Wearable Computing

Wearable User Interfaces

Hendrik Witt

Recap

- Abstract UI models
 - Device independent description
 - Interaction method independent
 - Modeling dynamics with context information
- Wearable UI
 - Can use Abstract UI models
 - Different to today's interfaces
 - Few Examples

Mobile UI Characteristics

Using almost the same desktop applications while being mobile (Excel, Power Point, etc.)

- Limited I/O capabilities
 - Display size
 - Input devices
- Constant user attention
 - Steve Mann: "Assistant in the coffin"
- Special Software Development Environments
 - Compact .NET, J2ME
 - WIMP based

Wearable UI Characteristics

Wearable UIs have almost the same characteristics as mobile UIs, but require more:

- The wearable computer is secondary
 - Constant user attention can not be assumed
 - I/O devices are different
 - Data-gloves, Twiddler, etc.
 - setup can vary between wearable systems
 - Current focus: professional use

What do we want from a WUI?

- Easy to control (even when being in motion)
 - Don't use WIMP?
- Quickly perceiving information
- Unobtrusive when not needed
- Implicit interaction
 - Using environmental and user context information as input
- Situation sensitive
 - "right information at the right time"

Basic things to be aware of first

- UI design issues
 - What designs are possible?
- Interaction styles
 - How can users interact with the computer?
- Fundamentals of sensation and perception
 - E.g. cognitive boundaries
- Evaluation techniques
 - Interruption
 - Usability

UI design issues

- General presentation techniques
 - Visual, audio, tactile, multi-modal

- Quality of Service
 - Response-Time, User productivity, ...
- Balancing function and fashion
 - Application appropriate, design for humans
- Information search and visualization
 - Easy to use (e.g. soundex), appropriate color design

Interaction Styles

- Direct Manipulation
 - Visibility of objects and actions of interest
 - Rapid response, reversible actions
 - Replacement of typed command by a pointing action on the object of interest
 - Problem: Requires constant attention
- Menu-Selection
 - Visibility of commands, not syntax recall needed
 - Very fast, rapid response
 - Different complexities: Single, multiple selection
 - Context-aware: E.g. "Context-Menu" on right mouse click
 - Problem: Finding the structure, limited commands at a time

Interaction Styles

- Command-Language
 - Can accomplish a wide range of tasks
 - Text editing, OS control, data base retrieval, ...
 - Once learned users can achieve high performance
 - Problems: User must recall notation and initial actions, text input device needed
- Natural-Language
 - Very natural as similar to human/human communication
 - Command space permanently accessible
 - Problems:
 - Voice recognition is error-prone
 - High computation costs
 - Language dependent
 - Sometimes socially unacceptable

Tool Support for WUI development

There are many tools available to support GUI development for desktop and mobile systems.

Idea

- Facilitate WUI development with reusable components
- Reduce implementation effort and cost
- Allow integration of context information
- Encapsulate expert knowledge about WUIs

Requirements of a WUI-Toolkit

- Easy to use
- Component reusability
- ► I/O device independent UI description
- Distribution of toolkit components
- Special UI components and interaction concepts
- Support for multi-modal interaction
- Integration of Context
- Extensibility
- Allow non-experts to generated WUIs

WUI Development Process for Non-Experts

Architecture of the WUI-Toolkit

Adaptive WUI

- Use context to automatically ...
 - Optimize UI control
 - Trigger implicit input
 - Provide situation dependent appearance
- Research Problems:
 - How and what to adapt?
 - What is the best UI for a certain situation?
 - How to evaluate/test adaptive WUIs?

Note: Don't mix up with adaptable UIs!

What to adapt on a WUI?

Appearance

- UI can be optimized due to UI cannot be controlled changes in environmental context
 - Light conditions
 - User motion
 - Environmental noise

Interaction

- anymore under current context
 - affected by user activities
 - interaction device failure (e.g. low battery)

Layers of Adaptation

- Layers are not independent!
 - Adaptation on one layer can make adaptation on another layer necessary
 - → Constraint Satisfaction Problem (CSP)

Finding Adaptation Rules

- Problem: Finding a simulator to evaluate WUIs in a laboratory environment
 - How to simulate the primary task?
- Two Approaches:
 - Use virtual task that requires constant attention
 - E.g. computer game "Bouncing Diplomats Game" from McFarlane
 - Use *physical* task that requires constant attention
 - E.g. kid's game to train motor skills "The Hot Wire"

The "HotWire" simulator

Simulation of primary tasks with a physical game

H. Witt and M. Drugge

Wearable UIs by Example | Graphical WUIs

- Menu-based WUIs
 - WUI I: Selection oriented
 - Menu/Submenu structure
 - Small content space
 - WUI II: Content oriented
 - Content presentation and Menu selection
 - HMD optimized

WUII

WUI II

Wearable UIs by Example | Graphical WUIs

- Bin-ocular HMD:
 - Menu arranged in a circle
 - See trough the middle
 - Applications only possible as overlay

Wearable UIs by Example | Augmented Reality

- Information presentation related to physical space
- High computation costs
- ▶ E.g. Nomad Interface
 - Technical descriptions as overlays in car repair
 - movie

Wearable UIs by Example | Wrist-worn WUI

- Wrist-worn projection display
 - Partial visibility instead of complete "screen"
 - Zoom function

Wearable UIs by Example | Tactile Interface

- Touch Headphones
 - Control a MP3 player by touching the ear-plugs
 - Context aware: ear-plugs "know" when plugged in the ear
 - Limited interaction: play, stop, back, forward, volume up/down

<u>movie</u>

Wearable UIs by Example | Multimodal WUIs

- Original idea by Bolt in 1980: "Put that there: Voice and Gesture at the Graphical Interface"
- Combining two modalities at the same time to execute a command
- WUIs often allow only one out of many modalities at a time to execute a command

Bolt

Summary

- WUIs
 - Different to mobile UIs
 - Interdisciplinary knowledge needed for design
 - Tool support may ease the development
 - Approach: encapsulate expert knowledge
- Adaptive WUIs
 - Integrate context information
 - Different layers of adaptation
 - Finding adaptation rules is challenging
 - How to test the interfaces?

