
OpenGL

“OpenGL is the premier environment for developing portable,
interactive 2D and 3D graphics applications. Since its introduction in
1992, OpenGL has become the industry’s most widely used and
supported 2D and 3D graphics application programming interface
(API), bringing thousands of applications to a wide variety of computer
platforms. OpenGL fosters innovation and speeds application
development by incorporating a broad set of rendering, texture
mapping, special effects, and other powerful visualization functions.
Developers can leverage the power of OpenGL across all popular
desktop and workstation platforms, ensuring wide application
deployment.”

www.opengl.org

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.1/24

OpenGL: What can it do?

Imaging part: works on pixels, bitmaps

Geometry part: works on vertices, polygons

uses a rendering pipeline that starts from
data and ends with a display device.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.2/24

OpenGL rendering pipeline

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.3/24

OpenGL: More info

Application Program Interface based on
C-style function calls

industry standard: one of several (Java3D,
DirectX are others)

stable, reliable and portable

scalable: low-end PC to supercomputer

well documented and easy to use

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.4/24

OpenGL on Windows and Unix

GLU: OpenGL-Extension for complex
polygons, curves etc.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.5/24

The structure of an OpenGL application
� �

1 int main(int argc, char** argv)

2 {

3 glutInit(&argc, argv);

4 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

5 glutInitWindowSize(640,480);

6 glutInitWindowPosition(100, 150);

7 glutCreateWindow("my first attempt");

8 glutDisplayFunc(myDisplay);

9 myInit();

10 glutMainLoop();

11 return 0;

12 }
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.6/24

Other Callback Functions
� �

1 ...

2 glutDisplayFunc(myDisplay);

3 glutReshapeFunc(myReshape);

4 glutMouseFunc(myMouse);

5 glutKeyboardFunc(myKeyboard);

6 ...
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.7/24

Draw three points
� �

1 void myDisplay(void)

2 {

3 glClear(GL_COLOR_BUFFER_BIT);

4 glBegin(GL_POINTS);

5 glVertex2i(100, 50);

6 glVertex2i(100, 130);

7 glVertex2i(150, 130);

8 glEnd();

9 glFlush();

10 }
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.8/24

OpenGL Functions

glVertex2i()

gl is the prefix of all OpenGL function
names

Vertex is a function name

2i describes the arguments: two integers

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.9/24

OpenGL Datatypes

GLenum,GLboolean,GLbitfield unsigned
datatypes

GLvoid pseudo datatype for pointers and return
values

GLbyte,GLshort,GLint 1,2,4-byte signed

GLubyte,GLushort,GLuint 1,2,4-byte unsigned

GLsizei 4-byte signed size datatype

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.10/24

OpenGL Datatypes

GLfloat single precision float

GLclampf single precision float in [0,1]

GLdouble double precision float

GLclampd double precision float in [0,1]

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.11/24

Drawing Dots
� �

1 glBegin(GL_POINTS);

2 glVertex2i(100, 50);

3 glVertex2i(100, 130);

4 glVertex2i(150, 130);

5 glEnd();
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.12/24

Drawing a line
� �

1 glBegin(GL_LINES);

2 glVertex2i(100, 50);

3 glVertex2i(100, 130);

4 glEnd();
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.13/24

Drawing two lines
� �

1 glBegin(GL_LINES);

2 glVertex2i(10, 20);

3 glVertex2i(40, 20);

4 glVertex2i(20, 10);

5 glVertex2i(20, 40);

6 glEnd();
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.14/24

Drawing a polyline
� �

1 glBegin(GL_LINE_STRIP);

2 glVertex2i(10, 20);

3 glVertex2i(40, 20);

4 glVertex2i(20, 10);

5 glVertex2i(20, 40);

6 glEnd();
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.15/24

Drawing a polygon
� �

1 glBegin(GL_LINE_LOOP);

2 glVertex2i(10, 20);

3 glVertex2i(40, 20);

4 glVertex2i(20, 10);

5 glVertex2i(20, 40);

6 glEnd();
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.16/24

Drawing an aligned rectangle
� �

1 glRecti(x1,y1,x2,y2);
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.17/24

What are those numbers?

There is no predefined way of interpreting
the coordinates

OpenGL can work with different coordinate
systems

For OpenGL, we have to define a coordinate
system to be used

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.18/24

Colors and a Coordinate System
� �

1 void myInit(void)

2 {

3 glClearColor(1.0,1.0,1.0,0.0);

4 glColor3f(0.0f, 0.0f, 0.0f);

5 glPointSize(4.0);

6 glMatrixMode(GL_PROJECTION);

7 glLoadIdentity();

8 gluOrtho2D(0.0, 640.0, 0.0, 480.0);

9 }
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.19/24

Algorithmic Drawing
� �

1 void Sierpinski(void){

2 GLintPoint T[3]= {{10,10},{300,30},{200, 300}};

3 int index = random(3);

4 GLintPoint point = T[index];

5 drawDot(point.x, point.y);

6 for(int i = 0; i < 4000; i++) {

7 index = random(3);

8 point.x = (point.x + T[index].x) / 2;

9 point.y = (point.y + T[index].y) / 2;

10 drawDot(point.x,point.y);

11 }

12 glFlush();

13 }
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.20/24

Lecture 4

Coordinate Systems, Viewports, World
Windows

Clipping

Relative Drawing

Parameterized Curves

Double Buffering for Animation

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.21/24

Coordinate System

For now, we have used a simple coordinate system:
x : 0 . . . ScreenWidth − 1, y = 0 . . . ScreenHeight − 1

In case ScreenWidth or ScreenHeight change, glut
can inform us via the
glutReshapeFunc(myReshape);

We can manually apply a coordinate transformation in
order to display arbitrary coordinate systems.

Or we can have OpenGL do this for us

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.22/24

Some terms

The space in which objects are described uses world
coordinates.

The part of this space that we want to display is called
world window.

The window that we see on the screen is our viewport.

In order to know where to draw something, we need
the world-to-viewport transformation

Note that these terms can be used both for 2D and for
3D.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.23/24

A simple example

sx = Ax + C

sy = By + D

A =
V.r − V.l

W.r − W.l
C = V.l − AW.l

B =
V.t − V.b

W.t − W.b
D = V.b − bW.b

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.24/24

In OpenGL
� �

1 void setWindow(float left, float right,

2 float bottom, float top)

3 {

4 glMatrixMode(GL_PROJECTION);

5 glLoadIdentity();

6 gluOrtho2D(left, right, bottom,top);

7 }

8 void setViewport(int left, int right,

9 int bottom, int top)

10 {

11 glViewport(left,bottom,right-left,top-bottom);

12 }
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.25/24

Clipping

What happens to parts of the “world” that are outside
of the world window?
Answer: They are not drawn.

How to identify the parts of the world that are to be
drawn?

