☞ in many OSs: unpredictable ‘work-arounds’ for missing direct hardware interrupt propagation.

☞ make sure that you understand the attached strings in your OS,
before employing any signals.

© 2003 Uwe R. Zimmer, International University Bremen Page 124 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Interrupts
Interrupt control:

… at the individual device level

… at the system interrupt controller level

… at the operating system level
• beyond task-level (interrupt service routines)
• communicating interrupts to task
• transforming interrupts to signals

… at the language level

© 2003 Uwe R. Zimmer, International University Bremen Page 125 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Exception/Trap/Interrupt indication
Four cases of modern exception indication:

raised:
from:

run-time
environment

task

synchronously run-time exceptions exceptions or traps

asynchronously interrupts / signals
asynchronous transfer

of control

© 2003 Uwe R. Zimmer, International University Bremen Page 126 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Exception/Trap/Interrupt indication
Ada95:

raised:
from:

run-time
environment

task

synchronously exceptions

asynchronously interrupt/signal
handler

asynchronous transfer
of control

© 2003 Uwe R. Zimmer, International University Bremen Page 127 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

 type Interrupt_ID is implementation-defined;
 type Parameterless_Handler is access protected procedure;

 function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
 function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

 function Current_Handler (Interrupt : Interrupt_ID)
 return Parameterless_Handler;
 procedure Attach_Handler (New_Handler : in Parameterless_Handler;
 Interrupt : in Interrupt_ID);
 procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
 New_Handler : in Parameterless_Handler;
 Interrupt : in Interrupt_ID);
 procedure Detach_Handler (Interrupt : in Interrupt_ID);

 function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;

© 2003 Uwe R. Zimmer, International University Bremen Page 128 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

 type Interrupt_ID is implementation-defined;
 type Parameterless_Handler is access protected procedure;

 function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
 function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

 function Current_Handler (Interrupt : Interrupt_ID)
 return Parameterless_Handler;
 procedure Attach_Handler (New_Handler : in Parameterless_Handler;
 Interrupt : in Interrupt_ID);
 procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
 New_Handler : in Parameterless_Handler;
 Interrupt : in Interrupt_ID);
 procedure Detach_Handler (Interrupt : in Interrupt_ID);

 function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;

Protected procedures need to qualify as
an interrupt handler:

1. use pragma Interrupt_Handler

2. let the compiler evaluate the suitability
of the routine as an interrupt handler.

© 2003 Uwe R. Zimmer, International University Bremen Page 129 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

 type Interrupt_ID is implementation-defined;
 type Parameterless_Handler is access protected procedure;

 function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
 function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

 function Current_Handler (Interrupt : Interrupt_ID)
 return Parameterless_Handler;
 procedure Attach_Handler (New_Handler : in Parameterless_Handler;
 Interrupt : in Interrupt_ID);
 procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
 New_Handler : in Parameterless_Handler;
 Interrupt : in Interrupt_ID);
 procedure Detach_Handler (Interrupt : in Interrupt_ID);

 function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;

Protected procedures can also be
attached statically to an interrupt:

use pragma
Interrupt_Handler_Attach

© 2003 Uwe R. Zimmer, International University Bremen Page 130 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

 type Interrupt_ID is implementation-defined;
 type Parameterless_Handler is access protected procedure;

 function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
 function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

 function Current_Handler (Interrupt : Interrupt_ID)
 return Parameterless_Handler;
 procedure Attach_Handler (New_Handler : in Parameterless_Handler;
 Interrupt : in Interrupt_ID);
 procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
 New_Handler : in Parameterless_Handler;
 Interrupt : in Interrupt_ID);
 procedure Detach_Handler (Interrupt : in Interrupt_ID);

 function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;

The mechanism to invoke an interrupt handler may be different
from calling a protected procedure from a task.

Implementation advice: Whenever possible, the implementation
should allow interrupt handlers to be called directly by the hardware.

© 2003 Uwe R. Zimmer, International University Bremen Page 131 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

 type Interrupt_ID is implementation-defined;
 type Parameterless_Handler is access protected procedure;

 function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
 function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

 function Current_Handler (Interrupt : Interrupt_ID)
 return Parameterless_Handler;
 procedure Attach_Handler (New_Handler : in Parameterless_Handler;
 Interrupt : in Interrupt_ID);
 procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
 New_Handler : in Parameterless_Handler;
 Interrupt : in Interrupt_ID);
 procedure Detach_Handler (Interrupt : in Interrupt_ID);

 function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;

Metrics: The implementation shall document the worst case over-
head for an interrupt handler invocation (in clock cycles).

© 2003 Uwe R. Zimmer, International University Bremen Page 132 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Asynchronism

Ada95: Interrupt handlers
package Ada.Interrupts is

 type Interrupt_ID is implementation-defined;
 type Parameterless_Handler is access protected procedure;

 function Is_Reserved (Interrupt : Interrupt_ID) return Boolean;
 function Is_Attached (Interrupt : Interrupt_ID) return Boolean;

 function Current_Handler (Interrupt : Interrupt_ID)
 return Parameterless_Handler;
 procedure Attach_Handler (New_Handler : in Parameterless_Handler;
 Interrupt : in Interrupt_ID);
 procedure Exchange_Handler (Old_Handler : out Parameterless_Handler;
 New_Handler : in Parameterless_Handler;
 Interrupt : in Interrupt_ID);
 procedure Detach_Handler (Interrupt : in Interrupt_ID);

 function Reference (Interrupt : Interrupt_ID) return System.Address;

end Ada.Interrupts;

Direct access to the invocation address:
May be used to connect task-entries to interrupts
☞ risky! — use with special care.

© 2003 Uwe R. Zimmer, International University Bremen Page 133 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

What is an operating system?

3. A virtual machine, which is handling exceptions!

Tasks

Hardware

OS

Typ. general OS

TasksTasksTasks
Traps / Exceptions RTI

Interrupts

Interrupt service routines
Signals (task switch)

© 2003 Uwe R. Zimmer, International University Bremen Page 134 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

A common computer architecture:

• Memory:

• Hierarchy, Caching, Mapping

CPUIn
te

rf
ac

eSequencer

ALU

Registers

Control
Address

Data

Memory I/O
Interface

Memory I/O
Interface

......

© 2003 Uwe R. Zimmer, International University Bremen Page 135 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

Memory sizes and access times: (typical workstation)

Basic memory hierarchy

CPU

Register set

Level 1 cache

Level 2 cache

Main memory

Disks

< 1 ns

< 1-2 ns

< 4 ns

< 8 ns> 256 MB

> 512 KB

> 64 KB

> 1 KB

< 8 ms> 60 GB

Typical memory sizes Typical access times

© 2003 Uwe R. Zimmer, International University Bremen Page 136 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

Main memory layout:

Basic memory hierarchy

CPU

Register set

Level 1 cache

Level 2 cache

I/O

Disks

< 1 ns

< 1-2 ns

< 4 ns> 512 KB

> 64 KB

> 1 KB

< 8 ms> 60 GB

Typical memory sizes Typical access times

ROM RAM RAM V-RAM I/O

© 2003 Uwe R. Zimmer, International University Bremen Page 137 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

Caching
• Introduce a intermediate memory (cache),

which is:

• faster than the original memory
• organized in ‘cache lines’
• addressed via tags and a

fast matching hardware
(e.g. associative memory)

Caché is actually French, meaning ‘hidden’,
hence the cache memory is supposed to be ‘invisible’ to the

user (the ‘shadow memory’).

0
1
2
3

l

0 1 2 3 k-1

Cache
0
1
2
3

k-1
k

k+1
k+2
k+3

2k-1

(n-1)k
(n-1)k+1
(n-1)k+2
(n-1)k+3

nk-1

Tag

Cache line

© 2003 Uwe R. Zimmer, International University Bremen Page 138 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

Cache misses
Memory read requests to cells, which are not
currently stored in the cache, result in:

1. transfer of the full cache line into an empty
of replaceable cache entry.

2. transfer of the data directly from the main
memory to the requester.

0
1
2
3

l

0 1 2 3 k-1

Cache miss
0
1
2
3

k-1
k

k+1
k+2
k+3

2k-1

(n-1)k
(n-1)k+1
(n-1)k+2
(n-1)k+3

nk-1

m
m

Tag

Cache line

Read from address m
Deliver memory cell m

© 2003 Uwe R. Zimmer, International University Bremen Page 139 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

Cache hits
Memory read requests to cells, which are cur-
rently stored in the cache, result in:

• transfer of the requested data from the
cache memory to the requester.

• no access to the main memory

0
1
2
3

l

0 1 2 3 k-1

Cache hit
0
1
2
3

k-1
k

k+1
k+2
k+3

2k-1

(n-1)k
(n-1)k+1
(n-1)k+2
(n-1)k+3

nk-1

m+1m+1

Tag

Cache line

Read from address m+1
Deliver memory cell m+1

© 2003 Uwe R. Zimmer, International University Bremen Page 140 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

Cache write through
Write requests to cells, which are currently
stored in the cache, result in:

1. update of the cache entry

2. update of the main memory cell

0
1
2
3

l

0 1 2 3 k-1

Cache write through
0
1
2
3

k-1
k

k+1
k+2
k+3

2k-1

(n-1)k
(n-1)k+1
(n-1)k+2
(n-1)k+3

nk-1

m
m

Tag

Cache line

Write to address m

Write through to main memory

© 2003 Uwe R. Zimmer, International University Bremen Page 141 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

Cache, delayed writes
Write requests to cells, which are currently
stored in the cache, result in:

1. update of the cache entry

2. transfer of the full cache line
(or the ‘touched’ entries)
at a later point in time.

☞ Critical in multi-processor
/ shared memory environments!

0
1
2
3

l

0 1 2 3 k-1

Cache write (delayed)
0
1
2
3

k-1
k

k+1
k+2
k+3

2k-1

(n-1)k
(n-1)k+1
(n-1)k+2
(n-1)k+3

nk-1

m
m

Tag

Cache line

Write to address m

delayed write

© 2003 Uwe R. Zimmer, International University Bremen Page 142 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

Caching considerations
• Caches (two-level memories) are meant

to maximize the throughput – not the predictability of a system.

• Cache performance is relying on:

• Spatial locality:
nearby memory cells are likely to be accessed soon

• Temporal locality:
recently addressed memory cells are likely to be accessed again soon

☞ The length of the cache lines are given by the relation between spatial and temporal locality

• According to some practical evaluations,
the locality radius seems to be independent of the size of the main memory

☞ thus there is an absolute maximum cache-size, beyond which the performance is no longer
improving (memory caches of up to about 128KB are considered adequate in most cases).

© 2003 Uwe R. Zimmer, International University Bremen Page 143 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

More on memory locality
• Imperative programming will generate linear sequences of instructions mostly

(☞ spatial locality).

• Functional and declarative programming turns out to generate more ‘jumpy’ code,
but due to extensive usage of recursions it will show strong temporal locality.

• Under all programming paradigms CPU-time is often spent in relatively small loops/iterations
(☞ spatial & temporal locality)

• Languages, which are using explicit data structures (like arrays and records)
will store this data in a compact format (☞ spatial locality).

☞ The locality assumptions will thus be justified in the vast majority of all cases

… still it’s an heuristic.

© 2003 Uwe R. Zimmer, International University Bremen Page 144 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

A common computer architecture:

• I/O interfaces:

• devices, controllers, communication with CPU, basic device programming

CPUIn
te

rf
ac

eSequencer

ALU

Registers

Control
Address

Data

Memory I/O
Interface

Memory I/O
Interface

......

© 2003 Uwe R. Zimmer, International University Bremen Page 145 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

I/O devices

☞ the essential parts of a computer system,
which (may) make the computations meaningful.

• Some typical classes of I/O devices:

• clocks, timers
• user-interface devices
• document I/O devices (scanners, printers, …)
• audio & video equipment
• network interfaces
• mass storage devices
• all kinds of sensors and actuators in control applications

© 2003 Uwe R. Zimmer, International University Bremen Page 146 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

I/O controllers
• Interfacing between a local bus-system

(system bus, peripheral bus)
and an concrete hardware device

• Accessible from the CPU via
control, status and data registers

• Major tasks:

• convert electrical signals
• buffer data in case of different signal speeds
• multiplexing different channels
• communicate with the external device independently of the CPU as far as possible

☞ often up to the level of a complete embedded µcontroller

© 2003 Uwe R. Zimmer, International University Bremen Page 147 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

I/O interfaces via dedicated I/O-buses

• I/O protection is given by protected CPU instructions ☞ need to be done in protected mode.

• Potentially less efficient, since all I/O operations need to be done in the OS-kernel
no obvious DMA - everything needs to be transferred via the CPU, I/O bus is processor specific

CPUIn
te

rf
ac

eSequencer

ALU

Registers
......Memory I/O

Interface
Memory I/O

Interface

Interrupts

System bus

I/O bus

© 2003 Uwe R. Zimmer, International University Bremen Page 148 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

I/O interfaces via system-bus

• I/O protection requires / is identical with memory protection, DMA possibilities, expandible

• System bus can be a bottle-neck, I/O interfaces are processor dependent

CPUIn
te

rf
ac

eSequencer

ALU

Registers
......Memory I/O

Interface
Memory I/O

Interface

Interrupts

System bus

© 2003 Uwe R. Zimmer, International University Bremen Page 149 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

I/O interfaces via system-bus and I/O bus controller

• I/O protection requires / is identical with memory protection, DMA possibilities, expandible

• System bus load can be reduced, I/O bus is platform independent, e.g. PCI, SCSI, …

CPUIn
te

rf
ac

eSequencer

ALU

Registers
......Memory I/O

Interface
Memory I/O

Interface

I/O
bus

contr.System bus

Interrupts

I/O bus

© 2003 Uwe R. Zimmer, International University Bremen Page 150 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

Basic I/O device programming
• Status driven: the computer polls for information

(used in dedicated µcontrollers and pre-scheduled hard real-time environments)

• Interrupt driven: The data generating device may issue an interrupt
when new data had been detected / converted or when internal buffers are full

• Program controlled: The interrupts are handled by the CPU directly
(by changing tasks, calling a procedure, raising an exception,
free tasks on a semaphore, sending a message to a task, …)

• Program initiated: The interrupts are handled by a DMA-controller.
No processing is performed. Depending on the DMA setup,
cycle stealing can occur and needs to be considered for the worst case computing times.

• Channel program controlled: The interrupts are handled by a dedicated channel
device. The data is transferred and processed. Optional memory-based communication
with the CPU. ☞ the channel controller is usually itself a dedicated µengine / µcontroller.

© 2003 Uwe R. Zimmer, International University Bremen Page 151 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Hardware Fundamentals

Concurrency is an intrinsic feature of real architectures!

☞ Operating systems need to take care of all asynchronous and concurrent resources.

☞ Concurrency and synchronization are fundamentals of operating systems design!

