Wearable Computing

Wearable User Interfaces

Hendrik Witt
Recap

- **Abstract UI models**
 - Device independent description
 - Interaction method independent
 - Modeling dynamics with context information

- **Wearable UI**
 - Can use Abstract UI models
 - Different to today’s interfaces
 - Few Examples
Mobile UI Characteristics

Using almost the same desktop applications while being mobile (Excel, Power Point, etc.)

- Limited I/O capabilities
 - Display size
 - Input devices

- Constant user attention
 - Steve Mann: “Assistant in the coffin”

- Special Software Development Environments
 - Compact .NET, J2ME
 - WIMP based
Wearable UI Characteristics

Wearable UIs have almost the same characteristics as mobile UIs, but require more:

- The wearable computer is secondary
 - Constant user attention cannot be assumed
 - I/O devices are different
 - Data-gloves, Twiddler, etc.
 - Setup can vary between wearable systems
 - Current focus: professional use
What do we want from a WUI?

- Easy to control (even when being in motion)
 - Don’t use WIMP?

- Quickly perceiving information

- Unobtrusive when not needed

- Implicit interaction
 - Using environmental and user context information as input

- Situation sensitive
 - “right information at the right time”
Basic things to be aware of first

- UI design issues
 - What designs are possible?

- Interaction styles
 - How can users interact with the computer?

- Fundamentals of sensation and perception
 - E.g. cognitive boundaries

- Evaluation techniques
 - Interruption
 - Usability
UI design issues

- General presentation techniques
 - Visual, audio, tactile, multi-modal

- Quality of Service
 - Response-Time, User productivity, ...

- Balancing function and fashion
 - Application appropriate, design for humans

- Information search and visualization
 - Easy to use (e.g. soundex), appropriate color design
Interaction Styles

- **Direct Manipulation**
 - Visibility of objects and actions of interest
 - Rapid response, reversible actions
 - Replacement of typed command by a pointing action on the object of interest
 - **Problem:** Requires constant attention

- **Menu-Selection**
 - Visibility of commands, not syntax recall needed
 - Very fast, rapid response
 - Different complexities: Single, multiple selection
 - Context-aware: E.g. “Context-Menu” on right mouse click
 - **Problem:** Finding the structure, limited commands at a time
Interaction Styles

- Command-Language
 - Can accomplish a wide range of tasks
 - Text editing, OS control, data base retrieval, ...
 - Once learned users can achieve high performance
 - Problems: User must recall notation and initial actions, text input device needed

- Natural-Language
 - Very natural as similar to human/human communication
 - Command space permanently accessible
 - Problems:
 - Voice recognition is error-prone
 - High computation costs
 - Language dependent
 - Sometimes socially unacceptable
Tool Support for WUI development

There are many tools available to support GUI development for desktop and mobile systems.

Idea

- Facilitate WUI development with reusable components
- Reduce implementation effort and cost
- Allow integration of context information
- Encapsulate expert knowledge about WUIs
Requirements of a WUI-Toolkit

- Easy to use
- Component reusability
- I/O device independent UI description
- Distribution of toolkit components
- Special UI components and interaction concepts
- Support for multi-modal interaction
- Integration of Context
- Extensibility

- Allow non-experts to generated WUIs
WUI Development Process for Non-Experts
Adaptive WUI

- Use context to *automatically* ...
 - Optimize UI control
 - Trigger implicit input
 - Provide situation dependent appearance

- Research Problems:
 - How and what to adapt?
 - What is the best UI for a certain situation?
 - How to evaluate/test adaptive WUIs?

Note: Don’t mix up with adaptable UIs!
What to adapt on a WUI?

Appearance
- UI can be optimized due to changes in environmental context
 - Light conditions
 - User motion
 - Environmental noise

Interaction
- UI cannot be controlled anymore under current context
 - Affected by user activities
 - Interaction device failure (e.g. low battery)
Layers of Adaptation

- Layers are not independent!
 - Adaptation on one layer can make adaptation on another layer necessary
 - → Constraint Satisfaction Problem (CSP)
Finding Adaptation Rules

- Problem: Finding a simulator to evaluate WUIs in a laboratory environment
 - How to simulate the primary task?

- Two Approaches:
 - Use *virtual* task that requires constant attention
 - E.g. computer game „Bouncing Diplomats Game“ from McFarlane
 - Use *physical* task that requires constant attention
 - E.g. kid’s game to train motor skills „The Hot Wire“
The „HotWire“ simulator

- Simulation of primary tasks with a physical game

H. Witt and M. Drugge
Wearable UIs by Example | Graphical WUIs

- Menu-based WUIs
 - WUI I: Selection oriented
 - Menu/Submenu structure
 - Small content space
 - WUI II: Content oriented
 - Content presentation and Menu selection
 - HMD optimized
Wearable UIs by Example | Graphical WUIs

- Bin-ocular HMD:
 - Menu arranged in a circle
 - See trough the middle
 - Applications only possible as overlay
Wearable UIs by Example | Augmented Reality

- Information presentation related to physical space
- High computation costs
- E.g. Nomad Interface
 - Technical descriptions as overlays in car repair
 - movie
Wearable UIs by Example | Wrist-worn WUI

- Wrist-worn projection display
 - Partial visibility instead of complete „screen“
 - Zoom function

movie
Wearable UIs by Example | Tactile Interface

- Touch Headphones
 - Control a MP3 player by touching the ear-plugs
 - Context aware: ear-plugs “know” when plugged in the ear
 - Limited interaction: play, stop, back, forward, volume up/down

movie

tactile interface
Wearable UIs by Example | Multimodal WUIs

- Original idea by Bolt in 1980: „Put that there: Voice and Gesture at the Graphical Interface“

- Combining two modalities at the same time to execute a command

- WUIs often allow only one out of many modalities at a time to execute a command
Summary

- **WUIs**
 - Different to mobile UIs
 - Interdisciplinary knowledge needed for design
 - Tool support may ease the development
 - Approach: encapsulate expert knowledge

- **Adaptive WUIs**
 - Integrate context information
 - Different layers of adaptation
 - Finding adaptation rules is challenging
 - How to test the interfaces?