

# Wearable Computing

Holger Kenn

Universität Bremen

WS 05/06

#### **Text Input**

Key Input Pen Input Voice Input

Pointing, Selection, Gesture



- Visual Output
- Audio Output
- Tactile Output

### **Requirements for Wearables**

- Wearable computing: support primary task
- Use computer while doing other things
- Goal: hands-free interaction
- Hands-free definition: interaction while using hands for primary task.
- Data-glove is sometimes considered "hands-free"

Key Input Pen Input Voice Input

# **Text Input**

- Typing
- Word Selection
- Pen Input
- Voice Input

Key Input Pen Input Voice Input



- Input Keys
- Command Keys (Backspace, Del, Cursor, Enter,...)
- Modifier Keys (Shift, Alt, Ctrl, Command)
- Keyboard Mode (Shift Lock, Num Lock)

Key Input Pen Input Voice Input

# Standard Keyboards

- Full-size (102-105 Keys, localized): >50 wpm, trained users much faster
- built-in (Notebooks, PDAs, Push Clients, ...)
- wrist-mounted
- flexible

Key Input Pen Input Voice Input

### small PS2 keyboard



Image from H. Kenn

Key Input Pen Input Voice Input

#### xybernaut arm keyboard



Image from H. Kenn

Key Input Pen Input Voice Input

#### Indestructibe Keyboard



Image from H. Kenn

Key Input Pen Input Voice Input

### OQO PDA w. keyboard



Image from H. Kenn

Key Input Pen Input Voice Input

### SK65 keyboard



Image from H. Kenn

Key Input Pen Input Voice Input

### Wireless Standard Keyboards

- proprietary Infrared (Multimedia Remote Control)
- proprietary RF ("Wireless Desktop")
- Bluetooth (HID-Profile)
- GSM Phones with HID Profile (e.g. K600i)

Key Input Pen Input Voice Input

### Stowaway Bluetooth keyboard



Image from H. Kenn

Key Input Pen Input Voice Input

# **Custom Keyboards**

- wired
- wireless
- textile-integrated

Key Input Pen Input Voice Input

#### titv textile keyboard



Image from H. Kenn

Key Input Pen Input Voice Input

# Chording Keyboards

- Idea: Multiple Keys pressed together create a single key event
- Result: Less keys
- one-hand blind typing (for trained users)
- Training needed, Impractical for untrained users

Key Input Pen Input Voice Input

#### Twiddler



Image from handkey.com website

Key Input Pen Input Voice Input

### Frogpad



Image from H. Kenn

Key Input Pen Input Voice Input

#### Phone Keyboard



Image from H. Kenn

Key Input Pen Input Voice Input

# Multitap

- Origin: American "vanity number" letter codes
- Problem: Multiple letters on keys
- Solution: Select letter by tapping the key multiple times
- Timeout needed, Alternative: two-key (letter + index) or timeout key
- Maximum speed: 25-27wpm (w. timeout key), untrained users about 7 wpm

Key Input Pen Input Voice Input



- Predicting text input method
- invented by tegic communications, now owned by AOL
- Idea: type vanity keys without selecting the letter, use a dictionary to find a list of possible words
- Language-specific dictionaries, input language must be configured
- Shorthands for common words
- Timeout, selection keys and/or enter key needed
- Speed up to 46 wpm

Key Input Pen Input Voice Input

#### Morse Key



Image from H. Kenn

Key Input Pen Input Voice Input

# Morse Code

- Single Key, four symbols (dash, dot, short break, long break)
- Training required
- short codes (Q-code, Z-Code)
- 1939 speed record: 75.2 wpm (McElroy)
- still used in HAM radio
- QRQ Clubs (>40 wpm)

Key Input Pen Input Voice Input



- Input devices: touch screen, tracking pen
- Touch Screen: Pressure sensitive (Palm) vs special pen (OQO)
- graphic only: UPS "electronic signature"
- tracking pen: optical (Anoto pen), motion sensor

Key Input Pen Input Voice Input

### Logitech IO Anoto Pen



Image from logitech.com website

Key Input Pen Input Voice Input

# Handwriting Recognition

- Hard problem
- Block Letters: easier
- smooth handwriting: tough
- Various standard products: PocketPC, Windows XP Tablet PC Edition

Key Input Pen Input Voice Input



- As handwriting recognition is a hard problem, use a simplified set of strokes to ease recognition
- Palm Graffiti: single stroke letters
- Palm Graffiti2: multiple stroke letters, more similar to block letters

Key Input Pen Input Voice Input

#### Graffiti

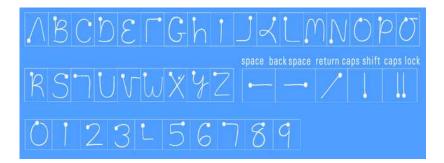



Image from palm.com website

Key Input Pen Input Voice Input

### Graffiti 2



Image from palm.com website

Key Input Pen Input Voice Input

## Voice Input

- Goal: Computer "understands" "spoken language"
- ► General voice recognition unsolved, speech ambiguity → strong AI problem
- Several approaches: Speaker-dependent vs.
  Speaker-independent, large vs. small dictionary

Key Input Pen Input Voice Input

## **Input Devices**

- Microphones
- Problem: Signal/Noise ratio
- Solution 1: Move microphone closer
- Headsets, invisio
- Solution 2: Ignore noise
- directional microphones
- Multiple microphones, beamforming (used in speakerphones)

Key Input Pen Input Voice Input

### Command based

- Problem: when is information relevant for the computer
- Solution: Magic Word
- Scifi example: Star Treck: Commands start with "computer!"
- Commercial implementations: Sony Ericsson phones voice dial
- Alternative: Push-to-talk

Key Input Pen Input Voice Input

### Few words, speaker independent

- Typical application: automated phone services
- Typical words: Yes, No, numbers
- Sometimes larger dictionaries: Automatic timetable service
- Try it yourself: Deutsche Bahn Toll-free 0800 1 50 70 90

Key Input Pen Input Voice Input

### Many Words, few speakers

- Training required
- uses machine learning and dictionaries
- specialized professional dictionaries: medicine, law
- Example: IBM ViaVoice

# Pointing, Selection, Gesture

- Complementing keyboard
- Often more efficient
- In many application, a text entry system is still needed.



- Windows, Icons, Menus, Pointer
- Standard for desktop
- Comparable interfaces exist for PDA: Pen controls Pointer
- not really suited for wearable use

# Finger Trackball



Image from H. Kenn

#### **Twiddler Trackpoint**



Image from H. Kenn

#### Ultrasound 3d Mice

- Uses body-mounted ultrasound transmitters and receivers
- Tracks hand motion in 3D

#### Image Processing-based

- Using a camera to recognize gestures
- hard problem: find hand, track hand, recognize gesture
- even harder in wearable environment



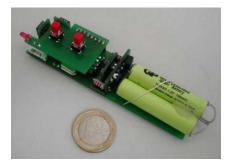



Image from beecon.de website



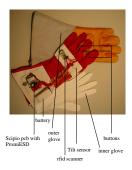



Image from H. Kenn



- Text Entry: Keyboards, Chording, Voice
- Pointing, Selection, Gesture