CPUIn
te

rf
ac

eSequencer

ALU

Registers
......Memory I/O

Interface
Memory I/O

Interface

I/O
bus

contr.System bus

Interrupts

I/O bus

© 2003 Uwe R. Zimmer, International University Bremen Page 152 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

µControllers

MC68HC05
• Clock: max. 2.1MHz internal (4.2MHz external)

• Registers: PC, SP (16 bit); Accu, Index, CC (8 bit)

• RAM: 176bytes

• ROM: 5936bytes

• EEPROM: 256bytes

• Power saving modes (stop, wait, slow)

• Serial: 46-76800 baud (at 2.4576MHz)

• Parallel I/O: 3*8bit; Parallel in: 1*8bit

• Timers: 1*16bit

• A/D: 8 channels, 8bit

• PWM: 2 generators

P
or

t A

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

P
or

t B

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

P
or

t C

PC0

PC1

PC2/ECLK

PC3

PC4

PC5

PC6

PC7

16-bit
programmable

timer

P
or

t D

PD0/AN0

PD1/AN1

PD2/AN2

PD3/AN3

PD4/AN4

PD5/AN5

PD6/AN6

PD7/AN7

Oscillator

176 bytes
RAM

COP watchdog
RESET

IRQ

VDD

VSS

OSC1

OSC2

M68HC05
CPU

SCI
A/D converter

PLM

TCAP1

TCAP2

TCMP1

TCMP2

VRH

VRL

RDI

SCLK

TDO

VPP1

256 bytes
EEPROM

Charge pump

÷ 2 / ÷ 32

PLMA D/A

PLMB D/A

8-bit

432 bytes

User ROM
5950 bytes

self check ROM

(including 14 bytes
User vectors)

© 2003 Uwe R. Zimmer, International University Bremen Page 153 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

MAIN BRCLR 6,TSR,MAIN ;Loop here till Output Compare flag set
LDA OCMP+1 ;Low byte of Output Compare register
ADD #$D4 ;Add
STA TEMPA ;Save till high half calculated
LDA OCMP ;High byte of Output Compare register
ADC #$30 ;Add (+carry)
STA OCMP ;Update high byte of Output Compare register
LDA TEMPA ;Get low half of updated value
STA OCMP+1 ;Update low half and reset Output Compare flag
LDA TIC ;Get current TIC value
INCA ;TIC := TIC + 1
STA TIC ;Update TIC
CMP #20 ;20th TIC?, 1 second passed?
BLO NOSEC ;If not, skip next clear
CLR TIC ;Clear TIC on 20th

NOSEC EQU *
JSR TIME ;Update time-of-day & day-of-week
JSR KYPAD ;Check/service keypad
JSR A2D ;Check Temp Sensors
JSR HVAC ;Update Heat/Air Cond Outputs
JSR LCD ;Update LCD display
BRA MAIN ;End of main loop

∆tl 50ms 4µs⁄()mod28 $D4= =

∆th 50ms 4µs⁄()div28 $30= =

© 2003 Uwe R. Zimmer, International University Bremen Page 154 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

µControllers

MPC565
�����

��������

����

�����

�����

���	

��
�
���������

�

	�

����

��
�
���������

����
���
�

���

���

���

���	
�����

������
���� �
!������

��
�

"� #

���	

$ �%!&�
�����

���	 ���� �
&������

���	
���

��%���

���������	
�

�'������
��� �
()*�+,�����-

����������������

���	
��
��������

����������������

���
���

���

���

���

./ ��0
$ �%!&�
./ ��0

© 2003 Uwe R. Zimmer, International University Bremen Page 155 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

µControllers MPC565

• -40º - +125ºC, power dissipation: 0.8 - 1.12W

• CPU: PowerPC core (incl. FPU & BBC), 40/56MHz

• Memory: flash: 1M, static: 36K, 32 32-bit registers

• Time processing units: 3 (via dual-ported RAM)

• Timers: 22 channels (PWM & RTC supported)

• A/D convertors: 40 channels, 10bit, 250kHz

• Can-bus: 3 TOUCAN modules

• Serial: 2 interfaces

• Interrupt controller: 48 sources on 32 levels

• Data link controller:
SAE J1850 class B communications module

• Real-time embedded application development
interface: NEXUS debug port (IEEE-ISTO 5001-1999)

• Packing: 352/388 ball PBGA

© 2003 Uwe R. Zimmer, International University Bremen Page 156 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

µControllers MPC565

Time processing unit
a special-purpose µcontroller:

• Independent µengine.

• 16 digital I/O channels with
independent match and
capture capabilities.

• Meant to operate these
I/O channels for timing
control purposes.

• Predefined µengine command
set (ROM functions
in control store).

• 2 16-bit time bases

PINS

SERVICE REQUESTS

DATA

TCR1

TCR2

MICROENGINE

CONTROL
STORE

EXECUTION
UNIT

I M
 B

HOST
INTERFACE

PARAMETER
 RAM

CHANNEL
CONTROL

DEVELOPMENT
SUPPORT AND TEST

SYSTEM
CONFIGURATION

SCHEDULER

CONTROL AND DATA

CONTROL
TIMER

CHANNELS

CHANNEL 0

CHANNEL 1

CHANNEL 15

C
H

AN
N

EL

DATA

T2CLK
PIN

© 2003 Uwe R. Zimmer, International University Bremen Page 157 of 432 (chapter 2: to 157)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Hardware Fundamentals
• General computer architecture

• CPU

• Registers
• Traps/Interrupts & protected modes

• Memory

• General memory layout
• Caching

• I/O systems

• I/O controllers, I/O buses, device programming

• Some examples of µprocessors

• Small scale µcontroller (68HC05)
• Full scale integrated processor (MCP565)

3
Processes

Uwe R. Zimmer – International University Bremen

© 2003 Uwe R. Zimmer, International University Bremen Page 159 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

References for this chapter

[Ari90]
M. Ben-Ari
Principles of Concurrent and Distributed Pro-
gramming
Prentice Hall, 1990

[Bollella01]
Greg Bollella, Ben Brosgol, Steve Furr, David
Hardin, Peter Dibble, James Gosling, Mark
Turnbull & Rudy Belliardi
The Real-Time Specification for Java
http://www.rtj.org

[Burns01]
Alan Burns and Andy Wellings
Real-Time Systems and Programming Languages
Addison Wesley, third edition, 2001

[Silberschatz01] – Chapter 4,5
Abraham Silberschatz, Peter Bear Galvin,
Greg Gagne
Operating System Concepts
John Wiley & Sons, Inc., 2001

[Stallings2001] – Chapter 3,4
William Stallings
Operating Systems
Prentice Hall, 2001

all references and some links are available on the course page

© 2003 Uwe R. Zimmer, International University Bremen Page 160 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Introduction to processes and threads

1 CPU
per control-flow

for specific configurations only:

• distributed µcontrollers

• physical process control
systems:
1 cpu per task,
connected via a typ. fast
bus-system (VME, PCI)

☞ no need for process
management

CPU
stack

code

CPU
stack

code

CPU stack code

address space 1

shared memory

CPU
stack

code

CPU stack code

CPU stack code

address space n

shared memory

…

© 2003 Uwe R. Zimmer, International University Bremen Page 161 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Introduction to processes and threads

1 CPU
for all control-flows

• OS: emulate one CPU for
every control-flow

☞ multi-tasking
operating system

• support for memory
protection becomes essential

stack
code

stack
code

stack code

address space 1

shared memory

stack
code

stack code

CPU

stack code

address space n

shared memory

…

© 2003 Uwe R. Zimmer, International University Bremen Page 162 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Introduction to processes and threads

Processes

• Process ::=
address space
+ control flow(s)

• Kernel has full knowledge
about all processes as well as
their requirements
and current resources
(see below)

stack
code

stack
code

stack code

address space 1

shared memory

stack
code

stack code

CPU

stack code

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

© 2003 Uwe R. Zimmer, International University Bremen Page 163 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Introduction to processes and threads

Threads
Threads (individual control-flows)
can be handled:

• inside the kernel:

• kernel scheduling
• I/O block-releases

according to external
signal

• outside the kernel:

• user-level scheduling
• no signals to threads

stack
thread

stack
thread

stack thread

address space 1

shared memory

stack
thread

stack thread

CPU

stack thread

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

© 2003 Uwe R. Zimmer, International University Bremen Page 164 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Introduction to processes and threads

Multi-processor-
systems

• The kernel may execute
multiple processes at a time.

☞ Address space and resource
restrictions of individual
CPUs and processes/threads
need to be considered.

☞ Caching, synchronization,
and memory protection need
to be adapted.

stack
thread

stack
thread

stack thread

address space 1

shared memory

stack
thread

stack thread

stack thread

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

CPU CPU CPUCPU …

© 2003 Uwe R. Zimmer, International University Bremen Page 165 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Introduction to processes and threads

Symmetric Multi-
processing (SMP)

• all CPUs share the same
physical address space
(and access to resources)

☞ processes/threads can be
executed on
any available CPU

stack
thread

stack
thread

stack thread

address space 1

shared memory

stack
thread

stack thread

stack thread

address space n

shared memory

…

p
ro

ce
ss

 1

p
ro

ce
ss

 n

CPU CPU CPUCPU …

shared memory

p
h

ys
ic

al
 a

d
d

re
ss

 s
p

ac
e

© 2003 Uwe R. Zimmer, International University Bremen Page 166 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Introduction to processes and threads

Processes ↔ Threads
Also processes can share memory
and the exact interpretation of threads is different in different operating systems:

☞ Threads can be regarded as a group of processes, which share some resources
(☞ process-hierarchy)

☞ Due to the overlap in resources,
the attributes attached to threads are less than for ‘first-class-citizen-processes’

☞ Thread switching and inter-thread communications
can be more efficient than on full-process-level

☞ Scheduling of threads depends on the actual thread implementations:

• e.g. user-level control-flows, which the kernel has no knowledge about at all
• e.g. kernel-level control-flows, which are handled as processes with some restrictions

© 2003 Uwe R. Zimmer, International University Bremen Page 167 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Introduction to processes and threads

Process Control Blocks
• Process Id

• Process state:
{created, ready, executing, blocked, suspended, …}

• Scheduling info:
priorities, deadlines, consumed CPU-time, …

• CPU state:
saved/restored information while context switches
(incl. the program counter, stack pointer, …)

• Memory spaces / privileges:
memory base, limits, shared areas, …

• Allocated resources / privileges:
open and requested devices and files

… PCBs are usually enqueued at a certain state or condition

Process Id

Process state

Saved registers
(complete CPU state)

Scheduling info

Memory spaces /
privileges

Allocated resources /
privileges

Process Control Blocks (PCBs)

© 2003 Uwe R. Zimmer, International University Bremen Page 168 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Process states

• created: the task is ready to run,
but not yet considered by any dispatcher
– waiting for admission

• ready: ready to run
– waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run
– waiting for a a resource to become
available

blockedblocked

ready running

blocked

dispatch

timeout

block
release

created

admit

terminated

finish

m
ai

n
m

em
o

ry
© 2003 Uwe R. Zimmer, International University Bremen Page 169 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Process states

• created: the task is ready to run,
but not yet considered by any dispatcher
– waiting for admission

• ready: ready to run
– waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run
– waiting for a resource

• suspended states: swapped out of main
memory (not time critical processes)
– waiting for main memory space
(and other resources)

blockedblocked

ready running

blocked

dispatch

timeout

block
release

created

admit

terminated

finish

blockedblockedblocked, susp.

suspend (swap-out)

ready, susp.

suspend (swap out)

release

reload (swap in)

m
ai

n
m

em
o

ry
se

co
nd

ar
y

m
em

o
ry

© 2003 Uwe R. Zimmer, International University Bremen Page 170 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Process states

• created: the task is ready to run,
but not yet considered by any dispatcher
– waiting for admission

• ready: ready to run
– waiting for a free CPU

• running: holds a CPU and executes

• blocked: not ready to run
– waiting for a resource

• suspended states: swapped out of main
memory (not time critical processes)
– waiting for main memory space
(and other resources)

☞ dispatching and suspending
can be independent modules here

blockedblocked

ready running

blocked

dispatch

timeout

block
release

created

admit

terminated

finish

blockedblockedblocked, susp.

suspend (swap-out)

ready, susp.

suspend (swap out)

release

reload (swap in)

m
ai

n
m

em
o

ry
se

co
nd

ar
y

m
em

o
ry

© 2003 Uwe R. Zimmer, International University Bremen Page 171 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Process states

CPU
creation

batch ready

ready, suspended

blocked, suspended

blocked

pre-emption or cycle done

termination

block or synchronize

executing
admitted dispatch

unblock suspend (swap-out)

swap-in

swap-out

unblock

suspend (swap-out)

© 2003 Uwe R. Zimmer, International University Bremen Page 172 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization methods
• Shared memory based synchronization

• Semaphores ☞ ‘C’, POSIX — Dijkstra
• Conditional critical regions ☞ Edison (experimental)
• Monitors ☞ Modula-1, Mesa — Dijkstra, Hoare, …
• Mutexes & conditional variables ☞ POSIX
• Synchronized methods ☞ Real-time Java
• Protected objects ☞ Ada95

• Message based synchronization

• Asynchronous messages ☞ e.g. POSIX, …
• Synchronous messages ☞ e.g. Ada95, CHILL, Occam2
• Remote invocation, remote procedure call ☞ e.g. Ada95, …
• Synchronization in distributed systems ☞ e.g. CORBA, …

© 2003 Uwe R. Zimmer, International University Bremen Page 173 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization in operating systems
☞ There are many concurrent entities in operating systems:

• Interrupt handlers
• Processes
• Dispatchers
• Timers
• …

… and … operating systems need to be expandible or very robust …

Thus all data is declared …

☞ … either local (and protected by language-, or hardware-mechanisms)

☞ … or it is ‘out in the open’ and all access need to be synchronized!

© 2003 Uwe R. Zimmer, International University Bremen Page 174 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

The need for synchronization
Synchronization: the run-time overhead?
☞ Is the potential overhead justified for simple data-structures:

 int i;

 ……

 i++; {in one thread} | i=0; {in another thread}

• Are those operations atomic?

• Do we really need to introduce full featured synchronization methods here?

© 2003 Uwe R. Zimmer, International University Bremen Page 175 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

The need for synchronization
 int i;

 ……

 i++; {in one thread} | i=0; {in another thread}

• Depending on the hardware and the compiler, it might be atomic, it might be not:

☞ Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic
… but perhaps it is an 8-bit integer.

☞ Any manipulations on the main memory will not be atomic
… but perhaps it is a register.

☞ Broken down to a load-operate-store cycle, the operations will not be atomic
… but perhaps the processor supplies atomic operations for the actual case.

☞ Assuming that all ‘perhapses’ are applying: how to expand this code?

© 2003 Uwe R. Zimmer, International University Bremen Page 176 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

The need for synchronization
 int i;

 ……

 i++; {in one thread} | i=0; {in another thread}

☞ Unfortunately: the chances that such programming errors turn out are usually small and some
implicit by chance synchronization in the rest of the system might prevent them at all.

• Many effects stemming from asynchronous memory accesses are interpreted as (hardware)
‘glitches’, since they are rare and effect usually only some parts of the data.

• On assembler level: synchronization by employing knowledge about the atomicity of
CPU-operations and interrupt structures is nevertheless possible and done frequently.

In anything higher than assembler level on small, predictable µcontrollers:

☞ Measures for synchronization are required!
© 2003 Uwe R. Zimmer, International University Bremen Page 177 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Some synchronization terms:

• Condition synchronization:
synchronize a task with an event given by another task.

• Critical sections:
code fragments which contain access to shared resources and need to be executed without
interference with other critical sections, sharing the same resources.

• Mutual exclusion:
protection against asynchronous access to critical sections.

• Atomic operations:
the set of operations, which atomicity is guaranteed by the underlying system (e.g. hardware).

☞ there must be a set of atomic operations to start with!

© 2003 Uwe R. Zimmer, International University Bremen Page 178 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by flags
Word-access atomicity:

Assuming that any access to a word in the system is an atomic operation:

e.g. assigning two values (not wider than the size of word) to a memory cell simultaneously:

Task 1: x := 0; | Task 2: x := 5;

will result in either x = 0 xor x = 5 — and no other value is ever observable.

© 2003 Uwe R. Zimmer, International University Bremen Page 179 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by flags
Assuming further that there is a shared memory area between two processes:

• A set of processes agree on a (word-size) atomic variable operating
as a flag to indicate synchronization conditions.

© 2003 Uwe R. Zimmer, International University Bremen Page 180 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Condition synchronization by flags

var Flag : boolean := false;

process P1;
 statement X;

 repeat until Flag;

 statement Y;
end P1;

process P2;
 statement A;

 Flag := true;

 statement B;
end P2;

Sequence of operations: [A | X] ➠ [B | Y]

© 2003 Uwe R. Zimmer, International University Bremen Page 181 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by flags
Assuming further that there is a shared memory between two processes:

• A set of processes agree on a (word-size) atomic variable operating
as a flag to indicate synchronization conditions:

Memory flag method is ok for simple condition synchronization, but …

☞ … is not sufficient for general mutual exclusion in critical sections!

☞ … busy-waiting is required to poll the synchronization condition!

☞ More powerful synchronization operations
are required for critical sections

© 2003 Uwe R. Zimmer, International University Bremen Page 182 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by semaphores
(Dijkstra 1968)

Assuming further that there is a shared memory between two processes:

• a set of processes agree on a variable S operating
as a flag to indicate synchronization conditions … and …

• an atomic operation P on S — P stands for ‘passeren’ (Dutch for ‘pass’):

• P: [if S > 0 then S := S - 1] also: ‘Wait’, ‘Suspend_Until_True’

• an atomic operation V on S — V stands for ‘vrygeven’ (Dutch for ‘to release’):

• V: [S := S + 1] also: ‘Signal’, ‘Set_True’

☞ the variable S is then called a semaphore.

OS-level: P is usually also suspending the current task until S > 0.
CPU-level: P indicates whether it was successful, but the operation is not blocking.

© 2003 Uwe R. Zimmer, International University Bremen Page 183 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Condition synchronization by semaphores

var sync : semaphore := 0;

process P1;
 statement X;

 wait (sync);

 statement Y;
end P1;

process P2;
 statement A;

 signal (sync);

 statement B;
end P2;

Sequence of operations: [A | X] ➠ [B | Y]

© 2003 Uwe R. Zimmer, International University Bremen Page 184 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Mutual exclusion by semaphores

var mutex : semaphore := 1;

process P1;
 statement X;

 wait (mutex);
 statement Y;
 signal (mutex);

 statement Z;
end P1;

process P2;
 statement A;

 wait (mutex);
 statement B;
 signal (mutex);

 statement C;
end P2;

Sequence of operations: [A | X] ➠ [B ➠ Y xor Y ➠ B] ➠ [C | Z]

© 2003 Uwe R. Zimmer, International University Bremen Page 185 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Semaphores

Types of semaphores:
• General semaphores (counting semaphores): non-negative number; (range limited by the system)
P and V increment and decrement the semaphore by one.