Clipping Lines: identifying the segment of a line to be
drawn

Input: the endpoints of a line and a world window

Output: the new endpoints of the line (if anything is to
be drawn)

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.26/24

Clipping

First step: Testing for trivial accept or reject

Cohen Sutherland Clipping Algorithm

For each point do four tests, compute 4 bit word:

1. Is P to the left of the world window?

2. Is P above the top of the world window?

3. Is P to the right of the world window?

4. Is P below the bottom of the world window?

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.27/24

Cohen Sutherland

Compute tests for both points of the line

Trivial Accept: all tests false, all bits 0

Trivial Reject: the words for both points have 1s in the
same position

Deal with the rest: neither trivial accept nor reject

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.28/24

The rest

Identify which point is outside and to which side of the
window

Find the point where the line touches the world
window border

Move the outer point to the border of the window

repeat all until trivial accept or reject

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.29/24

CLIPSEGMENT(p1, p2, W)

1: while (TRUE) do
2: if (trivial accept) then
3: RETURN 1
4: end if
5: if (trivial reject) then
6: RETURN 0
7: end if
8: if (p1 is outside) then
9: if (p1 is to the left) then

10: chop against the left edge of W
11: else
12: if (p1 is to the right) then
13: chop against the right edge of W
14: else
15: if (. . .) then
16: · · ·
17: end if
18: end if
19: end if
20: end if
21: end while

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.30/24

Relative drawing

It is often convenient to draw figures relative to a
current pen position

Idea: maintain the current position (CP) a static global
variable

use two functions MOVEREL and LINEREL to
move/draw relative to CP

implementation is obvious. (or can be found in the
book on page 105)

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.31/24

Application of relative drawing

Turtle graphics: originally from the logo programming
language

logo has been invented at MIT to teach children
how to program. try google for more info

Simple primitives: TURNTO (absolute angle) TURN

(relative angle) FORWARD (distance, isVisible)

Implementation obvious: maintain additional current
direction (CD) in a static global variable, use simple
(sin, cos) trigonometry functions for FORWARD.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.32/24

Application of relative drawing: n-gons

The vertices of an n-gon lie on a circle

divide the circle into n equal parts

connect the endpoints of the parts on the circle with
lines

using relative drawing, this is very easy to implement

by connecting every endpoint to every other endpoint,
a rosette can be drawn

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.33/24

relative hexagon
� �

1 for (i=0;i<6;i++)

2 {

3 forward(L,1);

4 turn(60);

5 }
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.34/24

Circles and Arcs

Circles can be approximated with n-gons (with a high
n)

Arcs are partially drawn circles, instead of dividing the
circle, divide the arc

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.35/24

Representing curves

Two principle ways of describing a curve: implicitly
and parametrically

Implicitly: Give a function F so that F (x, y) = 0 for all
points of the curve

Example:
F (x, y) = (y − Ay)(Bx − Ax) − (x − Ax)(By − Ay) (a
line)

Example: F (x, y) = x2 + y2 − R2 (a circle)

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.36/24

Implicit form of curves

The implicit form is good for testing if a point is on a
curve.

For some cases, we can use the implicit form to
define an “inside” and an “outside” of a curve:
F (x, y) < 0 → inside, F (x, y) > 0 → outside

some curves are single valued in x: F (x, y) = y − g(x)

or in y:F (x, y) = x − h(y)

some curves are neiter, e.g. the circle needs two
functions y =

√
R2 − x2 and y = −

√
R2 − x2

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.37/24

Parametric form of curves

The parametric form of a curve suggests the
movement of a point through time.

Example:
x(t) = Ax + (Bx −Ax)t,y(t) = Ay + (By −Ay)t,t ∈ [0, 1]

Example: x(t) = W cos(t), y(t) = H sin(t),t ∈ [0, 2π]

In order to find an implicit form from a parametric
form, we can use the two x(t) and y(t) equations to
eliminate t and find a relationship that holds true for all
t.

For the Ellipse:
(

x
W

)2
+

(

y
H

)2
= 1

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.38/24

Drawing parametric curves

In order to draw a parametric curve, we have to
approximate it.

In order to do that, we chose some values of t and
sample the functions x and y at ti.

One option is to approximate the function in between
with line segments.

� �

1 glBegin(GL_LINES);

2 for (i=0;i<n;i++)

3 glVertex2f(x(t[i]),y(t[i]));

4 glEnd();
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.39/24

Superellipses

A superellipse is defined by the implicit form
(

x
W

)n
+

(

y
H

)n
= 1

A supercircle is a superellipse with W = H.

x(t) = W cos(t)| cos(t)2/n−1|
y(t) = H sin(t)| sin(t)2/n−1|

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.40/24

Polar coordinate shapes

Polar coordinates can be used to draw parametric
curves.
The curve is represented by a distance to the center
point r and an angle θ.

x(t) = r(t) cos(θ(t)),y(t) = r(t) sin(θ(t)) (general form)

x(θ) = f(θ) cos(θ),y(t) = f(θ) sin(θ) (simple form)

Cardioid f(θ) = K(1 + cos(θ))

Rose Curves f(θ) = K cos(nθ)

Archimedian Spiral f(θ) = Kθ

Conic sections f(θ) = 1
1±e cos(θ)

Logarithmic Spiral f(θ) = Keaθ

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.41/24

3D parametric curves

We can also specify 3d curves using three functions
x(t), y(t), z(t)

Helix: x(t) = cos(t), y(t) = sin(t), z(t) = bt

Toroidal spiral:
x(t) = (a sin(ct) + b) cos(t)

y(t) = (a sin(ct) + b) sin(t)

z(t) = a cos(ct)

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.42/24

Animation w. double buffering

When we do a fast animation, the image starts to
flicker.
This results from the time it takes to draw the lines.
We can avoid this via double-buffering

in OpenGL, double buffering is simple:

glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB);

glutSwapBuffers();

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.43/24

Lecture 5

Vectors
Lines and Planes in 3D space

affine representation

the dot product and the cross product

homogenous representations

intersection and clipping

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.44/24

Vectors

We all remember what vectors are, right?

The difference of two points is a vector

The sum of a point and a vector is a point

A linear combination a~v + b~w is a vector
Let’s write w = a1~v1 + a2~v2 + · · · + an~vn

If a1 + a2 + · · · + an = 1 this is called an affine
combination
if additionally ai ≥ 0 for i = 1 . . . n , this is a convex
combination
To find the length of a vector, we can use Pythagoras:
|~w| =

√

w2
1 + w2

2 + · · · + W 2
n

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.45/24

Vectors

When we know the length, we can normalize the
vector, i.e. bring it to unit length: â = ~a/|~a|. We can
call such a unit vector a direction.

The dot product of two vectors is ~a ·~b =
∑n

i=1 ~vi ~wi has
the well-known properties

~a ·~b = ~b · ~a (Symmetry)

(~a + ~c) · b = ~a ·~b + ~c ·~b (Linearity)

(s~a) ·~b = s(~a ·~b) (Homogeneity)

|~b|2 = ~b ·~b
We can play the usual algebraic games with vectors
(simplification of equations)

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.46/24

Angles between vectors

We can use the dot product to find the angle between
two vectors: ~a ·~b = |~a||~b| cos(θ). If the dot product of
two (non-zero-length) vectors is 0 then they are
perpendicular or orthogonal or normal to eachother.

In 2D, we can find a perpendicular vector by
exchanging the two components and negate one of
them: If ~a = (ax, ay) then ~b = (−ay, ax) and we call this
the counterclockwise perpendicluar vector of ~a or
short ~a⊥

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.47/24

The 2D “Perp” Vector

The “prep” vector is useful for projections (see book,
page 157)

The distance from a point C to the line through A in
direction ~v is |~v⊥ · (C − A)|/|~v|.
Projections are used to simulate reflections

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.48/24

The cross product

Everybody remembers ~a ×~b

One trick to write the cross product: Let~i,~j,~k be the
3D standard unit vectors. Then the cross product of
~a ×~b can be written as the determinant of a matrix:

~a ×~b =

∣

∣

∣

∣

∣

∣

∣

∣

~i ~j ~k

ax ay az

bx by bz

∣

∣

∣

∣

∣

∣

∣

∣

and we have the usual algebraic properties:
antisymmetry, linearity, homogeneity...

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.49/24

Coordinate Systems andCoordinate Frames

A coordinate system can be defined by three mutually
perpendicular unit vectors.

If we put these unit vectors into a specific point ϑ
called origin, we call this a coordinate frame.

In a coordinate frame, a point can be represented as
P = p1~a + p2

~b + p3~c + ϑ.

This leads to a distinction between points and vectors
by using a fourth coefficient in the so-called
homogenous representation of points and vectors.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.50/24

Homogenous Representation

A vector in a coordinate frame:

~v = (~a,~b,~c, ϑ)















v1

v2

v3

0















320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.51/24

Homogenous Representation

A point in a coordinate frame:

P = (~a,~b,~c, ϑ)















P1

P2

P3

1















320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.52/24

Homogenous coordinates

The difference of two points is a vector

The sum of a point and a vector is a point

Two vectors can be added
A vector can be scaled
Any linear combination of vectors is a vector

An affine combination of two points is a point. (An
affine combination is a linear combination where the
coefficients add up to 1.)

A linear interpolation P = (a(1 − t) + Bt is a point.

This fact can be used to calculate a “tween” of two
points.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.53/24

Representing lines and planes

A line can be represented by its endpoints B and C

It can also be represented parametrically with a point
and a vector L(t) = C +~bt.

A line can also be represented in point normal form
~n · (R − C)

For ~n we can use ~b⊥ with ~b = B − C

A plane can be represented by three points

It can also be represented parametrically by a point
and two nonparallel vectors: P (s, t) = C + ~as +~bt

It can also be represented in a point normal form with
a point in the plane and a normal vector. For any point
R in the plane n · (R − B) = 0.

A part of the plane restricted by the length of two
vectors is called a planar patch.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.54/24

intersections

Every line segment has a parent line.

We can first find the intersection of the parent lines

and then see if the intersection point is in both line
segments

In order to intersect a plane with a line, we describe
the line parametrically and the plane in the point
normal form. Solving this equation gives us a “hit
time” t that can be put into the parametric
representation of the line to identify the hitpoint.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.55/24

polygon intersections

In convex polygons, the problem is rather easy: we
can test all the bounding lines/surfaces.

In order to know which side of a line/plane is
“outside”, we represent them in a point normal form.

We have to find exactly two “hit times” tin and tout.

The right tin will be the maximal “hit time” before the
ray enters the polgon.

The right tout will be the minimal “hit time” after the ray
exits the polgon.

This approach can be used to clip against convex
polygons. This is called the Cyrus-Beck-Clipping
Algorithm.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.56/24

Lecture 6

Transformations
in 2D
in 3D
in OpenGL

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.57/24

Transformations

Transformations are an easy way to reuse shapes

A transformation can also be used to present different
views of the same object

Transformations are used in animations.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.58/24

Transformations in OpenGL

When we’re calling a glVertex() function, OpenGL
automatically applies some transformations. One we
already know is the world-window-to-viewport
transformation.
There are two principle ways do see transformations:

object transformations are applied to the
coordinates of each point of an object, the
coordinate system is unchanged
coordinate transformations defines a new
coordinate system in terms of the old coordinate
system and represents all points of the object in
the new coordinate system.

A transformation is a function that mapps a point P to
a point Q, Q is called the image of P .

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.59/24

2d affine transformations

A subset of transformations that uses transformation
functions that are linear in the coordinates of the
original point are the affine transformations.

We can write them as a class of linear functions:








Qx

Qy

1









=









m11Px + m12Py + m13

m21Px + m22Py + m23

1









320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.60/24

2d affine transformations

or we can just use matrix multiplication









Qx

Qy

1









=









m11 m12 m13

m21 m22 m23

0 0 1

















Px

Py

1









or we can also transform vectors with the same matrix








Wx

Wy

0









=









m11 m12 m13

m21 m22 m23

0 0 1

















Vx

Vy

0









320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.61/24

standard transformations

Translation








Qx

Qy

1









=









1 0 m13

0 1 m23

0 0 1

















Px

Py

1









scaling (and reflection for S{x,y} < 0)









Wx

Wy

1









=









Sx 0 0

0 Sy 0

0 0 1

















Vx

Vy

1









320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.62/24

standard transformations

Rotation (positive θ is CCW rotation)









Qx

Qy

1









=









cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

















Px

Py

1









shearing









Qx

Qy

1









=









1 h 0

g 1 0

0 0 1

















Px

Py

1









320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.63/24

Inverse transformations

inverse Rotation (positive θ is CW rotation)









Qx

Qy

1









=









cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

















Px

Py

1









inverse Scaling









Qx

Qy

1









=









1
Sx

0 0

0 1
Sy

0

0 0 1

















Px

Py

1









320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.64/24

Inverse transformations

inverse shearing









Qx

Qy

1









=









1 −h 0

−g 1 0

0 0 1

















Px

Py

1









inverse translation








Qx

Qy

1









=









1 0 −m13

0 1 −m23

0 0 1

















Px

Py

1









320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.65/24

Inverse transformations

In general (provided that M is nonsingular)

P = M−1Q

But as M is quite simple:

det M = m11m22 − m12m21

M−1 =
1

det M





m22 −m12

−m21 m11





320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.66/24

composing affine transformations

As affine transformations are simple matrix
multiplications, we can combine several operations to
a single matrix.

In a matrix multiplication of transformations, the
sequence of translations can be read from right to left.

We can also take this combined matrix and
reconstruct the four basic operations
M =(translation)(shear)(scaling)(rotation) (this is for
2D only)

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.67/24

Some more facts

Affine transformations preserve affine combinations of
points

Affine transformations preserve lines and planes

Affine transformations preserve parallelism of lines
and planes

The column vectors of an affine transformation reveal
the effect of the transformation on the coordinate
system.

An affine transformation has an interesting effect on
the area of an object:
area after transformation

area before transformation = |det M |

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.68/24

The same game in 3D...

The general form of an affine 3D transformation















Qx

Qy

Qz

1















=















m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1





























Px

Py

Pz

1















320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.69/24

Translation...

As expected:















Qx

Qy

Qz

1















=















1 0 0 m14

0 1 0 m24

0 0 1 m34

0 0 0 1





























Px

Py

Pz

1















320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.70/24

Scaling in 3D...

Again:















Qx

Qy

Qz

1















=















Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1





























Px

Py

Pz

1















320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.71/24

Shearing...

in one direction














Qx

Qy

Qz

1















=















1 0 0 0

f 1 0 0

0 0 1 0

0 0 0 1





























Px

Py

Pz

1















320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.72/24

Rotations 3D...

x-roll, y-roll and z-roll

x-roll:














Qx

Qy

Qz

1















=















1 0 0 0

0 c −s 0

1 s c 0

0 0 0 1





























Px

Py

Pz

1















320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.73/24

Rotations 3D...

y-roll:















Qx

Qy

Qz

1















=















c 0 s 0

0 1 0 0

−s 0 c 0

0 0 0 1





























Px

Py

Pz

1















320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.74/24

Rotations 3D...

z-roll:














Qx

Qy

Qz

1















=















c −s 0 0

s c 0 0

0 0 1 0

0 0 0 1





























Px

Py

Pz

1















320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.75/24

Some facts about Rotations 3D

3D affine transformations can be composed as in 2D

3D rotation matrices do not commute (unlike 2D).