• Binary semaphores: restricted to [0, 1]; Multiple V (Signal) calls have the same effect than 1 call.

• binary semaphores are sufficient to create all other semaphore forms.
• atomic ‘test-and-set’ operations at hardware level are usually binary semaphores.

• Quantity semaphores: The increment (and decrement) value for the semaphore is specified as a
parameter with P and V.

© 2003 Uwe R. Zimmer, International University Bremen Page 186 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Semaphores in Ada95
package Ada.Synchronous_Task_Control is

 type Suspension_Object is limited private;

 procedure Set_True (S : in out Suspension_Object);
 procedure Set_False (S : in out Suspension_Object);

 function Current_State (S : Suspension_Object) return Boolean;

 procedure Suspend_Until_True (S : in out Suspension_Object);

private
 … -- not specified by the language
end Ada.Synchronous_Task_Control;

© 2003 Uwe R. Zimmer, International University Bremen Page 187 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Semaphores in Ada95
package Ada.Synchronous_Task_Control is

 type Suspension_Object is limited private;

 procedure Set_True (S : in out Suspension_Object);
 procedure Set_False (S : in out Suspension_Object);

 function Current_State (S : Suspension_Object) return Boolean;

 procedure Suspend_Until_True (S : in out Suspension_Object);

private
 … -- not specified by the language
end Ada.Synchronous_Task_Control;

• only one task can be blocked at Suspend_Until_True! (‘strict version of a binary semaphore’)
(Program_Error will be raised with the second task trying to suspend itself)

☞ no queues! ☞ minimal run-time overhead

© 2003 Uwe R. Zimmer, International University Bremen Page 188 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Semaphores in Ada95
package Ada.Synchronous_Task_Control is

 type Suspension_Object is limited private;

 procedure Set_True (S : in out Suspension_Object);
 procedure Set_False (S : in out Suspension_Object);

 function Current_State (S : Suspension_Object) return Boolean;

 procedure Suspend_Until_True (S : in out Suspension_Object);

private
 … -- not specified by the language
end Ada.Synchronous_Task_Control;

• only one task can be blocked at Suspend_Until_True! (strict version of a binary semaphore)
(Program_Error will be raised with the second task trying to suspend itself)

☞ no queues ☞ minimal run-time overhead

for v
ery sp

ecial cases o
nly,

in general:

medieval

© 2003 Uwe R. Zimmer, International University Bremen Page 189 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Semaphores in POSIX

int sem_init (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy (sem_t *sem_location);

int sem_wait (sem_t *sem_location);
int sem_trywait (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post (sem_t *sem_location);

int sem_getvalue (sem_t *sem_location, int *value);

© 2003 Uwe R. Zimmer, International University Bremen Page 190 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Semaphores in POSIX

int sem_init (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy (sem_t *sem_location);

int sem_wait (sem_t *sem_location);
int sem_trywait (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post (sem_t *sem_location);

int sem_getvalue (sem_t *sem_location, int *value);

generate semaphore for usage between processes
(otherwise for threads of the same process only)

© 2003 Uwe R. Zimmer, International University Bremen Page 191 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Semaphores in POSIX

int sem_init (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy (sem_t *sem_location);

int sem_wait (sem_t *sem_location);
int sem_trywait (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post (sem_t *sem_location);

int sem_getvalue (sem_t *sem_location, int *value);

delivers the number of waiting processes as a negative integer,
if there are processes waiting on this semaphore

© 2003 Uwe R. Zimmer, International University Bremen Page 192 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Semaphores in POSIX
void allocate (priority_t P)
{
 sem_wait (&mutex);
 if (busy) {
 sem_post (&mutex);
 sem_wait (&cond[P]);
 }
 busy = 1;
 sem_post (&mutex);
}

—————
sem_t mutex, cond[2];
typedef emun {low, high} priority_t;
int waiting
int busy

void deallocate (priority_t P)
{
 sem_wait (&mutex);
 busy = 0;
 sem_getvalue (&cond[high],
 &waiting);
 if (waiting < 0) {
 sem_post (&cond[high]);
 }
 else {
 sem_getvalue (&cond[low],
 &waiting);
 if (waiting < 0) {
 sem_post (&cond[low]);
 }
 else {
 sem_post (&mutex);
} } }

© 2003 Uwe R. Zimmer, International University Bremen Page 193 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Deadlock by semaphores
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;

X, Y : Suspension_Object;

task B;

task body B is

begin
 …

 Suspend_Until_True (Y);
 Suspend_Until_True (X);
 …
end B;

task A;

task body A is

begin
 …

 Suspend_Until_True (X);
 Suspend_Until_True (Y);
 …
end A;

☞ could raise a Program_Error in Ada95.

☞ produces a potential deadlock when implemented with general semaphores.

☞ Deadlocks can be generated by all kinds of synchronization methods.
© 2003 Uwe R. Zimmer, International University Bremen Page 194 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Criticism of semaphores

• Semaphores are not bound to any resource or method or region
☞ Adding or deleting a single semaphore operation some place might stall the whole system

• Semaphores are scattered all over the code
☞ hard to read, error-prone

☞ Semaphores are considered not adequate for complex systems.

(all concurrent and real-time languages offer more abstract and safer synchronization methods).

© 2003 Uwe R. Zimmer, International University Bremen Page 195 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Conditional critical regions

Basic idea:
• Critical regions are a set of code sections in different processes,

which are guaranteed to be executed in mutual exclusion:

• Shared data structures are grouped in named regions
and are tagged as being private resources.

• Processes are prohibited from entering a critical region,
when another process is active in any associated critical region.

• Condition synchronisation is provided by guards:

• When a process wishes to enter a critical region it evaluates the guard (under mutual
exclusion). If the guard evaluates false, the process is suspended / delayed.

• As with semaphores, no access order can be assumed.

© 2003 Uwe R. Zimmer, International University Bremen Page 196 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Conditional critical regions
buffer : buffer_t;

resource critial_buffer_region : buffer;

process producer;

 loop

 region critial_buffer_region
 when buffer.size < N do

 -- place in buffer etc.

 end region

 end loop;
end producer

process consumer;

 loop

 region critial_buffer_region
 when buffer.size > 0 do

 -- take from buffer etc.

 end region

 end loop;
end consumer

© 2003 Uwe R. Zimmer, International University Bremen Page 197 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Criticism of conditional critical regions
• All guards need to be re-evaluated,

when any conditional critical region is left:

☞ all involved processes are activated to test their guards
☞ there is no order in the re-evaluation phase ☞ potential livelocks

• As with semaphores the conditional critical regions
are scattered all over the code.

☞ on a larger scale: same problems as with semaphores.

The language Edison uses conditional critical regions
for synchronization in a multiprocessor environment
(each process is associated with exactly one processor).

© 2003 Uwe R. Zimmer, International University Bremen Page 198 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors
(Modula-1, Mesa — Dijkstra, Hoare)

Basic idea:
• Collect all operations and data-structures shared in critical regions in one place, the monitor.

• Formulate all operations as procedures or functions.

• Prohibit access to data-structures, other than by the monitor-procedures.

• Assure mutual exclusion of the monitor-procedures.

© 2003 Uwe R. Zimmer, International University Bremen Page 199 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors
monitor buffer;

 export append, take;

 var (* declare protected vars *)

 procedure append (I : integer);
 …

 procedure take (var I : integer);
 …

begin
 (* initialisation *)
end; How to realize conditional synchronization?

© 2003 Uwe R. Zimmer, International University Bremen Page 200 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors with condition synchronization
(Hoare)

Hoare-monitors:

• Condition variables are implemented by semaphores (Wait and Signal).

• Queues for tasks suspended on condition variables are realized.

• A suspended task releases its lock on the monitor, enabling another task to enter.

☞ More efficient evaluation of the guards:
the task leaving the monitor can evaluate all guards and the right tasks can be activated.

☞ Blocked tasks may be ordered and livelocks prevented.

© 2003 Uwe R. Zimmer, International University Bremen Page 201 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors with condition synchronization
monitor buffer;
 export append, take;
 var BUF : array […] of integer;
 top, base : 0..size-1;
 NumberInBuffer : integer;
 spaceavailable, itemavailable : condition;

 procedure append (I : integer);
 begin
 if NumberInBuffer = size then

 wait (spaceavailable);

 end if;
 BUF[top] := I; NumberInBuffer := NumberInBuffer+1;
 top := (top+1) mod size;

 signal (itemavailable)

 end append; …

© 2003 Uwe R. Zimmer, International University Bremen Page 202 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors with condition synchronization
…
 procedure take (var I : integer);
 begin
 if NumberInBuffer = 0 then

 wait (itemavailable);

 end if;
 I := BUF[base];
 base := (base+1) mod size;
 NumberInBuffer := NumberInBuffer-1;

 signal (spaceavailable);

 end take;

begin (* initialisation *)
 NumberInBuffer := 0;
 top := 0; base := 0
end;

The signalling and the
waiting process are both

active in the monitor!

© 2003 Uwe R. Zimmer, International University Bremen Page 203 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors with condition synchronization

Suggestions to overcome the multiple-tasks-in-monitor-problem:

• A signal is allowed only as the last action of a process before it leaves the monitor.

• A signal operation has the side-effect of executing a return statement.

• Hoare, Modula-1, POSIX: a signal operation which unblocks another process
has the side-effect of blocking the current process;
this process will only execute again once the monitor is unlocked again.

• A signal operation which unblocks a process does not block the caller,
but the unblocked process must gain access to the monitor again.

© 2003 Uwe R. Zimmer, International University Bremen Page 204 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Modula-1

• wait (s, r):
delays the caller until condition variable s is true (r is the rank (or ‘priority’) of the caller).

• send (s):
If a process is waiting for the condition variable s,
then the process at the top of the queue of the highest filled rank is activated
(and the caller suspended).

• awaited (s):
check for waiting processes on s.

© 2003 Uwe R. Zimmer, International University Bremen Page 205 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Modula-1
INTERFACE MODULE resource_control;

 DEFINE allocate, deallocate;
 VAR busy : BOOLEAN; free : SIGNAL;

 PROCEDURE allocate;
 BEGIN
 IF busy THEN WAIT (free) END;
 busy := TRUE;
 END;

 PROCEDURE deallocate;
 BEGIN
 busy := FALSE;
 SEND (free); -- or: IF AWAITED (free) THEN SEND (free);
 END;

BEGIN
 busy := false;
END.

© 2003 Uwe R. Zimmer, International University Bremen Page 206 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init (pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_cond_init (pthread_cond_t *cond,
 const pthread_condattr_t *attr);
int pthread_cond_destroy (pthread_cond_t *cond);

…

© 2003 Uwe R. Zimmer, International University Bremen Page 207 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init (pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_cond_init (pthread_cond_t *cond,
 const pthread_condattr_t *attr);
int pthread_cond_destroy (pthread_cond_t *cond);

…

Attributes include:

• semantics for trying to lock a mutex which
is locked already by the same thread

• sharing of mutexes and
condition variables between processes

• priority ceiling

• clock used for timeouts

• … … …

© 2003 Uwe R. Zimmer, International University Bremen Page 208 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init (pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_cond_init (pthread_cond_t *cond,
 const pthread_condattr_t *attr);
int pthread_cond_destroy (pthread_cond_t *cond);

…

Undefined, if locked

Undefined, if threads are waiting

© 2003 Uwe R. Zimmer, International University Bremen Page 209 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

© 2003 Uwe R. Zimmer, International University Bremen Page 210 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

unblocking ‘at least one’ thread

unblocking all threads

© 2003 Uwe R. Zimmer, International University Bremen Page 211 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

undefined,

if called out of order!

© 2003 Uwe R. Zimmer, International University Bremen Page 212 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

can be called any time, anywhere
(multiple lock reaction can be specified)

© 2003 Uwe R. Zimmer, International University Bremen Page 213 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(example, definitions)

#define BUFF_SIZE 10

typedef struct {
 pthread_mutex_t mutex;
 pthread_cond_t buffer_not_full;
 pthread_cond_t buffer_not_empty;
 int count, first, last;
 int buf[BUFF_SIZE];
} buffer;

© 2003 Uwe R. Zimmer, International University Bremen Page 214 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in ‘C’ / POSIX
(example, operations)

int append (int item, buffer *B) {

 PTHREAD_MUTEX_LOCK (&B->mutex);
 while (B->count == BUFF_SIZE) {
 PTHREAD_COND_WAIT (
 &B->buffer_not_full,
 &B->mutex);
 }
 PTHREAD_MUTEX_UNLOCK (&B->mutex);
 PTHREAD_COND_SIGNAL (
 &B->buffer_not_empty);
 return 0;
}

int take (int *item, buffer *B) {

 PTHREAD_MUTEX_LOCK (&B->mutex);
 while (B->count == 0) {
 PTHREAD_COND_WAIT (
 &B->buffer_not_empty,
 &B->mutex);
 }
 PTHREAD_MUTEX_UNLOCK (&B->mutex);
 PTHREAD_COND_SIGNAL (
 &B->buffer_not_full);
 return 0;
}

© 2003 Uwe R. Zimmer, International University Bremen Page 215 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
Java provides two mechanisms to construct monitors:

• Synchronized methods and code blocks
all methods and code blocks which are using the synchronized tag
are mutually exclusive with respect to the addressed class.

• Notification methods: wait, notify, and notifyAll
can be used only in synchronized regions and are waking any or all threads,
which are waiting in the same synchronized object.

© 2003 Uwe R. Zimmer, International University Bremen Page 216 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
Considerations:

1. Synchronized methods and code blocks:
• In order to implement a monitor all methods in an object need to be synchronized.

☞ any other standard method can break the monitor and enter at any time.

• Methods outside the monitor-object can synchronize at this object.

☞ it is impossible to analyse a monitor locally, since lock accesses can exist all over the system.

• Static data is shared between all objects of a class.

☞ access to static data need to be synchronized over the whole class.

Either in static synchronized blocks: synchronized (this.getClass()) {…}
or in static methods: public synchronized static <method> {…}

© 2003 Uwe R. Zimmer, International University Bremen Page 217 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
Considerations:

2. Notification methods: wait, notify, and notifyAll

• wait suspends the thread and releases the local lock only

☞ nested wait-calls will keep all enclosing locks.

• notify and notifyAll does not release the lock.

☞ methods, which are activated via notification need to wait for lock-access.

• wait-suspended threads are hold in a queue (Real-time Java only!),
thus notify{All} is waking the threads in order ☞ livelocks are prevented at this level .

• There are no explicit conditional variables.

☞ every notified thread needs
to wait for the lock to be released and to re-evaluate its entry condition

© 2003 Uwe R. Zimmer, International University Bremen Page 218 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
(multiple-readers-one-writer-example)

each of the readers uses these monitor.calls:

startRead ();
 // read the shared data only
stopRead ();

each of the writers uses these monitor.calls:

startWrite ();
 // manipulate the shared data
stopWrite ();

☞ construct a monitor, which allows
multiple readers

or
one writer

at a time inside the critical regions

© 2003 Uwe R. Zimmer, International University Bremen Page 219 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
(multiple-readers-one-writer-example: wait-notifyAll method)

public class ReadersWriters

{

 private int readers = 0;
 private int waitingWriters = 0;
 private boolean writing = false;

…

© 2003 Uwe R. Zimmer, International University Bremen Page 220 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
(multiple-readers-one-writer-example: wait-notifyAll method)

… public synchronized void StartWrite () throws InterruptedException
 {
 while (readers > 0 || writing)
 {
 waitingWriters++;
 wait();
 waitingWriters--;
 }
 writing = true;
 }

 public synchronized void StopWrite()
 {
 writing = false;
 notifyAll ();
 } …

© 2003 Uwe R. Zimmer, International University Bremen Page 221 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
(multiple-readers-one-writer-example: wait-notifyAll method)

… public synchronized void StartRead () throws InterruptedException
 {
 while (writing || waitingWriters > 0)
 {
 wait();
 }
 readers++;
 }

 public synchronized void StopRead()
 {
 readers--;
 if (readers == 0) notifyAll();
 }
}

whenever a synchronized region is left:

• all thread are notified

• all threads are
re-evaluating their guards

© 2003 Uwe R. Zimmer, International University Bremen Page 222 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
Standard monitor solution:

• declare the monitored data-structures private to the monitor object (non-static).