Question: how to rotate around an arbitrary axis?

Every 3D affine transformation can be decomposed
into (translation)(scaling)(rotation)(shear1)(shear2).

A 3D affine transformation has an effect on the volume
of an object: volume after transformation

volume before transformation = |det M |

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.76/24

point vs coordinate system transformations

If we have an affine transformation M , we can use it
to transform a coordinate frame F1 into a coordinate
frame F2.

A point P = (Px, Py, 1)T represented in F2 can be
represented in F1 as MP

F1 →M1 F2 →M2→ F3 then P in F3 is M1M2P in F1.

To apply the sequence of transformations M1,M2,M3

to a point P , calculate Q = M3M2M1P . An additional
transformation must be premultiplied.

To apply the sequence of transformations M1,M2,M3

to a coordinate system, calculate M = M1M2M3. A
point P in the transformed coordinate system has the
coordinates MP in the original coordinate system. An
additional transformation must be postmultiplied.320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.77/24

And now in OpenGL...

Of course we can do everything by hand: build a point
and vector datatype, implement matrix multiplication,
apply transformations and call glVertex in the end.

In order to avoid this, OpenGL maintains a current
transformation that is applied to every glVertex
command. This is independent of the
window-to-viewport translation that is happening as
well.
The current transformation is maintained in the
modelview matrix.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.78/24

And now in OpenGL...

It is initialized by calling glLoadIdentity

The modelview matrix can be altered by
glScaled(),glRotated and glTranslated.

These functions can alter any matrix that OpenGL is
using. Therefore, we need to tell OpenGL which
matrix to modify: glMatrixMode(GL_MODELVIEW).

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.79/24

The 2D transformations

Scaling in 2d:
� �

1 glMatrixMode(GL_MODELVIEW);

2 glScaled(sx,sy,1.0);
� �

Translation in 2d:
� �

1 glMatrixMode(GL_MODELVIEW);

2 glTranslated(dx,dy,0);
� �

Rotation in 2d:
� �

1 glMatrixMode(GL_MODELVIEW);

2 glRotated(angle,0.0,0.0,1.0);
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.80/24

A stack of CTs

Often, we need to “go back” to a previous CT.
Therefore, OpenGL maintains a “stack” of CTs (and of
any matrix if we want to).

We can push the current CT on the stack, saving it for
later use: glPushMatrix(). This pushes the current
CT matrix and makes a copy that we will modify now

We can get the top matrix back: glPopMatrix().

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.81/24

3D! (finally)

For our 2D cases, we have been using a very simple
parallel projection that basically ignores the
perspective effect of the z-component.

the view volume forms a rectangular parallelepiped
that is formed by the border of the window and the
near plane and the far plane.

everything in the view volume is parallel-projected to
the window and displayed in the viewport. Everything
else is clipped off.

We continue to use the parallel projection, but make
use of the z component to display 3D objects.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.82/24

3D Pipeline

The 3d Pipeline uses three matrix transformations to
display objects

The modelview matrix
The projection matrix
The viewport matrix

The modelview matrix can be seen as a composition
of two matrices: a model matrix and a view matrix.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.83/24

in OpenGL

Set up the projection matrix and the viewing volume:
� �

1 glMatrixMode(GL_PROJECTION);

2 glLoadIdentity();

3 glOrtho(left,right,bottom,top,near,far);
� �

Aiming the camera. Put it at eye, look at look and
upwards is up.

� �

1 glMatrixMode(GL_MODELVIEW);

2 glLoadIdentity();

3 gluLookAt(eye_x,eye_y,eye_z,

4 look_x,look_y,look_z,up_x,up_y,up_z);
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.84/24

Basic shapes in OpenGL

A wireframe cube:
� �

1 glutWireCube(GLdouble size);
� �

A wireframe sphere:
� �

1 glutWireSphere(GLdouble radius,

2 GLint nSlices,GLint nStacks);
� �

A wireframe torus:
� �

1 glutWireTorus(GLdouble inRad, GLdouble outRad,

2 GLint nSlices,GLint nStacks);
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.85/24

And the most famous one...

The Teapot
� �

1 glutWireTeapot(GLdouble size);
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.86/24

The five Platonic solids

Tetrahedron: glutWireTetrahedron()

Octahedron: glutWireOctahedron()

Dodecahedron: glutWireDodecahedron()

Icosahedron: glutWireIcosahedron()

Missing one?

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.87/24

Moving things around

All objects are drawn at the origin.

To move things around, use the following approach:
� �

1 glMatrixMode(GL_MODELVIEW);

2 glPushMatrix();

3 glTranslated(0.5,0.5,0.5);

4 glutWireCube(1.0);

5 glPopMatrix();
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.88/24

Lecture 7

Wrapup of the lab session

How was it again with those coordinates?

representing hierarchic object structures

perspective

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.89/24

Again: And now in OpenGL...

Of course we can do everything by hand: build a point
and vector datatype, implement matrix multiplication,
apply transformations and call glVertex in the end.

In order to avoid this, OpenGL maintains a current
transformation that is applied to every glVertex
command. This is independent of the
window-to-viewport translation that is happening as
well.
The current transformation is maintained in the
modelview matrix.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.90/24

Again: And now in OpenGL...

It is initialized by calling glLoadIdentity

The modelview matrix can be altered by
glScaled(),glRotated and glTranslated.

These functions can alter any matrix that OpenGL is
using. Therefore, we need to tell OpenGL which
matrix to modify: glMatrixMode(GL_MODELVIEW).

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.91/24

Again: A stack of CTs

Often, we need to “go back” to a previous CT.
Therefore, OpenGL maintains a “stack” of CTs (and of
any matrix if we want to).

We can push the current CT on the stack, saving it for
later use: glPushMatrix(). This pushes the current
CT matrix and makes a copy that we will modify now

We can get the top matrix back: glPopMatrix().

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.92/24

Again: 3D

For our 2D cases, we have been using a very simple
parallel projection that basically ignores the
perspective effect of the z-component.

the view volume forms a rectangular parallelepiped
that is formed by the border of the window and the
near plane and the far plane.

everything in the view volume is parallel-projected to
the window and displayed in the viewport. Everything
else is clipped off.

We continue to use the parallel projection, but make
use of the z component to display 3D objects.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.93/24

Again: 3D Pipeline

The 3d Pipeline uses three matrix transformations to
display objects

The modelview matrix
The projection matrix
The viewport matrix

The modelview matrix can be seen as a composition
of two matrices: a model matrix and a view matrix.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.94/24

Again: in OpenGL

Set up the projection matrix and the viewing volume:
� �

1 glMatrixMode(GL_PROJECTION);

2 glLoadIdentity();

3 glOrtho(left,right,bottom,top,near,far);
� �

Aiming the camera. Put it at eye, look at look and
upwards is up.