• introduce a class ConditionVariable:

 public class ConditionVariable {
 public boolean wantToSleep = false;
 }

• introduce synchronization-scopes in monitor-methods:
☞ synchronize on the adequate conditional variables first and
☞ synchronize on the monitor-object second.

• make sure that all methods in the monitor are implementing the correct synchronizations.

• make sure that no other method in the whole system is synchronizing on this monitor-object.

© 2003 Uwe R. Zimmer, International University Bremen Page 223 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

public class ReadersWriters
{

 private int readers = 0;
 private int waitingReaders = 0;
 private int waitingWriters = 0;
 private boolean writing = false;

 ConditionVariable OkToRead = new ConditionVariable ();
 ConditionVariable OkToWrite = new ConditionVariable ();

…

© 2003 Uwe R. Zimmer, International University Bremen Page 224 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
… public void StartWrite () throws InterruptedException
 {
 synchronized (OkToWrite)
 {
 synchronized (this)
 {
 if (writing | readers > 0) {
 waitingWriters++;
 OkToWrite.wantToSleep = true;
 } else {
 writing = true;
 OkToWrite.wantToSleep = false;
 }
 }
 if (OkToWrite.wantToSleep) OkToWrite.wait ();
 } } …

© 2003 Uwe R. Zimmer, International University Bremen Page 225 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
… public void StopWrite ()
 {
 synchronized (OkToRead)
 {
 synchronized (OkToWrite)
 {
 synchronized (this)
 {
 if (waitingWriters > 0) {
 waitingWriters--;
 OkToWrite.notify (); // wakeup one writer
 } else {
 writing = false;
 OkToRead.notifyAll (); // wakeup all readers
 readers = waitingReaders;
 waitingReaders = 0;
 }
 } } } } …

© 2003 Uwe R. Zimmer, International University Bremen Page 226 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
… public void StartRead () throws InterruptedException
 {
 synchronized (OkToRead)
 {
 synchronized (this)
 {
 if (writing | waitingWriters > 0) {
 waitingReaders++;
 OkToRead.wantToSleep = true;
 } else {
 readers++;
 OkToRead.wantToSleep = false;
 }
 }
 if (OkToRead.wantToSleep) OkToRead.wait ();
 } } …

© 2003 Uwe R. Zimmer, International University Bremen Page 227 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in Java
… public void StopRead ()
 {
 synchronized (OkToWrite)
 {
 synchronized (this)
 {
 readers--;
 if (readers == 0 & waitingWriters > 0) {
 waitingWriters--;
 OkToWrite.notify ();
 }
 }
 }
 }
}

© 2003 Uwe R. Zimmer, International University Bremen Page 228 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Object-orientation and synchronization

Since mutual exclusion, notification, and condition synchronization schemes need to be designed
and analysed considering the implementation of all involved methods and guards:

☞ new methods cannot be added without re-evaluating the whole class!

In opposition to the general re-usage idea of object-oriented programming,
the re-usage of synchronized classes (e.g. monitors) need to be considered carefully.

☞ The parent class might need to be adapted in order to suit the global synchronization scheme.

☞ Inheritance anomaly (Matsuoka & Yonezawa ‘93)

Methods to design and analyse expandible synchronized systems exist,
but are fairly complex and are not provided in any current object-oriented language.

© 2003 Uwe R. Zimmer, International University Bremen Page 229 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Monitors in POSIX & Java

☞ flexible and universal,
but relies on conventions rather than compilers

POSIX offers conditional variables

Java is more supportive than POSIX
in terms of data-encapsulation

Extreme care must be taken when employing
object-oriented programming and monitors

© 2003 Uwe R. Zimmer, International University Bremen Page 230 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Nested monitor calls
Assuming a thread in a monitor is calling an operation in another monitor
and is suspended at a conditional variable there:

☞ the called monitor is aware of the suspension and allows other threads to enter.

☞ the calling monitor is possibly not aware of the suspension and keeps its lock!

☞ the unjustified locked calling monitor
reduces the system performance and leads to potential deadlocks.

Suggestions to solve this situation:

• Maintain the lock anyway: e.g. POSIX, Real-time Java

• Prohibit nested procedure calls: e.g. Modula-1

• Provide constructs which specify the release of a monitor lock for remote calls, e.g. Ada95

© 2003 Uwe R. Zimmer, International University Bremen Page 231 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Criticism of monitors

• Mutual exclusion is solved elegantly and safely.

• Conditional synchronization is on the level of semaphores still
☞ all criticism on semaphores apply

☞ mixture of low-level and high-level synchronization constructs.

© 2003 Uwe R. Zimmer, International University Bremen Page 232 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects
Combine

• the encapsulation feature of monitors

with

• the coordinated entries of conditional critical regions

to

☞ Protected objects

• all controlled data and operations are encapsulated
• all operations are mutual exclusive
• entry guards are attached to operations
• the protected interface allows for operations on data
• no protected data is accessible (other than by defined operations)
• tasks are queued (according to their priorities)

© 2003 Uwe R. Zimmer, International University Bremen Page 233 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(simultaneous read-access)

Some read-only operations do not need to be mutual exclusive:

protected type Shared_Data (Initial : Data_Item) is

 function Read return Data_Item;
 procedure Write (New_Value : in Data_Item);

private
 The_Data : Data_Item := Initial;
end Shared_Data_Item;

• protected functions can have ‘in’ parameters only and are not allowed to alter the private data
(enforced by the compiler).

☞ protected functions allow simultaneous access (but mutual exclusive with other operations).

• there is no defined priority between functions and other protected operations in Ada95.

© 2003 Uwe R. Zimmer, International University Bremen Page 234 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
Condition synchronization is realized in the form of protected procedures
combined with boolean conditional variables (barriers): ☞ entries in Ada95:

Buffer_Size : constant Integer := 10;

type Index is mod Buffer_Size;
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer_T is array (Index) of Data_Item;

protected type Bounded_Buffer is

 entry Get (Item : out Data_Item);
 entry Put (Item : in Data_Item);
private
 First : Index := Index'First;
 Last : Index := Index'Last;
 Num : Count := 0;
 Buffer : Buffer_T;

end Bounded_Buffer;

© 2003 Uwe R. Zimmer, International University Bremen Page 235 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(barriers)

protected body Bounded_Buffer is

 entry Get (Item : out Data_Item) when Num > 0 is
 begin
 Item := Buffer (First);
 First := First + 1;
 Num := Num - 1;
 end Get;

 entry Put (Item : in Data_Item) when Num < Buffer_Size is
 begin
 Last := Last + 1;
 Buffer (Last) := Item;
 Num := Num + 1;
 end Put;

end Bounded_Buffer;
© 2003 Uwe R. Zimmer, International University Bremen Page 236 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
Protected entries are used like task entries:

Buffer : Bounded_Buffer;

select
 Buffer.Put (Some_Data);
or
 delay 10.0;
 -- do something after 10 s.
end select;

select
 Buffer.Get (Some_Data);
else
 -- do something else
end select;

select
 delay 10.0;
then abort
 Buffer.Put (Some_Data);
 -- try to enter for 10 s.
end select;

select
 Buffer.Get (Some_Data);
then abort
 -- meanwhile try something else
end select;

© 2003 Uwe R. Zimmer, International University Bremen Page 237 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(barrier evaluation)

Barrier evaluations and task activations:

• on calling a protected entry, the associated barrier is evaluated
(only those parts of the barrier which might have changed since the last evaluation).

• on leaving a protected procedure or entry, related barriers with tasks queued are evaluated
(only those parts of the barriers which might have been altered by this procedure / entry
or which might have changed since the last evaluation).

Barriers are not evaluated while inside a protected object or on leaving a protected function.

© 2003 Uwe R. Zimmer, International University Bremen Page 238 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(operations on entry queues)

The count attribute indicate the number of tasks waiting at a specific queue:

protected Blocker is

 entry Proceed;

private
 Release : Boolean := False;
end Blocker;

protected body Blocker is

 entry Proceed
 when Proceed’count = 5
 or Release is
 begin
 Release := Proceed’count > 0;
 end Proceed;

end Blocker;

© 2003 Uwe R. Zimmer, International University Bremen Page 239 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(operations on entry queues)

The count attribute indicate the number of tasks waiting at a specific queue:

protected type Broadcast is

 entry Receive (M: out Message);
 procedure Send (M: in Message);

private

 New_Message : Message;
 Arrived : Boolean := False;

end Blocker;

protected body Broadcast is

 entry Receive (M: out Message)
 when Arrived is
 begin
 M := New_Message
 Arrived := Receive’count > 0;
 end Proceed;

 procedure Send (M: in Message) is
 begin
 New_Message := M;
 Arrived := Receive’count > 0;
 end Send;

end Blocker;
© 2003 Uwe R. Zimmer, International University Bremen Page 240 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(entry families, requeue & private entries)

Further refinements on task control by:

• Entry families:
a protected entry declaration can contain a discrete subtype selector, which can be evaluated
by the barrier (other parameters cannot be evaluated by barriers) and implements an
array of protected entries.

• Requeue facility:
protected operations can use ‘requeue’ to redirect tasks to other internal, external, or private
entries. The current protected operation is finished and the lock on the object is released.

‘Internal progress first’-rule: internally requeued tasks are placed at the head of the waiting queue!

• Private entries:
protected entries which are not accessible from outside the protected object,
but can be employed as destinations for requeue operations.

© 2003 Uwe R. Zimmer, International University Bremen Page 241 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(requeue & private entries)

How to implement a queue, at which every task
can be released only once per triggering event?

package Single_Release is

 entry Wait;
 procedure Trigger;

end Single_Release;

© 2003 Uwe R. Zimmer, International University Bremen Page 242 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(requeue & private entries)

How to implement a queue, at which every task
can be released only once per triggering event?

☞ e.g. by employing a second (private) entry:

package Single_Release is

 entry Wait;
 procedure Trigger;

private
 Front_Door,
 Main_Door : Boolean := False;

 entry Queue;

end Single_Release;

© 2003 Uwe R. Zimmer, International University Bremen Page 243 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(requeue & private entries)

package body Single_Release is

 entry Wait
 when Front_Door is

 begin
 if Wait'Count = 0 then
 Front_Door := False;
 Main_Door := True;
 end if;

 requeue Queue;

 end Wait;

 entry Queue
 when Main_Door is

 begin
 if Queue’count = 0 then
 Main_Door := False;
 end if;;
 end Queue;

 procedure Trigger is
 begin
 Front_Door := True;
 end Trigger;

end Single_Release;opening the main door
before requeuing?

© 2003 Uwe R. Zimmer, International University Bremen Page 244 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronization by protected objects in Ada95
(restrictions applying to protected operations)

Code inside a protected procedure, function or entry is bound to non-blocking operations
(which would keep the whole protected object locked).

Thus the following operations are prohibited:

• entry call statements

• delay statements

• task creations or activations

• calls to sub-programs which contains a potentially blocking operation

• select statements

• accept statements

☞ The requeue facility allows for a potentially blocking operation,
but releases the current lock!

© 2003 Uwe R. Zimmer, International University Bremen Page 245 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Shared memory based
synchronization

General

Criteria:

• level of abstraction

• centralized vs. distributed concepts

• support for consistency
and correctness validations

• error sensitivity

• predictability

• efficiency

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

© 2003 Uwe R. Zimmer, International University Bremen Page 246 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Shared memory based
synchronization

POSIX

• all low level constructs available.

• no connection with the
actual data-structures.

• error-prone.

• non-determinism introduced by
‘release some’ semantics of
conditional variables (cond_signal). Semaphores

(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

© 2003 Uwe R. Zimmer, International University Bremen Page 247 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Shared memory based
synchronization

Java

• mutual exclusion
(synchronized methods)
as the only support.

• general notification feature
(no conditional variables)

• non-restricted object oriented extension
introduces hard to predict timing
behaviours.

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

© 2003 Uwe R. Zimmer, International University Bremen Page 248 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Shared memory based
synchronization

Modula-1, CHILL

• full monitor implementation
(Dijkstra-Hoare monitor concept).

… no more, no less, …

☞ all features of and criticism
about monitors apply.

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

© 2003 Uwe R. Zimmer, International University Bremen Page 249 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Shared memory based
synchronization

Ada95

• complete synchronization support

• low-level semaphores
for very special cases.

• predictable timing (☞ scheduler).

☞ most memory oriented synchronization
conditions are realized by the compiler
or the run-time environment directly
rather then the programmer.

(Ada95 is currently without any mainstream
competitor in this field)

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional

variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

© 2003 Uwe R. Zimmer, International University Bremen Page 250 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
• Synchronization model

• Asynchronous
• Synchronous
• Remote invocation

• Addressing (name space)

• direct communication
• mail-box communication

• Message structure

• arbitrary
• restricted to ‘basic’ types
• restricted to un-typed communications

© 2003 Uwe R. Zimmer, International University Bremen Page 251 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Asynchronous messages

If there is a listener:

☞ send the message directly

async. send async. receiveasync. send async. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 252 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Asynchronous messages

If the receiver becomes available at a later stage:

☞ the message need to be buffered

async. send

async. receive

async. send

async. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 253 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Synchronous messages

Delay the sender:

• until the receiver got the message

sync. send sync. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 254 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Synchronous messages

Delay the sender:

• until the receiver got the message

☞ two asynchronous messages required

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 255 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Synchronous messages

Delay the sender until:

• a receiver is available

• a receiver got the message

sync. send

sync. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 256 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Synchronous messages

If the receiver becomes available at a later stage:

☞ messages need to be buffered

async. send async. receive

async. sendasync. receive

async. send

async. receive

async. sendasync. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 257 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Remote invocation

Delay the sender, until:

• a receiver got the message

• a receiver executed an addressed routine

rem. invoc. invocation

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 258 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Remote invocation

Delay the sender, until:

• a receiver got the message

• a receiver executed an addressed routine

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 259 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver executed an addressed routine

rem. invoc.

invocation

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 260 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver executed an addressed routine

async. send async. receive

async. sendasync. receive

async. send async. receive

async. sendasync. receive

async. send

async. receive

async. sendasync. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 261 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Asynchronous remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

rem. invoc.

invocation

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 262 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Asynchronous remote invocation

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

async. send async. receive

async. sendasync. receive

async. send

async. receive

async. sendasync. receive

timetime

P2P1

© 2003 Uwe R. Zimmer, International University Bremen Page 263 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Synchronous vs. asynchronous communications
Purpose ‘synchronization’: ☞ synchronous messages / remote invocations
Purpose ‘in-time delivery’: ☞ asynchronous messages / asynchronous remote invocations

☞ ‘Real’ synchronous message passing in distributed systems requires hardware support.

☞ Asynchronous message passing requires the usage of (infinite?) buffers.

• Synchronous communications are emulated
by a combination of asynchronous messages in some systems.

• Asynchronous communications can be emulated in synchronized message passing systems by
introducing ‘buffer-tasks’ (de-coupling sender and receiver as well as allowing for broadcasts).

© 2003 Uwe R. Zimmer, International University Bremen Page 264 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Addressing (name space)
Direct vs. indirect:

send <message> to <process-name>
wait for <message> from <process-name>
send <message> to <mailbox>
wait for <message> from <mailbox>

Asymmetrical addressing:

send <message> to …
wait for <message>

☞ Client-server paradigm

© 2003 Uwe R. Zimmer, International University Bremen Page 265 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Addressing (name space)

Communication medium:

Connections Functionality

one-to-one buffer, queue, synchronization

one-to-many multicast

one-to-all broadcast

many-to-one local server, synchronization

all-to-one general server, synchronization

many-to-many general network- or bus-system

© 2003 Uwe R. Zimmer, International University Bremen Page 266 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message structure
• Machine dependent representations need to be taken care of in a distributed environment.

• Communication system is often outside the typed language environment.

Most communication systems are handling streams (packets) of a basic element type only.

☞ Conversion routines for data-structures other then the basic element type are supplied …

… manually (POSIX)
… semi-automatic (Real-time CORBA)
… automatic and are typed-persistent (Ada95)

© 2003 Uwe R. Zimmer, International University Bremen Page 267 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message structure (Ada95)
package Ada.Streams is
 pragma Pure (Streams);

 type Root_Stream_Type is abstract tagged limited private;

 type Stream_Element is mod implementation-defined;

 type Stream_Element_Offset is range implementation-defined;

 subtype Stream_Element_Count is
 Stream_Element_Offset range 0..Stream_Element_Offset'Last;

 type Stream_Element_Array is
 array (Stream_Element_Offset range <>) of Stream_Element;

 procedure Read (…) is abstract;
 procedure Write (…) is abstract;

private
 … -- not specified by the language
end Ada.Streams;

© 2003 Uwe R. Zimmer, International University Bremen Page 268 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message structure (Ada95)
Reading and writing values of any type to a stream:

procedure S'Write(
 Stream : access Ada.Streams.Root_Stream_Type'Class; Item : in T);
procedure S'Class'Write(
 Stream : access Ada.Streams.Root_Stream_Type'Class; Item : in T'Class);

procedure S'Read(
 Stream : access Ada.Streams.Root_Stream_Type'Class; Item : out T);
procedure S'Class'Read(
 Stream : access Ada.Streams.Root_Stream_Type'Class; Item : out T'Class)

Reading and writing values, bounds and discriminants of any type to a stream:

procedure S'Output(
 Stream : access Ada.Streams.Root_Stream_Type'Class; Item : in T);

function S'Input(
 Stream : access Ada.Streams.Root_Stream_Type'Class) return T;

© 2003 Uwe R. Zimmer, International University Bremen Page 269 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Practical message-passing systems:

POSIX:
“message queues”:
☞ ordered indirect [asymmetrical | symmetrical] asynchronous
byte-level many-to-many message passing

CHILL:
“buffers”, ”signals”:
☞ ordered indirect [asymmetrical | symmetrical] [synchronous | asynchronous]
typed [many-to-many | many-to-one] message passing

Occam2:
“channels”:
☞ indirect symmetrical synchronous fully-typed one-to-one message passing

Ada95:
“(extended) rendezvous”:
☞ ordered direct asymmetrical [synchronous | asynchronous]
fully-typed many-to-one remote invocation

Java: no communication via messages available

© 2003 Uwe R. Zimmer, International University Bremen Page 270 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization
Practical message-passing systems:

o
rd

er
ed

sy
m

m
et

ri
ca

l

as
ym

m
et

ri
ca

l

sy
n

ch
ro

n
o

u
s

as
yn

ch
ro

n
o

u
s

d
ir

ec
t

in
d

ir
ec

t

contents o
n

e-
to

-o
n

e

m
an

y-
to

-o
n

e

m
an

y-
to

-m
an

y

method

POSIX: * * * * * bytes * message passing

CHILL: * * * * * * typed * * message passing

Occam2: * * * fully typed * message passing

Ada95: * * * * * fully typed * remote invocation

Java: no communication via messages available

© 2003 Uwe R. Zimmer, International University Bremen Page 271 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Occam2
Communication is ensured by means of a ‘channel’, which:

• can be used by one writer and one reader process only

• and is synchronous:

CHAN OF INT SensorChannel:

PAR
 INT reading:
 SEQ i = 0 FOR 1000
 SEQ
 -- generate reading
 SensorChannel ! reading

 INT data:
 SEQ i = 0 FOR 1000
 SEQ
 SensorChannel ? data
 -- employ data

 tasks are synchronized
at these points

© 2003 Uwe R. Zimmer, International University Bremen Page 272 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in CHILL
CHILL is the ‘CCITT High Level Language’,
where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.
The CHILL language development was started in 1973 and standardized in 1979.

☞ strong support for concurrency, synchronization, and communication
(monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;
…
send SensorBuffer (reading); | receive case
 | (SensorBuffer in data) : …
 | esac;

signal SensorChannel = (int) to consumertype;
…
send SensorChannel (reading) | receive case
 to consumer | (SensorChannel in data): …
 | esac;

© 2003 Uwe R. Zimmer, International University Bremen Page 273 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in CHILL
CHILL is the ‘CCITT High Level Language’,
where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.
The CHILL language development was started in 1973 and standardized in 1979.

☞ strong support for concurrency, synchronization, and communication
(monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;
…
send SensorBuffer (reading); | receive case
 | (SensorBuffer in data) : …
 | esac;

signal SensorChannel = (int) to consumertype;
…
send SensorChannel (reading) | receive case
 to consumer | (SensorChannel in data): …
 | esac;

asynchronous

synchronous

© 2003 Uwe R. Zimmer, International University Bremen Page 274 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
Ada95 supports remote invocations ((extended) rendezvous) in form of:

• entry points in tasks

• full set of parameter profiles supported

If the local and the remote task are on different architectures,
or if an intermediate communication system is employed:

☞ parameters incl. bounds and discriminants are ‘tunnelled’ through byte-stream-formats.

Synchronization:

• both tasks are synchronized at the beginning of the remote invocation (☞ ‘rendezvous’)

• the calling task if blocked until the remote routine is completed (☞ ‘extended rendezvous’)

© 2003 Uwe R. Zimmer, International University Bremen Page 275 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
Remote invocation

(Rendezvous)

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver started an addressed routine

rem. invoc.

invocation

timetime

P2P1

synchronized

© 2003 Uwe R. Zimmer, International University Bremen Page 276 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
Remote invocation

(Extended rendezvous)

Delay the sender, until:

• a receiver becomes available

• a receiver got the message

• a receiver executed an addressed routine

• a receiver passed the results

rem. invoc.

invocation

timetime

P2P1

send results

get results

synchronized

released

© 2003 Uwe R. Zimmer, International University Bremen Page 277 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
(Rendezvous)

…
<entry_name> [(index)] <parameters>
… -- waiting for synchronization
… --
… --
… --
…
…
…
…
…

…
…
…
…
…
accept <entry_name> [(index)]
 <parameter_profile>;
…
…
…
…
…

synchronized

© 2003 Uwe R. Zimmer, International University Bremen Page 278 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
(Rendezvous)

…
…
…
…
…
<entry_name> [(index)] <parameters>
…
…
…
…

…
accept <entry_name> [(index)]
 <parameter_profile>;
… -- waiting for synchronization
… --
… --
…
…
…
…

synchronized

© 2003 Uwe R. Zimmer, International University Bremen Page 279 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
(Extended rendezvous)

…
<entry_name> [(index)] <parameters>
… -- waiting for synchronization
… --
… --
… --
 … --
 … -- blocked
 … --
 … --
…

…
…
…
…
…
accept <entry_name> [(index)]
 <parameter_profile> do
 … --
 … -- remote invocation
 … --
end <entry_name>;
…

synchronizedsynchronized

synchronizedreturn results

© 2003 Uwe R. Zimmer, International University Bremen Page 280 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
(Extended rendezvous)

…
…
…
…
…
<entry_name> [(index)] <parameters>
 … --
 … -- blocked
 … --
 … --
…

…
accept <entry_name> [(index)]
 <parameter_profile> do
… -- waiting for synchronization
… --
… --
 … --
 … --
 … -- remote invocation
 … --
end <entry_name>;
…

synchronizedsynchronized

synchronizedreturn results

© 2003 Uwe R. Zimmer, International University Bremen Page 281 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
Some things to consider for task-entries:

• In contrast to protected-object-entries, task-entries can call other blocking operations.

• Accept statements can be nested (but need to be different).

☞ helpful e.g. to synchronize more than two tasks.

• Accept statements can have a dedicated exception handler (like any other code-block).

Exceptions, which are not handled during the rendezvous phase
are propagated to all involved tasks.

• Parameters cannot be direct ‘access’ parameters, but can be access-types.

© 2003 Uwe R. Zimmer, International University Bremen Page 282 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based synchronization in Ada95
Some things to consider for task-entries:

• In contrast to protected-object-entries, task-entries can call other blocking operations.

• Accept statements can be nested (but need to be different).

☞ helpful e.g. to synchronize more than two tasks.

• Accept statements can have a dedicated exception handler (like any other code-block).

Exceptions, which are not handled during the rendezvous phase
are propagated to all involved tasks.

• Parameters cannot be direct ‘access’ parameters, but can be access-types.

• ‘count on task-entries is defined, but is only accessible from inside the tasks owning the entry.

• Entry families (arrays of entries) are supported.

• Private entries (accessible for internal tasks) are supported.

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Selective waiting
Dijkstra’s guarded commands:

if x <= y -> m := x
❏ x >= y -> m := y
fi

☞ the programmer needs to design the alternatives as ‘parallel’ options:
all cases need to be covered and overlapping conditions need to lead to the same result

Extremely different philosophy: ‘C’-switch:

switch (x) {
 case 1: r := 3;
 case 2: r := 2; break;
 case 3: r := 1;
}

☞ the sequence of alternatives has a crucial role.

selection is
non-deterministic!

© 2003 Uwe R. Zimmer, International University Bremen Page 284 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based selective synchronization in Ada95
Forms of selective waiting:

select_statement ::= selective_accept |
 conditional_entry_call |
 timed_entry_call |
 asynchronous_select

… underlying concept: Dijkstra’s guarded commands

selective_accept implements …

• … wait for more than a single rendezvous at any one time

• … time-out if no rendezvous is forthcoming within a specified time

• … withdraw its offer to communicate if no rendezvous is available immediately

• … terminate if no clients can possibly call its entries

© 2003 Uwe R. Zimmer, International University Bremen Page 285 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Message-based selective synchronization in Ada95
selective_accept in its full syntactical form in Ada95:

selective_accept ::= select
 [guard] selective_accept_alternative
 { or [guard] selective_accept_alternative
 [else sequence_of_statements]
 end select;

guard ::= when <condition> =>

selective_accept_alternative ::= accept_alternative |
 delay_alternative |
 terminate_alternative

accept_alternative ::= accept_statement [sequence_of_statements]
delay_alternative ::= delay_statement [sequence_of_statements]
terminate_alternative ::= terminate;

© 2003 Uwe R. Zimmer, International University Bremen Page 286 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Basic forms of selective synchronization
(select-or)

select
 accept … do …
 end …
or
 accept … do …
 end …
or
 accept … do …
 end …
or
 accept … do …
 end …
…
end select;

• If none of the named entries have been
called, the task is suspended until one of the
entries is addressed by another task.

• The selection of an accept is non-determinis-
tic, in case that multiple entries are called.

☞ The selection can be controlled by means of
the real-time systems annex.

• The select statement is completed, when at
least one of the entries has been called and
those accept-block has been executed.

© 2003 Uwe R. Zimmer, International University Bremen Page 287 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Basic forms of selective synchronization
(guarded select-or)

select
 when <condition> =>
 accept … do …
 end …
or
 when <condition> =>
 accept … do …
 end …
or
 when <condition> =>
 accept … do …
 end …
…
end select;

• Analogue to Dijkstra’s guarded commands

• all accepts closed will raise a Program_Error

☞ set of conditions need to be complete

© 2003 Uwe R. Zimmer, International University Bremen Page 288 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Basic forms of selective synchronization
(guarded select-or-else)

select
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 accept … do …
 end …
else
 <statements>
…
end select;

• If none of the open entries can be accepted
immediately, the else alternative is selected.

• There can be only one else alternative and it
cannot be guarded.

© 2003 Uwe R. Zimmer, International University Bremen Page 289 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Basic forms of selective synchronization
(guarded select-or-delay)

select
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 delay …
 <statements>
or
 [when <condition> =>]
 delay …
 <statements>
…
end select;

• If none of the open entries has been called
before the amount of time specified in the
earliest open delay alternative, this delay al-
ternative is selected.

• There can be multiple delay alternatives if
more than one delay alternative expires si-
multaneously, either one may be chosen.

• delay and delay until can be employed.

© 2003 Uwe R. Zimmer, International University Bremen Page 290 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Basic forms of selective synchronization
(guarded select-or-terminate)

select
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 terminate;
…
end select;

The terminate alternative is chosen if none of the
entries can ever be called again, i.e.:

• all tasks which can possibly call any of the
named entries are terminated.

or

• all remaining active tasks which can possibly
call any of the named entries are waiting on
selective terminate statements and none of
their open entries can be called any longer.

☞ This task and all its dependent waiting-for-
termination tasks are terminated together.

© 2003 Uwe R. Zimmer, International University Bremen Page 291 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Basic forms of selective synchronization
(guarded select-or-else select-or-delay select-or-terminate)

select
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 accept … do …
 end …
else
 <statements>
…
end select;

select
 [when <condition> =>]
 accept … do …

 end …
or
 [when <condition> =>]
 delay …
 <statements>
…
end select;

select
 [when <condition> =>]
 accept … do …
 end …
or
 [when <condition> =>]
 terminate;
…
end select;

else - delay - terminate
alternatives

cannot be mixed!

© 2003 Uwe R. Zimmer, International University Bremen Page 292 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Non-determinism in selective synchronizations
☞ If equal alternatives are given, then the program correctness (incl. the timing specifications)

must not be affected by the actual selection.

• If alternatives have different priorities,
this can be expressed e.g. by means of the Ada real-time annex.

• Non-determinism in concurrent systems is or can be also introduced by:

• non-ordered monitor or other queues
• buffering / routing message passing systems
• non-deterministic schedulers
• timer quantization
• … any form of asynchronism

© 2003 Uwe R. Zimmer, International University Bremen Page 293 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Conditional & timed entry-calls
conditional_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 else
 sequence_of_statements
 end select;

select
 Light_Monitor.Wait_for_Light;
 Lux := True;
else
 Lux := False;
end;

timed_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 or
 delay_alternative
 end select;

select
 Controller.Request (Medium)
 (Some_Item);
 -- process data
or
 delay 45.0;
 -- try something else
end select;

© 2003 Uwe R. Zimmer, International University Bremen Page 294 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Conditional & timed entry-calls
conditional_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 else
 sequence_of_statements
 end select;

select
 Light_Monitor.Wait_for_Light;
 Lux := True;
else
 Lux := False;
end;

timed_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 or
 delay_alternative
 end select;

select
 Controller.Request (Medium)
 (Some_Item);
 -- process data
or
 delay 45.0;
 -- try something else
end select;

There is only
one entry call

and either
one ‘else ‘

or
one ‘or delay’

© 2003 Uwe R. Zimmer, International University Bremen Page 295 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Synchronization

Conditional & timed entry-calls
conditional_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 else
 sequence_of_statements
 end select;

select
 Light_Monitor.Wait_for_Light;
 Lux := True;
else
 Lux := False;
end;

timed_entry_call ::=
 select
 entry_call_statement
 [sequence_of_statements]
 or
 delay_alternative
 end select;

select
 Controller.Request (Medium)
 (Some_Item);
 -- process data
or
 delay 45.0;
 -- try something else
end select;

The idea in both cases is to withdraw a synchronization request
and not to implement polling or busy-waiting.

© 2003 Uwe R. Zimmer, International University Bremen Page 296 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Synchronization

• Shared memory based synchronization

• Flags, condition variables, semaphores, …
… conditional critical regions, monitors, protected objects.

• Guard evaluation times, nested monitor calls, deadlocks, …
… simultaneous reading, queue management.

• Synchronization and object orientation, blocking operations and re-queuing.

• Message based synchronization

• Synchronization models, addressing modes, message structures
• Selective accepts, selective calls
• Indeterminism in message based synchronization

© 2003 Uwe R. Zimmer, International University Bremen Page 297 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Synchronization may lead to

☞ DEADLOCKS

… a closer look on deadlocks
and what can be done about them …

© 2003 Uwe R. Zimmer, International University Bremen Page 298 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Reserving resources in reverse order

var reserve_1, reserve_2: semaphore := 1;

process P1;
 statement X;

 wait (reserve_1);
 wait (reserve_2);
 statement Y; - employ resources
 signal (reserve_2);
 signal (reserve_1);

 statement Z;
end P1;

process P2;
 statement A;

 wait (reserve_2);
 wait (reserve_1);
 statement B; - employ resources
 signal (reserve_1);
 signal (reserve_2);

 statement C;
end P2;

Sequence of operations : [A | X] ➠ {[B ➠ Y] xor [Y ➠ B]} ➠ [C | Z]
or : [A | X] ➠ deadlocked!

© 2003 Uwe R. Zimmer, International University Bremen Page 299 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Circular dependencies

var reserve_1, reserve_2, reserve_3: semaphore := 1;

process P1;
 statement X;

 wait (reserve_1);
 wait (reserve_2);
 statement Y;
 signal (reserve_2);
 signal (reserve_1);

 statement Z;
end P1;

process P2;
 statement A;

 wait (reserve_2);
 wait (reserve_3);
 statement B;
 signal (reserve_3);
 signal (reserve_2);

 statement C;
end P2;

process P3;
 statement K;

 wait (reserve_3);
 wait (reserve_1);
 statement L;
 signal (reserve_1);
 signal (reserve_3);

 statement M;
end P3;

Sequence of operations : [A | X | K] ➠ {[B ➠ Y➠ L] xor …} ➠ [C | Z | M]
or : [A | X | K] ➠ deadlocked!

© 2003 Uwe R. Zimmer, International University Bremen Page 300 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously

2. Hold and wait:
a process applies for a resource, while it is holding another resource (sequential requests)

3. No pre-emption:
resources cannot be pre-empted; only the process itself can release resources

4. Circular wait:
a ring list of processes exists, where every process waits for release of a resource by the next one

☞ system may be deadlocked, when all these conditions apply!