� �

1 glMatrixMode(GL_MODELVIEW);

2 glLoadIdentity();

3 gluLookAt(eye_x,eye_y,eye_z,

4 look_x,look_y,look_z,up_x,up_y,up_z);
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.95/24

Basic shapes in OpenGL

A wireframe cube:
� �

1 glutWireCube(GLdouble size);
� �

A wireframe sphere:
� �

1 glutWireSphere(GLdouble radius,

2 GLint nSlices,GLint nStacks);
� �

A wireframe torus:
� �

1 glutWireTorus(GLdouble inRad, GLdouble outRad,

2 GLint nSlices,GLint nStacks);
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.96/24

And the most famous one...

The Teapot
� �

1 glutWireTeapot(GLdouble size);
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.97/24

The five Platonic solids

Tetrahedron: glutWireTetrahedron()

Octahedron: glutWireOctahedron()

Dodecahedron: glutWireDodecahedron()

Icosahedron: glutWireIcosahedron()

Missing one?

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.98/24

Moving things around

All objects are drawn at the origin.

To move things around, use the following approach:
� �

1 glMatrixMode(GL_MODELVIEW);

2 glPushMatrix();

3 glTranslated(0.5,0.5,0.5);

4 glutWireCube(1.0);

5 glPopMatrix();
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.99/24

Rotating things

To rotate things, use the following approach:
� �

1 glMatrixMode(GL_MODELVIEW);

2 glPushMatrix();

3 glRotatef(angle,0.0,1.0,0.0);

4 glutWireTeapot(1.0);

5 glPopMatrix();
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.100/24

Hierarchical Modeling

If we try to model an everyday object (like a house),
we do not want to move all its components separately.

Instead we want to make sure that if we move the
house, the roof of the house move together with the
walls.
The CT stack gives us a simple way to implement this.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.101/24

Global motion

The easiest case of hierarchical modeling is global
motion.
To implement it, we apply a number of transforms
before we start drawing objects.

� �

1 glMatrixMode(GL_MODELVIEW);

2 glPushMatrix();

3 glTranslated(x,y,z);

4 glRotatef(turnit,0.0,1.0,0.0);

5 drawMyScene();

6 glPopMatrix();
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.102/24

Local motion

To implement local motion, apply an extra
transformation before the object is drawn

� �

1 drawmyteapot(){

2 glMatrixMode(GL_MODELVIEW);

3 glPushMatrix();

4 glRotatef(spinit,0.0,0.0,1.0);

5 glutWireTeapot(1.0);

6 glPopMatrix();

7 }
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.103/24

Perspective

Our current parallel projection is quite poor in giving
us a “real” view of things.

That is because it is “ignoring” the z component which
leads to ambiguities.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.104/24

Perspective

from http://www.leinroden.de/

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.105/24

Perspective in OpenGL

Set up the projection matrix and the viewing volume:
� �

1 glMatrixMode(GL_PROJECTION);

2 glLoadIdentity();

3 gluPerspective(viewAngle,aspectRatio,N,F);
� �

Aiming the camera. Put it at eye, look at look and
upwards is up. (no change here)

� �

1 glMatrixMode(GL_MODELVIEW);

2 glLoadIdentity();

3 gluLookAt(eye_x,eye_y,eye_z,

4 look_x,look_y,look_z,up_x,up_y,up_z);
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.106/24

Perspective

The point perspective in OpenGL resolves some
ambiguities

but it cannot solve all ambiguities

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.107/24

Perspective

from http://www.worldofescher.com

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.108/24

Lecture 8

Solid Modeling

Polygonal Meshes

Shading

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.109/24

Solid Modeling

We can model a solid object as a collection of
polygonal faces.

Each face can be specified as a number of vertices
and a normal vector (to define the inside and the
outside)

For clipping and shading, it is useful to associate a
normal vector with every vertex. Multiple vertices can
be associated with the same normal vector and a
vertex can be associated with multiple normal vectors.

To represent and object, we could store all vertices for
all polygons together with a normal vector for every
vertex. That would be highly redundant.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.110/24

Storing polygonal meshes

Instead, we can use three lists:
the vertex list
It contains all distinct vertices
the normal list
It contains all distinct normal vectors
the face list
It only contains lists of indices of the two other lists

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.111/24

The basic barn

vertex x y z

0 0 0 0

1 1 0 0

2 1 1 0

3 0.5 1.5 0

4 0 1 0

5 0 0 1

6 1 0 1

7 1 1 1

8 0.5 1.5 1

9 0 1 1

normal nx ny nz

0 -1 0 0

1 -0.707 0.707 0

2 0.707 0.707 0

3 1 0 0

4 0 -1 0

5 0 0 1

6 0 0 -1

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.112/24

The basic barn

face vertices normals

0 0,5,9,4 0,0,0,0

1 3,4,9,8 1,1,1,1

2 2,3,8,7 2,2,2,2

3 1,2,7,6 3,3,3,3

4 0,1,6,5 4,4,4,4

5 5,6,7,8,9 5,5,5,5,5

6 0,4,3,2,1 6,6,6,6,6

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.113/24

Finding the normal vectors

We can compute the normal of a face using three
vectors and the cross product
m = (V1 − V2) × (V3 − V2) and normalize it to unit
length.

Two problems arrise:
What if (V1 − V2) and (V3 − V2) are almost parallel?
What to do with faces that are defined through
more than three vertices?

Instead, we can use Newell’s method:

mx =
∑N−1

i=0 (yi − ynext(i))(zi + znext(i))

my =
∑N−1

i=0 (zi − znext(i))(xi + xnext(i))

mz =
∑N−1

i=0 (xi − xnext(i))(yi + ynext(i))
320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.114/24

Properties of polygonal meshes

Solidity (if the faces enclose a positive and finite
amount of space)

Connectedness (if there is a path between every two
vertices along the polygon edges)

Simplicity (if the object is solid and has no “holes”)

Planarity (if every face is planar, i.e. every vertex of a
polygon lies in a plane)

Convexity (if a line connecting any two points in the
object lies completely within the object)

A Polyhedron is a connected mesh of simple planar
polygons that encloses a finite amount of space

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.115/24

Properties of polyhedrons

Every edge is shared by exactly two faces

at least three edges meet at each vertex

faces do not interpenetrate: they either touch at a
common edge or not at all.

Euler’s formula for simple polyhedrons: V + F −E = 2
(E:Edges, F: Faces, V: Vertices)

For non-simple polyhedrons: V + F −E = 2 + H − 2G
(G: holes in the polyhedron, H: holes in faces)

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.116/24

Lecture 9

Shading
Toy physics and shading models
diffuse reflection
specular reflections
and everything in OpenGL

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.117/24

Shading

Displaying Wireframe models is easy from a
computational viewpoint

But it creates lots of ambiguities that even perspective
projection cannot remove

If we model objects as solids, we would like them to
look “normal”. One way to produce such a normal
view is to simulate the physical processes that
influence their appearance (Ray Tracing). This is
computationally very expensive.

We need a cheaper way that gives us some realism
but is easy to compute. This is shading.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.118/24

Types of shading

Remove hidden lines in wireframe models
Flat Shading

Smooth Shading

Adding specular light

Adding shadows

Adding texture

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.119/24

Toy-Physics for CG

There are two types of light sources: ambient light
and point light sources.