© 2003 Uwe R. Zimmer, International University Bremen Page 301 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Deadlock strategies:

1. Ignorance
☞ Kill unresponsive processes

2.Deadlock detection & recovery
☞ find deadlocked processes and recover the system in a coordinated way

3.Deadlock avoidance
☞ the resulting system state is checked before any resources are actually assigned

4.Deadlock prevention
☞ the system prevents deadlocks by its structure

© 2003 Uwe R. Zimmer, International University Bremen Page 302 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Deadlock prevention
(remove one of the four deadlock conditions)

1. Mutual exclusion:
Applicable to specific cases only; usually this can only be removed by replication of resources.

2. Hold and wait:
Processes are forced to allocate all their required resources at once,
often at the time of admittance to the main dispatcher – done in many static realtime-systems.

3. No pre-emption:
If the current state of a resource can be stored and restored easily, then they can be pre-empted.
Usually resources are pre-empted from processes, which are currently not ready to run.

4. Circular wait:
A circular wait can be avoided by a global ordering of all resources, e.g. resources can only be
requested in a specific order – hard to maintain in a dynamic system configuration.

© 2003 Uwe R. Zimmer, International University Bremen Page 303 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

 ; vertices and edges

 ; vertices are processes or resource types:

 ; processes

 ; resource types

 ; claims, requests and assignments

 ; claims

 ; requests

 ; assignments

Note: a resourcefully may have more than one instance

Pi

Rj

Pi

Rj

Pi

Rj

holds

requests

claims

RAG V E,{ }=
V P R∪=

P P1 P2 … Pn, , ,{ }=
R R1 R2 …Rk, ,{ }=

E Er Ea Ec∪ ∪=

Ec Pi Rj …,→{ }=
Er Pi Rj …,→{ }=
Ea Ri Pj …,→{ }=

© 2003 Uwe R. Zimmer, International University Bremen Page 304 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

the two process, reverse allocation deadlock:
P1

R1

Rj

P2

R2

© 2003 Uwe R. Zimmer, International University Bremen Page 305 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Is this a deadlock situation? ☞
P1

R1

Rj

R3

P2

R2

P3

© 2003 Uwe R. Zimmer, International University Bremen Page 306 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

no, there is no circular dependency
P1

R1

Rj

R3

P2

R2

P3

© 2003 Uwe R. Zimmer, International University Bremen Page 307 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Is this a deadlock situation? ☞
P1

R1

Rj

R3

P2 P3

R2

© 2003 Uwe R. Zimmer, International University Bremen Page 308 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

yes, there are circular dependencies:

as well as:

☞ IF some processes are deadlocked, THEN
there are cycles in the resource allocation graph

P1

R1

Rj

R3

P2 P3

R2P1 R1 P2 R3 P3 R2 P1→ → → → → →

P2 R3 P3 R2 P2→ → → →

© 2003 Uwe R. Zimmer, International University Bremen Page 309 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Assuming all claims of are known in advance,

☞ Could the deadlock situation be avoided?

P1

R1

Rj

R3

P2 P3

R2

P3

© 2003 Uwe R. Zimmer, International University Bremen Page 310 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

yes, when resources are assigned so that there
are no resulting circular dependencies:

☞ in this case: assign to (instead of)

P1

R1

Rj

R3

P2 P3

R2

R3 P2 P3

© 2003 Uwe R. Zimmer, International University Bremen Page 311 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

as well as:

☞ ARE some processes deadlocked, IF
there are cycles in the resource allocation graph?

P1

R1

Rj

R3

P2 P3

R2

P1 R1 P2 R3 P3 R2 P1→ → → → → →

P2 R3 P3 R2 P2→ → → →

© 2003 Uwe R. Zimmer, International University Bremen Page 312 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

yes,
if there is only one instance per resource type:

☞ IF there are cycles in the
resource allocation graph

AND there is only one instance per resource type,
THEN some processes are deadlocked!

P1

R1

Rj

P2

R2

© 2003 Uwe R. Zimmer, International University Bremen Page 313 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

no,
if there is more than one instance

per resource type:

☞ IF there are cycles in the
resource allocation graph

AND there is more than one instance per resource
type, THEN some processes may be deadlocked!

P1

R1

Rj

R3

P2 P3

P4

R2

© 2003 Uwe R. Zimmer, International University Bremen Page 314 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

How to detect deadlocks
in the general case?
(of multiple instances per resource)

P1

R1

Rj

R3

P2 P3

R2

© 2003 Uwe R. Zimmer, International University Bremen Page 315 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Banker’s algorithm
There are processes and resource types in the system. Let and :

•
☞ the number of resources of type allocated by process .

•
☞ the number of available resources of type .

•
☞ the number of resources of type required by process to complete eventually.

•
☞ the number of currently requested resources of type by process .

Temporary variables:

• : boolean vector indicating processes, which may complete right now.

• : available resources, if some processes complete and de-allocate.

n m i 1…n∈ j 1…m∈

Allocated i j,[]
j i

Free j[]
j

Claimed i j,[]
j i

Request i j,[]
j i

Completed i[]
Simulated_Free j[]

© 2003 Uwe R. Zimmer, International University Bremen Page 316 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Banker’s algorithm
Checking for a deadlock situation

1. ; :

2.While :
 and : do: {request i can be granted}

 :

3. If : then the system is deadlock-free!
(otherwise all processes with are deadlocked)

Simulated_Free Free⇐ i∀ Completed i[] False⇐

i∃ Completed i[]¬
j∀ Requested i j,[] Simulated_Free j[]<

j∀ Simulated_Free j[] Simulated_Free j[] Allocated i j,[]+⇐
Completed i[] True⇐

i∀ Completed i[]
i Completed i[] False=

© 2003 Uwe R. Zimmer, International University Bremen Page 317 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Banker’s algorithm
Checking the current system state

1. ; :

2.While :
 and : do: {meaning process i can complete}

 :

3. If : then the system is safe!
(e.g. no process is currently deadlocked and no process can be deadlocked in any future state)

Simulated_Free Free⇐ i∀ Completed i[] False⇐

i∃ Completed i[]¬
j∀ Claimed i j,[] Simulated_Free j[]<

j∀ Simulated_Free j[] Simulated_Free j[] Allocated i j,[]+⇐
Completed i[] True⇐

i∀ Completed i[]

© 2003 Uwe R. Zimmer, International University Bremen Page 318 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Banker’s algorithm

Checking the validity of a resource request

If (Request < Claimed) and (Request < Free) then

 Free := Free - Request;
 Claimed := Claimed - Request;
 Allocated := Allocated + Request;

 ☞ Apply system state check (as above)
 If System_is_safe then

 ☞ Actually grant request
 else
 -- restore former system state (Free, Claimed, Allocated)

 end if;
end if;

© 2003 Uwe R. Zimmer, International University Bremen Page 319 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Deadlocks

Deadlock recovery

☞ Stop or restart one or multiple of the deadlocked processes and reclaim its resources

☞ Pre-empt one of the involved resources (and restore an earlier state of the victim process)

Deadlock recovery does not deal with the source of the problem!
(the system may deadlock again right away)

☞ use deadlock prevention or deadlock avoidance instead

© 2003 Uwe R. Zimmer, International University Bremen Page 320 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Deadlocks
• Ignorance & recovery

• ☞ ‘kill some seemingly persistently blocked processes from time to time’ (exasperation)

• Deadlock detection & recovery

• ☞ multiple methods for detection, e.g. resource allocation graphs, Banker’s algorithm
• ☞ recovery is mostly ‘ugly’

• Deadlock avoidance

• ☞ check system safety before allocating resources, e.g. Banker’s algorithm

• Deadlock prevention

• ☞ eliminate one of the pre-conditions for deadlocks

© 2003 Uwe R. Zimmer, International University Bremen Page 321 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Purpose of scheduling
A scheduling scheme provides two features:

• Ordering the use of resources (e.g. CPUs, networks)
• Predicting the worst-case behaviour of the system

when the scheduling algorithm is applied
… in case that some or all information about the expected resource requests are known

A prediction can then be used

☞ at compile-run: to confirm the overall resource requirements of the application, or

☞ at run-time: to permit acceptance of additional usage/reservation requests.

© 2003 Uwe R. Zimmer, International University Bremen Page 322 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Criteria for scheduling methods

Performance criteria:
minimize the …

Predictability criteria:
minimize the diversion from given

 Process / user perspective:

Waiting time maximum / average / variance minimal and maximal waiting times

Response time maximum / average / variance minimal and maximal response times

Turnaround time maximum / average / variance deadlines

 System perspective:

Throughput
maximum / average / variance

of CPU time per process
—

Utilization CPU idle time —

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Time scales of scheduling

CPU
creation

batch ready

ready, suspended

blocked, suspended

blocked

pre-emption or cycle done

terminate.

block or synchronize

executingadmit

dispatch

suspend (swap-out)

swap-in

swap-out

unblock

suspend (swap-out)

Long-term

Short-term

Medium-term

© 2003 Uwe R. Zimmer, International University Bremen Page 324 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Example: Requested times

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 325 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

First come, first served (FCFS) – bad case: (arrival order: , ,)

Waiting time: 0…11; average: 5.95 – Turnaround time: 3…12; average: 8.47

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 326 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

First come, first served (FCFS) – nice case: (arrival order: , ,)

Waiting time: 0…11; average: 5.47 – Turnaround time: 3…12; average: 8.00

☞ The actual average waiting time for FCFS may vary here between: 5.47 and 5.95

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 327 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Round robin (RR) – pre-emption

Waiting time: 0…4; average: 1.21 – Turnaround time: 1…19; average: 5.63

☞ Waiting and average turnaround time is going down, but maximal turnaround time is going up

… assuming that task-switching is free and always possible

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 328 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Feedback with 2i pre-emption intervals – pre-emption

• implement multiple
hierarchical ready-queues

• fetch processes from the highest
filled ready queue

• dispatch more CPU time for lower
priorities (units)

☞ processes on lower ranks may
suffer starvation

☞ new and short tasks
will be preferred

C
PU

priority 0

priority 1

executingadmit

dispatch 20

priority i

dispatch 21

dispatch 2i

2i

© 2003 Uwe R. Zimmer, International University Bremen Page 329 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Feedback with 2i pre-emption intervals – pre-emption

Waiting time: 0…6; average: 1.79 – Turnaround time: 1…21; average 5.63

☞ less task switches than RR,
but long processes can suffer starvation!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 330 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Shortest job first (SJF) – Ci is known

Waiting time: 0…10; average: 3.47 – Turnaround time: 1…14; average: 6.00

☞ on average this is doing better than FCFS

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 331 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Highest response ratio first (HRRF) – Ci is known

Response ratio: – Waiting time: 0…9; average: 4.11 – Turnaround time: 1…13; average 6.63

☞ on average this is doing worse than SJF,
but the maximal waiting and turnaround times and variance might be reduced!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

Wi Ci+() Ci⁄

© 2003 Uwe R. Zimmer, International University Bremen Page 332 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Shortest remaining time first (SRTF) – Ci is known + pre-emption

Waiting time: 0…6; average: 1.05 – Turnaround time: 1…18; average 4.42

☞ on average this is doing better than FCFS, SJF or HRRF,
but the maximal turnaround time is going up and there are many task-switches!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 333 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Non-realtime scheduling methods

☞ CPU utilization: 100% in all cases.

☞ Pre-emptive methods perform better, assuming that the overhead is negligible.

☞ Knowledge of (computation times) has a significant impact on scheduler performance.

1 5 15 20 25 30 35 40 4510 50 t

FCFS

RR

FB 2i

SJF

HRRF

SRTF

Ci

© 2003 Uwe R. Zimmer, International University Bremen Page 334 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Selection
Pre-

emption

Waiting Turnaround Preferred
processes

Starvation
possible? in high load situations

FCFS no possibly long possibly long long no

RR equal share yes bound possibly long none no

Feedback priority queues yes short on average
very short on aver-

age, large maximum
short yes

SJF no short on average short on average short yes

HRRF no
short on average,

lower variance
short on average,

lower variance

balanced,
towards

short
no

SRTF yes
very short
on average

very short on aver-
age, large maximum

short yes

max Wi()

min Ci()

max
Wi Ci+

Ci

 
 
 

min Ci Ei–()
© 2003 Uwe R. Zimmer, International University Bremen Page 335 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Real-time scheduling

Towards predictable scheduling …

☞ Task behaviours are more specified (restricted).

☞ Task requirements from the operating systems are more specific.

☞ Task sets are often fully or mostly static.

☞ Sporadic and urgent requests (e.g. user interaction, alarms) need to be addressed.

¬ CPU-utilization and throughput (system oriented performance measures) are not important!

© 2003 Uwe R. Zimmer, International University Bremen Page 336 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Specifying timing requirements

Temporal scopes

Common attributes:
• Minimal & maximal

delay after creation

• Maximal elapsed time

• Maximal execution time

• Absolute deadline
Task i

t1 5 20 25 3010

deadline

execution time

min. delay
max. delay

activated

suspended

re-activated

terminated

created

elapse time

max. elapse time
max. exec. time

© 2003 Uwe R. Zimmer, International University Bremen Page 337 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Specifying timing requirements

Some common scope attributes
Temporal Scopes can be:

Deadlines (absolute, elapse, or execution time) can be:

Periodic – e.g. controllers, samplers, monitors

Aperiodic – e.g. ‘periodic on average’ tasks, burst requests

Sporadic / Transient – e.g. mode changes, occasional services

Hard – single failure leads to severe malfunction

Firm – results are meaningless after the deadline

– only multiple or permanent failures threaten the whole system
Soft

– results may still by useful after the deadline

© 2003 Uwe R. Zimmer, International University Bremen Page 338 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Real-time scheduling

A simple process model

• The number of processes in the system is fixed.

• All processes are periodic and all periods are known.

• All deadlines are identical with the process cycle times (periods).

• The worst case execution time is known for all processes.

• All processes are independent.

• All processes are released at once.

• The task-switching overhead is negligible.

☞ this model can only be applied to a specific group of hard real-time systems.
(extensions to this model will be discussed later in this chapter).

© 2003 Uwe R. Zimmer, International University Bremen Page 339 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Real-time scheduling

Introducing deadlines

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 340 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling

Earliest deadline first (EDF)
1. Determine (one of) the processe(s) with the closest deadline.

2. Execute this process

2-a until it finishes

2-b or until another process’ deadline is found closer then the current one.

☞ Pre-emptive scheme

☞ Dynamic scheme,
since the dispatched process is selected at run-time, due to the current deadlines.

© 2003 Uwe R. Zimmer, International University Bremen Page 341 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Earliest deadline first

1. Schedule the earliest deadline first

2. Avoid task switches (in case of equal deadlines)

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

© 2003 Uwe R. Zimmer, International University Bremen Page 342 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Earliest deadline first: Response times

worst case response times (maximal time in which the request from task is served):

☞ can be close or identical to deadlines.

☞ small or none spare capacity, if any task misses its expected computation time.

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

R
RR

Ri Ti

© 2003 Uwe R. Zimmer, International University Bremen Page 343 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Earliest deadline first: Maximal utilization

☞ maximal possible utilization: ☞ sufficient & necessary test!

with the computation and cycle times of task i
(the deadlines are assumed to be identical with the cycles times here)

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

Ci
Ti

i 1=

n

∑ 1≤

Ci Ti,
Di Ti

© 2003 Uwe R. Zimmer, International University Bremen Page 344 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling

Fixed Priority Scheduling (FPS), rate monotonic
1. Each process is assigned a fixed priority according to its cycle time :

2. At any point in time: dispatch the process with the highest priority

☞ Pre-emptive scheme

☞ Static scheme,
since the dispatch order of processes is fixed and calculated off-line.

• Rate monotonic ordering is optimal (in the framework of fixed priority schedulers),
i.e. if a process set is schedulable under a FPS-scheme,
then it is also schedulable by applying rate monotonic priorities.

Ti

Ti Tj< Pi Pj>⇒

© 2003 Uwe R. Zimmer, International University Bremen Page 345 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities

☞ assign task priorities according to the cycle times (identical to deadline).

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

����

3
2
1

Ti Di

© 2003 Uwe R. Zimmer, International University Bremen Page 346 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities

max. utilization test: ☞ sufficient, but not necessary test!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

����

3
2
1

Ci
Ti

i 1=

n

∑ N 2

1
N

1–
 
 
 
 

≤

© 2003 Uwe R. Zimmer, International University Bremen Page 347 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities

utilization test: ☞ not guaranteed!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

����

3
2
1

Ci
Ti

i 1=

n

∑ 1= 0.779 N 2

1
N

1–
 
 
 
 

≈>

© 2003 Uwe R. Zimmer, International University Bremen Page 348 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities (reduced requests)

max. utilization test:

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

3
2
1

Ci
Ti

i 1=

n

∑ N 2

1
N

1–
 
 
 
 

≤

© 2003 Uwe R. Zimmer, International University Bremen Page 349 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities (reduced requests)

☞ utilization: ; ☞ not guaranteed!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

3
2
1

6
16
------ 3

12
------ 1

4
---+ + 0.875= 0.779 3 2

1
3

1–
 
 
 
 

≈>
Ci
Ti

i 1=

n

∑ N 2

1
N

1–
 
 
 
 

≤

© 2003 Uwe R. Zimmer, International University Bremen Page 350 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Rate monotonic priorities (further reduced requests)

☞ utilization: ; ☞ guaranteed!

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

3
2
1

4
16
------ 3

12
------ 1

4
---+ + 0.75= 0.779 3 2

1
3

1–
 
 
 
 

≈≤
Ci
Ti

i 1=

n

∑ N 2

1
N

1–
 
 
 
 

≤

© 2003 Uwe R. Zimmer, International University Bremen Page 351 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ calculate the worst case response times for each task individually.

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

3
2
1

© 2003 Uwe R. Zimmer, International University Bremen Page 352 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ for the highest priority task:

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R3

3
2
1

R3 C3=

© 2003 Uwe R. Zimmer, International University Bremen Page 353 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ for other tasks: = computation + interference

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R1

3
2
1

Ri Ci Ii+= Ci Ii

© 2003 Uwe R. Zimmer, International University Bremen Page 354 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

for other tasks:

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R1

3
2
1

Ri Ci
Ri

Tj
----- Cj

j i>
∑+=

© 2003 Uwe R. Zimmer, International University Bremen Page 355 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis

☞ fixed-point equation!

☞ form recurrent equation: (1)

☞ starting with

☞ Iterate (1) until or

Ri Ci
Ri

Tj
----- Cj

j i>
∑+=

Ri
k 1+ Ci

Ri
k

Tj
------ Cj

j i>
∑+=

Ri
0 Ci=
Ri

k 1+ Ri
k

= Ri
k 1+ Ti>

© 2003 Uwe R. Zimmer, International University Bremen Page 356 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis

The worst case for EDF is not necessarily when all tasks are released at once!

☞ all possible combinations in a full hyper -cycle need to be considered!

• The response times are bounded by the cycle times as long as the maximal utilization is ≤ 1.

• Other tasks need to be considered only, if their deadline is closer or equal to the current task.

© 2003 Uwe R. Zimmer, International University Bremen Page 357 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis

☞ (2)

☞ starting with

☞ Iterate (2) until

☞ ; where

Ri a() a
Ti
---- 1+ Ci

Ri a()
Tj

------------- 0
a T+ i Tj–

Tj
-------------------------, 1+

 
 
 

max

,
 
 
 

min

Cj
j i≠
∑+=

Ri
k 1+ a() a

Ti
---- 1+ Ci

Ri
k a()
Tj

-------------- 0
a T+ i Tj–

Tj
-------------------------, 1+

 
 
 

max

,
 
 
 

min

Cj
j i≠
∑+=

Ri
0 a() a C+ i=
Ri

k 1+ a() Ri
k a()=

Ri Ri a() a–{ }max a A∈= A scm Ti{ }=

© 2003 Uwe R. Zimmer, International University Bremen Page 358 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (further reduced requests)

☞ ; ; ; and

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R1

3
2
1

R3
R2

Ri Ci
Ri

Tj
----- Cj

j i>
∑+= R3 1 ✔= R2 4 ✔= R1 10 ✔=

Ci

Ti

i 1=

n

∑ N 2

1
N

1–
 
 
 

✔≤

© 2003 Uwe R. Zimmer, International University Bremen Page 359 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (reduced requests)

☞ ; ; ; but

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

R1

3
2
1

R3
R2

Ri Ci
Ri

Tj
----- Cj

j i>
∑+= R3 1 ✔= R2 4 ✔= R1 12 ✔=

Ci

Ti

i 1=

n

∑ N 2

1
N

1–
 
 
 

✖>

© 2003 Uwe R. Zimmer, International University Bremen Page 360 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Response time analysis (full requests)

☞ ; ; ; and

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

����

3
2
1

Ri Ci
Ri

Tj
----- Cj

j i>
∑+= R3 1 ✔= R2 4 ✔= R1 19 ✖=

Ci

Ti

i 1=

n

∑ N 2

1
N

1–
 
 
 

✖>

© 2003 Uwe R. Zimmer, International University Bremen Page 361 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis (full requests)

☞ testing all combinations in a hyper-period: LCM of — here: 48

: = ; : = ; : =

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,8)

R
R

R

Ti{ }

R 16 16 ✔≤ T R 12 12 ✔≤ T R 4 4 ✔≤ T

© 2003 Uwe R. Zimmer, International University Bremen Page 362 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis (reduced requests)

☞ relaxed task-set changes:

: = ; : = ; : =

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,6)

R RR

R 16 12→ 16 ✔≤ T R 12 8→ 12 ✔≤ T R 4 1→ 4 ✔≤ T

© 2003 Uwe R. Zimmer, International University Bremen Page 363 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First (EDF)

Response time analysis (further reduced requests)

☞ further relaxed task-set changes:

: = ; : = ; : =

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,3)

(Ti,Ci)

(16,4)

R RR

R 12 10→ 16 ✔≤ T R 8 6→ 12 ✔≤ T R 1 1→ 4 ✔≤ T

© 2003 Uwe R. Zimmer, International University Bremen Page 364 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Real-time scheduling

Response time analysis (comparison)

Fixed Priority Scheduling Earliest Deadline First

utilization
test

response
times

utilization
test

response
times

✖ (1.000) ✔ (1.000)

✖ (0.875) ✔ (0.875)

✔ (0.750) ✔ (0.750)

check full
hyper-cycle

Ri{ } Ri{ }

Ti Ci,(){ } 16 8,() 12 3,() 4 1,();;{ }= ✖ 4 1, ,{ } 16 12 4, ,{ }

Ti Ci,(){ } 16 6,() 12 3,() 4 1,();;{ }= 12 4 1, ,{ } 12 8 1, ,{ }

Ti Ci,(){ } 16 4,() 12 3,() 4 1,();;{ }= 10 4 1, ,{ } 10 6 1, ,{ }

Ci
Ti

i 1=

n

∑ N 2

1
N

1–
 
 
 
 

≤ Ci
Ri
Tj
----- Cj

j i>
∑+

Ci
Ti

i 1=

n

∑ 1≤

© 2003 Uwe R. Zimmer, International University Bremen Page 365 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Real-time scheduling

Fixed Priority Scheduling ↔ Earliest Deadline First

• EDF can handle higher (full) utilization than FPS.

• FPS is easier to implement and implies less run-time overhead

• Graceful degradation features (resource is over-booked):

• FPS: processes with lower priorities will always miss their deadlines first.
• EDF: any process can miss its deadline ☞ and can trigger a cascade of failed deadlines.

• Response time analysis and utilization tests:

• FPS: O(n) utilization test — response time analysis: fixed point equation
• EDS: O(n) utilization test — response time analysis: fixed point equation in hyper-cycle

© 2003 Uwe R. Zimmer, International University Bremen Page 366 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling

Extensions which we will introduce:

• tasks are periodic
☞ we will introduce sporadic and aperiodic processes

• tasks are independent
☞ we will introduce schedules for interacting tasks

• deadlines are identical with task’s period time
☞ Real-time course

• pre-emptive scheduling
☞ Real-time course

• worst case execution times are known
☞ Real-time course

D T=()

© 2003 Uwe R. Zimmer, International University Bremen Page 367 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling — real-world considerations

… including

aperiodic, sporadic & ‘soft’ real-time tasks

© 2003 Uwe R. Zimmer, International University Bremen Page 368 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Hard real-time tasks

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(Ti,Ci)

(16,7)

3
2

© 2003 Uwe R. Zimmer, International University Bremen Page 369 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Introducing soft real-time tasks

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,)

(

T

i

,

C

i

)

(16,7)

3
2
12

© 2003 Uwe R. Zimmer, International University Bremen Page 370 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), rate monotonic

Introducing soft real-time tasks

☞

set can be scheduled using average computation and period times

☞

hard real-time tasks can be scheduled under worst case conditions
(including worst case behaviours of soft real-time tasks)

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,)

(

T

i

,

C

i

)

(16,7)

����

3
2
12

© 2003 Uwe R. Zimmer, International University Bremen Page 371 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: FPS, rate monotonic + server

Introducing a server task

Server is established at a high priority

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(

T

i

,

C

i

)

(16,8)

(8,2)

3
2
1

© 2003 Uwe R. Zimmer, International University Bremen Page 372 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: FPS, rate monotonic + server

Introducing a server task: Deferrable Server

☞

Deferrable Server (DS): Capacity replenished every

T

s

 (here: 8)

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,)

(

T

i

,

C

i

)

(16,8)

����

 -2

(8,2)

3
2
1

© 2003 Uwe R. Zimmer, International University Bremen Page 373 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: FPS, rate monotonic + server

Introducing a server task: Sporadic Server

☞

Sporadic Server (SS): Capacity replenished

T

s

 units after

t

s

☞

 POSIX

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,)

(

T

i

,

C

i

)

(16,8)

����

 -2

(8,2)

3
2
1

t

s

t

s

t

s

t

s

t

s

t

s

© 2003 Uwe R. Zimmer, International University Bremen Page 374 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Static scheduling: Fixed Priority Scheduling (FPS), dual-priorities

Introducing dual priorities

☞

start hard rt-tasks in low priorities; promote them in time to higher ones

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(

T

i

,

C

i

)

(16,8)

����

3
2
1

4

(12,) 2

(4,1)

(16,8)

5

© 2003 Uwe R. Zimmer, International University Bremen Page 375 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First+ aperiodic server

Introducing a server task to EDF

1 5 15 20 25 30 35 40 4510 50 t

 (4,1)

(

T

i

,

C

i,

D

i

)

(16,8)

(8,2,2)

Server

Hard
RT

© 2003 Uwe R. Zimmer, International University Bremen Page 376 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First + aperiodic server

Introducing a server task to EDF

1 5 15 20 25 30 35 40 4510 50 t

 (4,1)

(12,)

(16,8)

����

Server

2

(8,2,2)

Hard
RT

Sporadic

(

T

i

,

C

i,

D

i

)

© 2003 Uwe R. Zimmer, International University Bremen Page 377 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Dynamic scheduling: Earliest Deadline First + aperiodic tasks

Switching between EDF & Earliest Deadline Last (EDL)

1 5 15 20 25 30 35 40 4510 50 t

(4,1)

(12,)

(

T

i

,

C

i

)

(16,8)

����

2

Hard
RT

Sporadic

EDLEDL

© 2003 Uwe R. Zimmer, International University Bremen Page 378 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling — real-world considerations

… including

 task interdependencies

© 2003 Uwe R. Zimmer, International University Bremen Page 379 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

Schedule for independent tasks

(independent task set)

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

© 2003 Uwe R. Zimmer, International University Bremen Page 380 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

Synchronized via lock

(interdependent task set

☞

 lock shared between and)

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

 Lock

© 2003 Uwe R. Zimmer, International University Bremen Page 381 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

Synchronized via lock

☞

 Priority inversion

(interdependent task set

☞

 lock shared between and)

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

 Lock

���� ����

© 2003 Uwe R. Zimmer, International University Bremen Page 382 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

Priority inheritance

Task inherits the priority of , if:

 1.

2.

task has locked a resource

3.

task is blocked waiting for resource to be released

ti tj

Pi Pj<

ti Q

tj Q

© 2003 Uwe R. Zimmer, International University Bremen Page 383 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

Priority inheritance

Maximal blocking time for task :

• with the number of critical sections

• a boolean

(0/1)

 function indicating that

r

is used by
at least one with and at least one with

• is the worst case computation time in critical section

a task can only be blocked once for each employed resource!

ti
B

i

usage r i

,()

C r

()

r

1

=

R

 ∑
=

R

usage r i,()
tj Pj Pi< tk Pk Pi≥

C r() r

© 2003 Uwe R. Zimmer, International University Bremen Page 384 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

Priority inheritance

(inherits priority of , when is in lock and is dispatched)

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

 Lock

���� ��������

© 2003 Uwe R. Zimmer, International University Bremen Page 385 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

A more complex example

(independent task set)

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

© 2003 Uwe R. Zimmer, International University Bremen Page 386 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

Interdependencies

☞ Priority inversion

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

Lock 1

��������

Lock 2

����

© 2003 Uwe R. Zimmer, International University Bremen Page 387 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

Priority inheritance

(and inherit priority of , when in lock and is dispatched)

no improvement!

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

Lock 1

��������

Lock 2

����

© 2003 Uwe R. Zimmer, International University Bremen Page 388 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies

One additional lock request

☞ Deadlock

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

Lock 1

��������

Lock 2

�������� ���� ���� ���� ���� ���� ���� ���� �������� ���� ���� ���� ��������

© 2003 Uwe R. Zimmer, International University Bremen Page 389 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies: Priority ceiling protocols

Immediate ceiling priority protocol (POSIX, Ada, RT-Java)

• Each task has static default priority .

• Each resource (lock, monitor) has a static ceiling priority , which is
the maximum of priorities of the tasks which employ this resource.

• Each task has a dynamic priority , which is the maximum of its own
static priority and the ceiling priorities of any resource it has locked.

ti Pi

Rk Ck
ti

Ck max employ i k,() Pi⋅{ }i=

ti Pi
D

Pi
D max Pi max locked i k,() Ck⋅{ }k,{ }=

© 2003 Uwe R. Zimmer, International University Bremen Page 390 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies: Priority ceiling protocols

Immediate ceiling priority protocol (POSIX, Ada, RT-Java)

(, and inherit the ceiling priority of or when entering the lock)

1 5 15 20 25 30 35 40 4510 50 t

3
2
1

Lock 1

��������

Lock 2

��������

© 2003 Uwe R. Zimmer, International University Bremen Page 391 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies: Priority ceiling protocols

Immediate ceiling priority protocol (POSIX, Ada, RT-Java)

☞ Tasks are dispatched only if all employed resources are available.

☞ Deadlocks are prevented

☞ Number of context switches is reduced

© 2003 Uwe R. Zimmer, International University Bremen Page 392 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Scheduling: Interdependencies: Priority ceiling protocols

Immediate ceiling priority protocol (POSIX, Ada, RT-Java)

Maximal blocking time:

• with the number of critical sections

• a boolean (0/1) function indicating that r is used by
at least one with and at least one with

• is the worst case computation time in critical section

a task can only be blocked once by any lower priority task!

Bi max usage r i,() C r()⋅{ }R
r 1==

R

usage r i,()
tj Pj Pi< tk Pk Pi≥

C r() r

© 2003 Uwe R. Zimmer, International University Bremen Page 393 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Scheduling
• Basic performance based scheduling

• is not known: first-come-first-served (FCFS), round robin (RR),
and feedback-scheduling

• is known: shortest job first (SJF), highest response ration first (HRRF),
shortest remaining time first (SRTF)-scheduling

• Basic predictable scheduling

• Fixed Priority Scheduling (FPS) with Rate Monotonic (RMPO)
• Earliest Deadline First (EDF)

• Real-world extensions

• Aperiodic, sporadic, soft real-time tasks
• Synchronized talks (priority inheritance, priority ceiling protocols)

Ci

Ci

© 2003 Uwe R. Zimmer, International University Bremen Page 394 of 432 (chapter 3: to 394)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Processes
• Processes and threads

• Architectures, definitions, process states

• Synchronization

• Shared memory based synchronization
• Message based synchronization

• Deadlocks

• Detection, avoidance, and prevention (& recovery)

• Scheduling

• Basic performance based scheduling
• Basic predictable scheduling
• Aperiodic, sporadic, and synchronized tasks

4
Memory

Uwe R. Zimmer – International University Bremen

432

© 2003 Uwe R. Zimmer, International University Bremen Page 396 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

References for this chapter

[Silberschatz01] – Chapter 9,10
Abraham Silberschatz, Peter Bear Galvin,
Greg Gagne
Operating System Concepts
John Wiley & Sons, Inc., 2001

[Stallings2001] – Chapter 7,8
William Stallings
Operating Systems
Prentice Hall, 2001

all references and some links are available on the course page

© 2003 Uwe R. Zimmer, International University Bremen Page 397 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory

Memory levels and fragments

Basic memory hierarchy

CPU

Register set

Level 1 cache

Level 2 cache

I/O

Disks

< 1 ns

< 1-2 ns

< 4 ns> 512 KB

> 64 KB

> 1 KB

< 8 ms> 60 GB

Typical memory sizes Typical access times

ROM RAM RAM V-RAM I/O

© 2003 Uwe R. Zimmer, International University Bremen Page 398 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory

What is the challenge?