If all incident light is absorbed by a body, it only
radiates with the so-called blackbody radiation that is
only dependent of its temperature. We’re dealing with
cold bodys here, so blackbody radiation is ignored.

Diffiuse Scattering occurs if light penetrates the
surface of a body and is then re-radiated uniformily in
all directions. Scattered lights interact strongly with
the surface, so it is usually colored.

Specular reflections occur in metal- or plastic-like
surfaces. These are mirrorlike and highly directional.

A typical surface displays a combination of both
effects. 320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.120/24

Important vector tools for shading

The normal vector ~m to the surface P .
The vector ~v from P to the viewer’s eye.

The vector ~s from P to the light source.

The cosine of two vectors is the normalized
dot-product.

~a·~b

|~a||~b|

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.121/24

Calculating the diffuse componentId

Diffuse scattering is uniform, so forget v (unless we do
not see the surface, v · m < 0)

It depends on s vs. m.

Lambert’s Law: A surface receives the illumination
from a light source that is proportional to the cosine of
the angle between the normal of the surface and the
direction to the light source.

Id = Isρd
~s·~m
|~s||~m|

Id is the intensity of the light source, ρd is the diffuse
reflection coefficient.
We do not want negative intensities, so we set
negative values of the cosine term to zero.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.122/24

Specular reflection

The specular reflection component is Id.

specular reflection is not uniform, so it should depend
on ~s,~m and ~v.

Several models have been developed for modeling
specular reflection, the one OpenGL uses is the
model by Phong (1975, Communications of the ACM
18: Illumination for Computer Generated Images)

Phong: The light reflected in the direct mirror direction
is the strongest. Light reflected in other directions is
proportional to the f th power of the cosine to the
mirror direction.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.123/24

Specular reflection (2)

The mirror direction r can be found like this:
~r = −~s + 2 (~s·~m)

|~m|2
~m

Isp = Isρs

(

~r
|~r|

· ~v
|~v|

)f

Again, Id is the intensity of the light source, ρsp is the
specular reflection coefficient. f is determined
experimentally and lies between 1 and 200.

Finding ~r is computationally expensive.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.124/24

Avoid finding ~r

Instead of finding the correct ~r, compute the halfway
vector between ~s and ~v: ~h = ~s + ~v.
~h gives the direction in which the brightest light is to
be expected if all vectors are in the same plane.

Isp = Isρs

(

~h

|~h|
· ~m
|~m|

)f

The falloff of the cosine function is now a different one.
But this can be compensated by chosing a different f .

Of course all these models are not very realistic, but
easy to compute.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.125/24

Ambient Light

Ambient light is a uniform background light that exists
everywhere in the scene. It models the light that is
usually reflected from surfaces.

Its source has an intensity Ia. Every surface has an
ambient reflection coefficient ρa (often equal to ρd).

All light contributions combined:
I = Iaρa + Idρd × lambert + Ispρs × phongf

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.126/24

Color Light

It’s easy to extend this model to colored light: Simply
treat the three color components separately:

Ir = Iarρar + Idrρdr × lambert + Isprρsr × phongf

Ig = Iagρag + Idgρdg × lambert + Ispgρsg × phongf

Ib = Iabρab + Idbρdb × lambert + Ispbρsb × phongf

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.127/24

In OpenGL

Creating a light source:
� �

1 GLfloat myLightPosition[]={3.0,6.0,5.0,1.0};

2 glLightfv(GL_LIGHT0,GL_POSITION,

3 myLightPosition);

4 glEnable(GL_LIGHTING);

5 glEnable(GL_LIGHT0);
� �

OpenGL handles up to 8 light sources LIGHT0 to
LIGHT7.
Giving a vector instead of a position creates a light
source of infinite distance. This type of light source is
called directional instead of positional.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.128/24

Colored Light

Creating a light source:
� �

1 GLfloat amb0[]={0.2,0.4,0.6,1.0};

2 GLfloat diff0[]={0.8,0.9,0.5,1.0};

3 GLfloat spec0[]={1.0,0.8,1.0,1.0};

4 glLightfv(GL_LIGHT0,GL_AMBIENT,amb0);

5 glLightfv(GL_LIGHT0,GL_DIFFUSE,diff0);

6 glLightfv(GL_LIGHT0,GL_SPECULAR,spec0);
� �

Colors are specified in the RGBA model. A stands for
alpha. For the moment, we set alpha to 1.0.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.129/24

Spot Lights

By default, OpenGL uses point light sources.

Creating a spot light source:
� �

1 glLightf(GL_LIGHT0,GL_SPOT_CUTOFF,45.0);

2 glLightfv(GL_LIGHT0,GL_SPOT_EXPONENT,4.0);

3 GLfloat dir[]={2.0,1.0,-4.0};

4 glLightfv(GL_LIGHT0,GL_SPOT_DIRECTION,dir);
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.130/24

Other light properties

Light attenuation:
� �

1 glLightf(GL_LIGHT0,

2 GL_CONSTANT_ATTENUATION,2.0);

3 glLightf(GL_LIGHT0,

4 GL_LINEAR_ATTENUATION,0.2);

5 glLightf(GL_LIGHT0,

6 GL_QUADRATIC_ATTENUATION,0.1);
� �

Ambient Light:
� �

1 GLfloat amb[]={0.2,0.3,0.1,1.0};

2 glLightModelfv(

3 GL_LIGHT_MODEL_AMBIENT, amb);
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.131/24

Other light properties

Recompute ~v for every point
� �

1 glLightModeli(

2 GL_LIGHT_MODEL_LOCAL_VIEWER,

3 GL_TRUE);
� �

Faces are two-sided:
� �

1 glLightModeli(

2 GL_LIGHT_MODEL_TWO_SIDE,

3 GL_TRUE);
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.132/24

Material properties

Set the diffuse component for a surface:
� �

1 GLfloat myDiffuse[]={0.8,0.2,0.0,1.0};

2 glMaterialfv(GL_FRONT,GL_DIFFUSE,myDiffuse);
� �

The first parameter choses the face: GL_FRONT,
GL_BACK, GL_FRONT_AND_BACK

The second parameter choses the coefficients:
GL_AMBIENT, GL_DIFFUSE,
GL_SPECULAR,GL_AMBIENT_AND_DIFFUSE,GL_EMISSION

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.133/24

Lab Session tomorrow

Set up a scene

Define some materials
Set up some lights

Play around

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.134/24

Lecture 10

Smooth objects
Representation
Generic Shapes

Flat vs. Smooth Shading

Perspective and (pseudo) Depth

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.135/24

Smooth Objects

Remember the n-gon?
� �

1 for (i=0;i<N;i++)

2 {

3 forward(L,1);

4 turn(360/N);

5 }
� �

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.136/24

Mesh approximations

Smooth objects can be approximated with
fine meshes.

For shading, we want to preserve the
information that these objects are actually
smooth so that we can shade them “round”.

The basic approach: Use a parametric
representation of the object and
“polygonalize” it. (also called “tesselation”)

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.137/24

Representing Surfaces

Lecture 4: Representing Curves

Two principle ways of describing a curve: implicitly
and parametrically

Implicitly: Give a function F so that F (x, y) = 0 for
all points of the curve

The parametric form of a curve suggests the
movement of a point through time.

Lecture 5: Representing a planar patch:
P (s, t) = C + ~as +~bt, s, t ∈ [0, 1]

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.138/24

Representing surfaces

Parametric form: P (u, v) = (X(u, v), Y (u, v), Z(u, v))

Keeping v fixed and let u vary: v-contour

Keeping u fixed and let u vary: u-contour

Implicit form: F (x, y, z) = 0)

F is also called the inside-outside-function:
F < 0:inside, F = 0 on the surface, F > 0 outside.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.139/24

Normal vectors of parametric surfaces

~p(u, v) is the vector from the origin of the surface to
P (u, v).

~n(u0, v0) is the normal vector in surface point P (u0, v0).

~n(u0, v0) =

(

∂~p

∂u
× ∂~p

δv

)∣

∣

∣

∣

u=u0,v=v0

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.140/24

Normal vectors of parametric surfaces

As p(u, v) = X(u, v)~i + Y (u, v)~j + Z(u, v)~k:

∂~p(u, v)

∂u
=

(

∂X(u, v)

∂u
,
∂Y (u, v)

∂u
,
∂Z(u, v)

∂u

)

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.141/24

Normal vectors of implicit surfaces

We can use the gradient ∇F of the surface as the
normal vector:

~n(x0, y0, z0) = ∇F |x=x0,y=y0,z=z0

=

(

∂F

∂x
,
∂F

∂y
,
∂F

∂z

)∣

∣

∣

∣

x=x0,y=y0,z=z0

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.142/24

Affine Transformations

We can apply affine transformation to the
homogenous form of the representations: if
P̃ (u, v) = (X(u, v), Y (u, v), Z(u, v), 1)T , then MP̃ (u, v))

is the parametric representation under the
transformation M .

We can apply a transformation to the implicit form
F (P̃): F ′(P̃) = F (M−1P̃)

The normal vector of the transformed surface is
M−T~n(u, v)

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.143/24

Some generic shapes

Sphere:

F (x, y, z) = x2 + y2 + z2 − 1

P (u, v) = (cos(v) cos(u), cos(v) sin(u), sin(v))

u-contours are called meridians, v-contours are
called parallels

Tapered Cylinder:

F (x, y, z) = x2 + y2 − (1 + (s − 1)z)2 for 0 < z < 1

P (u, v) = ((1+(s−1)v) cos(u), (1+(s−1)v) sin(u), v)

s = 1: Cylinder, s = 0: Cone

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.144/24

Shading

Flat shading: Compute the color for each face, fill the
entire face with the color

Flat shading is OK if light sources are far away

Flat shading espechially looks bad on approximated
smooth objects.

in OpenGL:glShadeModel(GL_FLAT);

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.145/24

Smooth Shading

Gouraud Shading: Compute a different color for every
pixel.

For each scanline at ys compute colorleft by linear
interpolation between the color of the top and bottom
of the left edge.

Compute colorright the same way.

Then fill the scanline by linear interpolation between
colorleft and colorright.

in OpenGL:glShadeModel(GL_SMOOTH);

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.146/24

Better Smooth Shading

Phong Shading: Compute a different normal vector for
every pixel.

Instead of interpolating the colors, interpolate the
normal vectors

in OpenGL: not implemented

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.147/24

Removing hidden surfaces

Depth Buffer: Stores a value for every pixel

During shading: For each pixel compute a
pseudodepth.

Only draw the pixel if its pseudodepth is lower, and
update the pseudodepth if the pixel is drawn.

Again, compute the correct pseudodepth for the
endpoints of the scanline and use interpolation in
between.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.148/24

Lecture 11

Smooth objects demo

Flat vs. Smooth Shading demo

Perspective and (pseudo) Depth

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.149/24

Insert Demos Here

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.150/24

Insert Demos Here

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.151/24

Insert Demos Here

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.152/24

Insert Demos Here

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.153/24

Removing hidden surfaces

Depth Buffer: Stores a value for every pixel

During shading: For each pixel compute a
pseudodepth.

Only draw the pixel if its pseudodepth is lower, and
update the pseudodepth if the pixel is drawn.

Again, compute the correct pseudodepth for the
endpoints of the scanline and use interpolation in
between.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.154/24

What is pseudodepth?

A perspective projection projects a 3D point to a 2D
point

The parallel projection is the most simple one. It
removes the z-Component.

A better perspective projection is the following:

(x∗, y∗) =

(

N
Px

−Pz

, N
Py

−Pz

)

N is the distance from the eye to the near plane.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.155/24

What is pseudodepth?

Pseudodepth should be lower if a point is in front of
another point.

Unfortunately, the projection removes this information.

We could use Pz directly.

But it’s more convenient to set the pseudodepth to a
fixed interval, i.e. −1 . . . 1.

And it’s convenient to use the same denominator −Pz.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.156/24

What is pseudodepth?

So we can use:

(x∗, y∗, z∗) =

(

N
Px

−Pz
, N

Py

−Pz
,
aPz + b

−Pz

)

for the right a and b.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.157/24

Pseudodepth in a projection matrix

This projection matrix computes the pseudodepth and
the perspective projection at the same time:

P =















N 0 0 0

0 N 0 0

0 0 a b

0 0 −1 0















320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.158/24

Lecture 12

Pixmaps

Colors

Texture

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.159/24

Pixmaps

From Lecture 2: A Pixel is a point sample and a
pixmap (or pixel map or “bitmap”) is created by
sampling an original discrete points. In order to
restore an image from pixels, we have to apply
areconstruction filter.

Reconstruction filters are e.g. Box, Linear, Cubic,
Gaussian...

OpenGL is another method to create these point
samples: for every pixel in the viewport window,
OpenGL determines its color value.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.160/24

Pixmaps

Internally, OpenGL stores these pixmaps in buffers.

The call to glutInitDisplayMode() allocates the
basic draw buffer(s).

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.161/24

CIE Cromaticity Diagram

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.162/24

Colors

Visible light is a contiuum, so there is no “natural” way
to represent color

RGB color model

Inspired by human perception

three spectral components: red, green, blue

binary representation of the component values,
different standards

example: 16-bit RGB (565): one short, 5 bits for
red and blue, 6 bits for green.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.163/24

RGB in CIE Cromaticity Diagram

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.164/24

Colors

Y/Cr/Cb

based on the CIE Cromaticity Diagram

used for TV applications: compatible with old B/W
TV standards

Y: greyscale component, Cr:
red-green-component, Cb: blue-green-component

possibility to reduce bandwith for color “signal”

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.165/24

Colors

HSI model

hue: color (i.e. dominant wavelength), saturation:
ratio between white and color, intensity: ratio
between black and color

good for computer vision applications

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.166/24

Colors

CYM(K) model

subtractive color model: white light is filtered,
spectral components are removed.

C: cyan (removes red) Y: yellow (removes blue) M:
magenta (removes green)

K: coal (i.e. black) removes everything.

often used in print production

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.167/24

Colors

Conversion between different color models (and
output devices) often leads to different colors. In order
to get the “right” color, the devices have to be
color-corrected. This is the task of a color
management system.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.168/24

Never The Same Color

In pixmaps, colors are represented using binary
values. This leads to problems:

quantization errors: when using few bits per pixel

minimum and maximum values: clamping

But other things go wrong too.