• Main memory is too small (regardless how large it is)

☞ The operating system needs to place (parts of) processes in and out
of main memory during the life-time of the system.

• Swapping memory blocks between primary and secondary memory
is an extremely slow operation.

☞ The operating system needs to supply highly efficient strategies
to avoid system stalls or unacceptable delays.

© 2003 Uwe R. Zimmer, International University Bremen Page 399 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory

Goals / optimization criteria

• Supply address spaces, which are independent from the physically available address space.

• Supply multiple memory modes, e.g. allow processes to reside permanently in main memory

• Support for multiple address spaces

• Protection between address spaces

• Supply methods to share address spaces

• Support memory based I/O methods

• Allow for predictable behaviours of memory accesses

• Minimize any overhead for memory accesses and program executions

© 2003 Uwe R. Zimmer, International University Bremen Page 400 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory

Required support
• Relocation

Assembler level addressing modes as well as compilers and linkers
need to support relocatable programs and data structures.

• Protection
Memory protection needs hardware support, since the operating system itself has
no knowledge which memory cells will be addressed by a specific process next.

• Sharing
The protection scheme needs to be flexible enough to allow for shared memory areas.

• Control of secondary memory
Since swapping speeds between primary and secondary memory is a critical factor,
the operating system needs to have close access to the secondary memory interface.

• Project logical structures to memory modules (optional)
It might be useful to supply addressing modes, which allow the
use of logical structures in the programs itself as the basis for memory structuring.

© 2003 Uwe R. Zimmer, International University Bremen Page 401 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Process Mapping

Pros Cons

simple internal & strong
external fragmentation

no internal
fragmentation

strong
external fragmentation

no internal
fragmentation

external
fragmentation

no external
fragmentation

a small amount of
internal fragmentation

Process

Segments

Pages

Dynamic
partitions

Static
partitions

realtime only

© 2003 Uwe R. Zimmer, International University Bremen Page 402 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Virtual addressing

The step from pagination/segmentation to

Virtual addressing
Segmentation / Paging:

• all memory references are logical addresses

• there is support to translate logical to physical addresses at run-time

• processes may be moved in memory and suspended to or loaded from secondary storage

• processes are divided in pages or segments (or both)

• pages or segments can be loaded in any order into primary memory
(i.e. they need not to be dense or in sequence)

☞ Virtual addressing:

• not all pages or segments need to be loaded in order to run a process

© 2003 Uwe R. Zimmer, International University Bremen Page 403 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

MMU

Translating virtual to physical addresses

MMU

1. Translate virtual to physical addresses

without any delay in most cases.

2. Provide memory protection

according to the attributes, which are
attached to individual memory areas
in form of page or segment descriptors.

CPU MMU

Disk

Misses

Loading page/
segment/

descriptor table

M
ai

n
 m

em
o

ry

© 2003 Uwe R. Zimmer, International University Bremen Page 404 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory – Segmentation

• Segment lengths is stored in
segment table ☞ needs to be
evaluated by the memory
protection unit.

• Segment base address and
offset need to be added.

• Parts of segment tables as well
as segments themselves can
be suspended to secondary
memory.

e.g. Intel x86

Seg. table base

Seg # Offset

+
Seg.
table

Segmentation Physical memory

Seg-
ment

+

DiskSegment fault
Load segment

Disk

Segment table fault

Load page table

© 2003 Uwe R. Zimmer, International University Bremen Page 405 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory – Paging

• Page frame address and
address offset can be
concatenated.

• Parts of page tables as well
as pages themselves can
be suspended to secondary
memory (into ‘frames’).

• Page tables would be very
large for modern processors
(32-64bit addressing)

not implemented
in this pure form.

Page. table base

Page # Offset

+ OffsetFramePage
table

Paging Physical memory

Page
frame

DiskPage fault
Load page

Disk

Page table fault

Load page table

© 2003 Uwe R. Zimmer, International University Bremen Page 406 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory – Multi stage page tables

• Reducing
page table
sizes

• Up to four
page levels
(Sparc)

• More
memory
accesses
required.

Sparc, PowerPC,
Alpha, HP

+Root. table base

Page # Page # Offset

+ OffsetFramePage
table

Root page
table

Paging Physical memory

Page
frame

DiskPage fault
Load page

Disk

Page table fault

Load page table

© 2003 Uwe R. Zimmer, International University Bremen Page 407 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory – Segmentation & Paging

• Allow
segmentation
for logical
structure

• Allow
paging for
effective
virtual
memory
management

x86, (PowerPC)

+Seg. table base

Seg # Page # Offset

+ OffsetFramePage
table

Segment
table

Segmentation Paging Physical memory

Page
frame

DiskPage fault
Load page

Disk

Page table fault

Load page table

© 2003 Uwe R. Zimmer, International University Bremen Page 408 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory – Translation look aside buffers

• Accessing page tables for
each access is ineffective.

☞ Introducing address
translation caches:
Translation look aside
buffers (tlb).

• Access
cache (tlb) - memory -
disk (in this order) for
address translation

all modern MMUs

Page # Offset

OffsetFrame

Paging Physical memory

Page
frame

Disk
Load page

Translation
look aside buffer

TLB miss

+
Page
table

Disk

Page table fault

Load page table

Pa
ge

. t
ab

le
 b

as
e

© 2003 Uwe R. Zimmer, International University Bremen Page 409 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory – Inverted page tables

• Forward page tables grow with the size of the
virtual address space.

• The number of loaded pages is bound by the
physical memory.

☞ Keep only the loaded pages in the page table
and resolve the virtual addresses via a
hash table: ☞ Inverted page tables (ipt)

• IPTs are not suspended to secondary
memory, but more than one access is
required to translate the page number.

not implemented in this pure form.

Page # Offset

f

OffsetFrameInverted page
table

Paging Physical memory

Page
frame

DiskPage fault
Load page

Hashing function

© 2003 Uwe R. Zimmer, International University Bremen Page 410 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Memory – Translation look aside & Inverted page tables

• Combining translation
look aside buffers and
inverted page tables.

• Mostly no delay
(look aside buffer).

• Short delay if tlb misses
(inverted page table).

• No page table loading.

PowerPC, UltraSparc

Page # Offset

f

OffsetFrameInverted page
table

Paging Physical memory

Page
frame

DiskPage fault
Load page

Hashing function

Translation
look aside buffer

TLB miss

© 2003 Uwe R. Zimmer, International University Bremen Page 411 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Addressing

Some current MMU implementations
Physical

addresses
Virtual

addresses
TLB size Segments Pages

Inverted/hashed
tables

Pentium 4 36bit 32bit
(per segment)

64
different

types
4k, 4M
(optional)

-

Itanium 2 50bit 64bit 4*32 - 4k … 4G -

Power PC 604 32bit 52bit 256
< 256MB,
(optional)

4 k yes

Power PC 970 42bit 64bit 1024
< 256MB,
(optional)

4 k yes

UltraSparc 36bit 64bit 64 - 8k … 4M yes

Alpha 41bit 64bit 256 - 8k … 4M -

© 2003 Uwe R. Zimmer, International University Bremen Page 412 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Design alternatives

• Employ virtual memory in the first place?

• Employ segmentation, pagination, or a combination of those?

• Which algorithms should be applied to answer:

• when to load a page/segment? ☞ fetching
• where to place a page/segment? ☞ placement
• which page/segment to suspend? ☞ replacement
• how many pages/segments to load for a specific process? ☞ resident set management
• when to suspend a page/segment? ☞ cleaning
• which processes to run/suspend? ☞ load control

© 2003 Uwe R. Zimmer, International University Bremen Page 413 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Fetching
• Demand paging:

Fetch pages only if and exactly when requested by a reference to an address inside this page.

☞ may lead to a burst of page faults in some situations (e.g. starting a process).

☞ reduces the transfer between primary and secondary storage to a minimum.

• Prepaging:

Predict which pages will also be required in the near future and pre-load them
(together with the currently requested page).

☞ pages may be loaded, which will be never referenced

☞ multiple page loads can be more efficient if organized as a few transfers of a larger blocks

© 2003 Uwe R. Zimmer, International University Bremen Page 414 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Fetching
• Demand paging:

Fetch pages only if and exactly when requested by a reference to an address inside this page.

☞ may lead to a burst of page faults in some situations (e.g. starting a process).

☞ reduces the transfer between primary and secondary storage to a minimum.

• Prepaging:

Predict which pages will also be required in the near future and pre-load them
(together with the currently requested page).

☞ pages may be loaded, which will be never referenced

☞ multiple page loads can be more efficient if organized as a few transfers of a larger blocks

MM oo ss tt ss yy ss tt ee mm ss ww ii ll ll

cc oo mm bb ii nn ee bb oo tt hh pp uu rr ee ff oo rr mm ss

© 2003 Uwe R. Zimmer, International University Bremen Page 415 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Placement

☞ Required for partition or pure segmentation systems

apply standard ‘best-fit’, ‘first-fit’, etc. strategies to minimize fragmentation
– there is a trade-off between minimal fragmentation and minimal placement overhead

☞ Irrelevant for all paging or mixed segmentation/paging systems

external fragmentation is not an issue here

© 2003 Uwe R. Zimmer, International University Bremen Page 416 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Replacement
In order to load a new page, another page need to be suspended ☞ which one?

• Optimal:
the page which will not be referenced for the longest period of future time

• Least Recently Used (LRU):
the page which has not be referenced for the longest period of past time

• First-In-First-Out (FIFO):
the page which resides in primary memory for the longest period of past time

© 2003 Uwe R. Zimmer, International University Bremen Page 417 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Replacement
The practical implementation aspect of replacement algorithms:

• Optimal:
☞ can only be implemented, if all future memory references are known ☞ ✘

• Least Recently Used (LRU):
☞ can only be implemented, if all past access times/order are known ☞ check hardware support

• First-In-First-Out (FIFO):
☞ can be implemented without any hardware support ☞ ✔

© 2003 Uwe R. Zimmer, International University Bremen Page 418 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Replacement
Full LRU implementations:

• Counter or time-of-access field in the page table:
Update this entry with each reference to this page

☞ need to be supplied by hardware (not implemented in any practical system)

• Page stack:
bring a reference to the page on top of a stack with each access to this page
(and replace the pages at the bottom of the stack)

☞ need to be supplied by hardware (not implemented in any practical system)

© 2003 Uwe R. Zimmer, International University Bremen Page 419 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Replacement
LRU-approximations:

• Reference-bit-shift-history algorithm:

Shift the reference bit of each page into a bit-field () in each page table entry
at regular intervals (employing a timer-interrupt).
Interpret the resulting bit-field as an integer and replace the page with the smallest value

☞ requires a reference-bit, which is updates by hardware, as well as a hardware timer
(usually provided).

© 2003 Uwe R. Zimmer, International University Bremen Page 420 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Replacement
LRU-approximations:

• Second-chance (clock) algorithm:

Implement a circular list of all pages. Search the list for a not referenced page:

WHILE page was referenced DO
 reset reference bit and proceed to next page
END WHILE

☞ requires a reference-bit, which is updates by hardware (usually provided).

next check

referenced not referenced

© 2003 Uwe R. Zimmer, International University Bremen Page 421 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Replacement
LRU-approximations:

• Enhanced second-chance (clock) algorithm:

Replace pages applying the priorities:

• not referenced (first scan)
• referenced-but-not-modified (second scan)
• referenced-and-modified

☞ requires a reference and a modified-bit, which is updates by hardware (usually provided).

next check

referenced modified

© 2003 Uwe R. Zimmer, International University Bremen Page 422 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Replacement
Performances:

• Optimal:
obviously the best algorithm — impossible to implement

• Least Recently Used (LRU):
good approximation of the optimal algorithm — cannot be implemented in any current system

• Approximated Least Recently Used (LRU):
approximates the performance of LRU — can be implemented in most systems

• First-In-First-Out (FIFO):
performs worst — can be implemented in any system

© 2003 Uwe R. Zimmer, International University Bremen Page 423 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Resident set management
How many pages are assigned to a specific process:

• too many:

• the number of resident processes is reduced
• due to localities, there is no noticeable speed-up for the specific process

• too few:

• significant increase in the page-fault rate

☞ Challenge: find the essential working set of pages for each process at any given time

© 2003 Uwe R. Zimmer, International University Bremen Page 424 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Resident set management
Strategies:

• Number of allocated pages per process can be

• fixed
• or variable

• Replacement can be either

• local (inside each process’ page set) – only possibility for fixed allocation scenes
• prioritized (allow higher priority processes to expand their page sets)
• or global (replace pages regardless of the processes which are using them)

© 2003 Uwe R. Zimmer, International University Bremen Page 425 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Resident set management
☞ Challenge:

find the essential working page set for each process at any given time

• Calculating the optimal working set, required full knowledge of the future process behaviour

• Many approximations are suggested (and implemented), mostly employing:

Page Fault Frequencies (PFF)
or related statistical information on the past process behaviour

Problems:
• “the past does not always predict the future”

i.e. multiple locality assumptions must hold

© 2003 Uwe R. Zimmer, International University Bremen Page 426 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Cleaning
• Demand cleaning:

Clean pages only if and exactly when a free pages is required.

☞ slows down process reaction times, since each page fault will result in a page cleaning.

☞ reduces the total transfer between primary and secondary storage to a minimum.

• Precleaning:

Clean multiple pages according to replacement criteria introduced above
before a page fault occurs.

☞ too many pages might be cleaned, resulting in an increase of page faults

☞ multiple page cleanings can be more efficient if organized as a few transfers of a larger blocks

© 2003 Uwe R. Zimmer, International University Bremen Page 427 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Cleaning
• Demand cleaning:

Clean pages only if and exactly when a free pages is required.

☞ slows down process reaction times, since each page fault will result in a page cleaning.

☞ reduces the total transfer between primary and secondary storage to a minimum.

• Precleaning:

Clean multiple pages according to replacement criteria introduced above
before a page fault occurs.

☞ too many pages might be cleaned, resulting in an increase of page faults

☞ multiple page cleanings can be more efficient if organized as a few transfers of a larger blocks

MM oo ss tt ss yy ss tt ee mm ss ww ii ll ll

cc oo mm bb ii nn ee bb oo tt hh pp uu rr ee ff oo rr mm ss

© 2003 Uwe R. Zimmer, International University Bremen Page 428 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Load Control
How many processes will be resident in primary memory?

• More processes in primary memory implies less pages per process

• Beyond a critical threshold of pages per process, the page fault rate rises significantly

☞ Thrashing occurs

• The overall performance of the system is approaching nil,
since most of the time is spent for page loads

☞ Reduce the number of resident processes immediately

© 2003 Uwe R. Zimmer, International University Bremen Page 429 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Load Control

Which process is to be suspended?

• Lowest priority process

• Process with the highest page fault frequency

• Process with the smallest current resident page set

• Process with the largest current resident page set

• Last activated process

• Process with the largest remaining execution time (see scheduling)

© 2003 Uwe R. Zimmer, International University Bremen Page 430 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Design alternatives

• Employ virtual memory in the first place?

• Employ segmentation, pagination, or a combination of those?

• Which algorithms should be applied to answer:

• when to load a page/segment? ☞ fetching
• where to place a page/segment? ☞ placement
• which page/segment to suspend? ☞ replacement
• how many pages/segments to load for a specific process? ☞ resident set management
• when to suspend a page/segment? ☞ cleaning
• which processes to run/suspend? ☞ load control

© 2003 Uwe R. Zimmer, International University Bremen Page 431 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Designing an OS memory module

Design alternatives

• Employ virtual memory in the first place?

• Employ segmentation, pagination, or a combination of those?

• Which algorithms should be applied to answer:

• when to load a page/segment? ☞ fetching
• where to place a page/segment? ☞ placement
• which page/segment to suspend? ☞ replacement
• how many pages/segments to load for a specific process? ☞ resident set management
• when to suspend a page/segment? ☞ cleaning
• which processes to run/suspend? ☞ load control

Real-tim
e / predictable systems:

no virtual memory!

© 2003 Uwe R. Zimmer, International University Bremen Page 432 of 432 (chapter 4: to 432)

Real-Time & Embedded SystemsOperating Systems & Networks

Summary

Memory
• Requirements & hardware structures

• MMU features & requirements

• Partitioning, segmentation, paging & virtual memory

• Simple segmentation
• Simple paging, multi-level paging, combined segmentation & paging
• Translation look aside buffers
• Hashed tables, Inverted page tables

• Virtual memory management algorithms

• Fetching & placement
• Replacement
• Resident set management
• Cleaning
• Load control