Display devices react nonlinearily: A intensity value
of128 is less than half as bright than 255.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.169/24

Gamma correction

The intensity of the display devices is roughly a power
function:

iD ≈
(

i

255

)γ

γ is usually in the range of 1.7 . . . 2.5.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.170/24

Different gamma values

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.171/24

What’s the gamma?

(from http://www.graphics.cornell.edu/ westin/gamma/gamma.html
320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.172/24

What’s the A in RGBA?

OpenGL represents pixmaps internally using 4 values
per pixel, RGB and A.

The A stands for α, i.e. Alpha and indicates the
transparent regions of a pixmap.

α is a measure of opacity, (1 − α) is transparency

α = 1 Pixel is fully opaque

α = 0 Pixel is fully transparent

0 < α < 1 Pixel is semi transparent

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.173/24

Compositing

The alpha values of a pixmap are called the alpha
matte of the pixmap

The process of merging two images with alpha mattes
is called compositing or alpha blending.

Given two pixels F (foreground) and B (background)
and α for the foreground pixel.

Bnew = (1 − α)Bold + αF

Bnew = Bold + α(F − Bold)

OpenGL uses this in its blending functions.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.174/24

Associated Color

Treating alpha and colors separately gives strange
effects when filtering or interpolating

But storing the pixels already premultiplied with their
opcaity removes the effect. This is called associated
color or opacity-weighted color.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.175/24

Associated Color Compositing

Associated color: F̃ = αF

Compositing with associated color:
B̃new = (1 − α)B̃old + F̃

and computing the new alpha: βnew = (1 − α)βold + α

β is the α of the background pixel.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.176/24

Gamma Correction ?

Do you gamma-correct alpha ? (Does alpha need a
gamma correction?)

Do you alpha-blend gamma? (Does an alpha blending
change gamma ?)

Alpha is never gamma-corrected. Gamma-correction
only applies to the “real” colors.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.177/24

Textures

Textures are pixmaps that are applied to faces.

They can be “displayed” in all the different surface
coefficients of the object, i.e. intensity or reflection
coefficients.

Texture pixmaps can either be stored beforehand or
created by the program (procedural textures).

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.178/24

Textures

OpenGL needs to know which part of the texture
belongs to which part of the face. Therefore, the
vertices of the object are both specified in 3D
worldspace and in texture coordinates. When
rendering, OpenGL uses interpolated texture
coordinates to find the “right” part of the texture.

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.179/24

Object and Texture Space

A texture is a pixmap. It has a simple 2d coordinate
system.

A surface of an object has coordinates in 3d space.

Question: how to find the right 2d coordinates for a
pixel in 3d space. (This is yet another projection.)

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.180/24

Object and Texture Space

OpenGL knows several texture generation modes:

GL_OBJECT_LINEAR: Texture coordinates are
linear combinations of the vertex coordinates.

GL_EYE_LINEAR: Texture coordinates are
computed relative to the eye coordinates.

GL_SPHERE_MAP

320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.181/24

A Sphere Map

www.debevec.org
320322 Graphics and Visualization – Dr. Holger Kenn – International University Bremen – p.182/24

	OpenGL
	OpenGL: What can it do?
	OpenGL rendering pipeline
	OpenGL: More info
	OpenGL on Windows and Unix
	The structure of an OpenGL application
	Other Callback Functions
	Draw three points
	OpenGL Functions
	OpenGL Datatypes
	OpenGL Datatypes
	Drawing Dots
	Drawing a line
	Drawing two lines
	Drawing a polyline
	Drawing a polygon
	Drawing an aligned rectangle
	What are those numbers?
	Colors and a Coordinate System
	Algorithmic Drawing
	Lecture 4
	Coordinate System
	Some terms
	A simple example
	In OpenGL
	Clipping
	Clipping
	Cohen Sutherland
	The rest
	{sc ClipSegment}$(p1,p2,W)$
	Relative drawing
	Application of relative drawing
	Application of relative drawing: n-gons
	relative hexagon
	Circles and Arcs
	Representing curves
	Implicit form of curves
	Parametric form of curves
	Drawing parametric curves
	Superellipses
	Polar coordinate shapes
	3D parametric curves
	Animation w. double buffering
	Lecture 5
	Vectors
	Vectors
	Angles between vectors
	The 2D ``Perp'' Vector
	The cross product
	Coordinate Systems and\ Coordinate Frames
	Homogenous Representation
	Homogenous Representation
	Homogenous coordinates
	Representing lines and planes
	intersections
	polygon intersections
	Lecture 6
	Transformations
	Transformations in OpenGL
	2d affine transformations
	2d affine transformations
	standard transformations
	standard transformations
	Inverse transformations
	Inverse transformations
	Inverse transformations
	composing affine transformations
	Some more facts
	The same game in 3D...
	Translation...
	Scaling in 3D...
	Shearing...
	Rotations 3D...
	Rotations 3D...
	Rotations 3D...
	Some facts about Rotations 3D
	point vs coordinate system transformations
	And now in OpenGL...
	And now in OpenGL...
	The 2D transformations
	A stack of CTs
	3D! (finally)
	3D Pipeline
	in OpenGL
	Basic shapes in OpenGL
	And the most famous one...
	The five Platonic solids
	Moving things around
	Lecture 7
	Again: And now in OpenGL...
	Again: And now in OpenGL...
	Again: A stack of CTs
	Again: 3D
	Again: 3D Pipeline
	Again: in OpenGL
	Basic shapes in OpenGL
	And the most famous one...
	The five Platonic solids
	Moving things around
	Rotating things
	Hierarchical Modeling
	Global motion
	Local motion
	Perspective
	Perspective
	Perspective in OpenGL
	Perspective
	Perspective
	Lecture 8
	Solid Modeling
	Storing polygonal meshes
	The basic barn
	The basic barn
	Finding the normal vectors
	Properties of polygonal meshes
	Properties of polyhedrons
	Lecture 9
	Shading
	Types of shading
	Toy-Physics for CG
	Important vector tools for shading
	Calculating the diffuse component I_d
	Specular reflection
	Specular reflection (2)
	Avoid finding $vec r$
	Ambient Light
	Color Light
	In OpenGL
	Colored Light
	Spot Lights
	Other light properties
	Other light properties
	Material properties
	Lab Session tomorrow
	Lecture 10
	Smooth Objects
	Mesh approximations
	Representing Surfaces
	Representing surfaces
	Normal vectors of parametric surfaces
	Normal vectors of parametric surfaces
	Normal vectors of implicit surfaces
	Affine Transformations
	Some generic shapes
	Shading
	Smooth Shading
	Better Smooth Shading
	Removing hidden surfaces
	Lecture 11
	Insert Demos Here
	Insert Demos Here
	Insert Demos Here
	Insert Demos Here
	Removing hidden surfaces
	What is pseudodepth?
	What is pseudodepth?
	What is pseudodepth?
	Pseudodepth in a projection matrix
	Lecture 12
	Pixmaps
	Pixmaps
	CIE Cromaticity Diagram
	Colors
	RGB in CIE Cromaticity Diagram
	Colors
	Colors
	Colors
	Colors
	Never The Same Color
	Gamma correction
	Different gamma values
	What's the gamma?
	What's the A in RGBA?
	Compositing
	Associated Color
	Associated Color Compositing
	Gamma Correction ?
	Textures
	Textures
	Object and Texture Space
	Object and Texture Space
	A Sphere Map

