
Graphics and Visualization

Holger Kenn

International University Bremen

Spring Semester 2006

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

First steps in OpenGL

Coordinates

Representing Curves

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Recap

I Display Devices
I First “Lab Course”

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

OpenGL

“OpenGL is the premier environment for developing portable, interactive 2D and 3D
graphics applications. Since its introduction in 1992, OpenGL has become the
industry’s most widely used and supported 2D and 3D graphics application
programming interface (API), bringing thousands of applications to a wide variety of
computer platforms. OpenGL fosters innovation and speeds application development
by incorporating a broad set of rendering, texture mapping, special effects, and other
powerful visualization functions. Developers can leverage the power of OpenGL across
all popular desktop and workstation platforms, ensuring wide application deployment.”

www.opengl.org

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

OpenGL: What can it do?

I Imaging part: works on pixels, bitmaps
I Geometry part: works on vertices, polygons
I uses a rendering pipeline that starts from data and ends

with a display device.

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

OpenGL rendering pipeline

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

OpenGL: More info

I Application Program Interface based on C-style function
calls

I industry standard: one of several (Java3D, DirectX are
others)

I stable, reliable and portable
I scalable: PDA to supercomputer
I well documented and easy to use

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

OpenGL on Windows and Unix

I GLU: OpenGL-Extension for complex polygons, curves etc.

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

OpenGL compiling and linking

inc lude <GL/ g l u t . h>
inc lude <GL/ g lu . h>
inc lude <GL/ g l . h>

I gcc -lgl -lglu -lglut -o program program.c

I In your OS, capitalization of GL, GLU and GLUT might be
different!

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

The structure of an OpenGL application

i n t main (i n t argc , char ∗∗ argv)
{

g l u t I n i t (& argc , argv) ;
g lu t In i tD isp layMode (GLUT_SINGLE | GLUT_RGB) ;
g lu t In i tWindowSize (640 ,480) ;
g lu t In i tW indowPos i t i on (100 , 150) ;
glutCreateWindow ("my f i r s t a t tempt ") ;
g lu tD isp layFunc (myDisplay) ;
my In i t () ;
glutMainLoop () ;
r e t u r n 0 ;

}

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Other Callback Functions

. . .
g lu tD isp layFunc (myDisplay) ;
glutReshapeFunc (myReshape) ;
glutMouseFunc (myMouse) ;
glutKeyboardFunc (myKeyboard) ;

. . .

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Draw three points

vo id myDisplay (vo id)
{

g lC lea r (GL_COLOR_BUFFER_BIT) ;
g lBeg in (GL_POINTS) ;

g l V e r t e x2 i (100 , 50) ;
g l V e r t e x2 i (100 , 130) ;
g l V e r t e x2 i (150 , 130) ;

glEnd () ;
g lF lush () ;

}

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

OpenGL Functions

glVertex2i()

I gl is the prefix of all OpenGL function names
I Vertex is a function name
I 2i describes the arguments: two integers

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

OpenGL Datatypes

GLenum,GLboolean,GLbitfield unsigned datatypes

GLvoid pseudo datatype for pointers and return values

GLbyte,GLshort,GLint 1,2,4-byte signed

GLubyte,GLushort,GLuint 1,2,4-byte unsigned

GLsizei 4-byte signed size datatype

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

OpenGL Datatypes

GLfloat single precision float

GLclampf single precision float in [0,1]

GLdouble double precision float

GLclampd double precision float in [0,1]

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Drawing Dots

glBegin (GL_POINTS) ;
g l V e r t e x2 i (100 , 50) ;
g l V e r t e x2 i (100 , 130) ;
g l V e r t e x2 i (150 , 130) ;

glEnd () ;

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Drawing a line

glBegin (GL_LINES) ;
g l V e r t e x2 i (100 , 50) ;
g l V e r t e x2 i (100 , 130) ;

glEnd () ;

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Drawing two lines

glBegin (GL_LINES) ;
g l V e r t e x2 i (10 , 20) ;
g l V e r t e x2 i (40 , 20) ;
g l V e r t e x2 i (20 , 10) ;
g l V e r t e x2 i (20 , 40) ;

glEnd () ;

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Drawing a polyline

glBegin (GL_LINE_STRIP) ;
g l V e r t e x2 i (10 , 20) ;
g l V e r t e x2 i (40 , 20) ;
g l V e r t e x2 i (20 , 10) ;
g l V e r t e x2 i (20 , 40) ;

glEnd () ;

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Drawing a polygon

glBegin (GL_LINE_LOOP) ;
g l V e r t e x2 i (10 , 20) ;
g l V e r t e x2 i (40 , 20) ;
g l V e r t e x2 i (20 , 10) ;
g l V e r t e x2 i (20 , 40) ;

glEnd () ;

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Drawing an aligned rectangle

g l R e c t i (x1 , y1 , x2 , y2) ;

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

What are those numbers?

I There is no predefined way of interpreting the coordinates
I OpenGL can work with different coordinate systems
I For OpenGL, we have to define a coordinate system to be

used

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Colors and a Coordinate System

vo id myIn i t (vo id)
{

g lC learCo lo r (1 . 0 , 1 . 0 , 1 . 0 , 0 . 0) ;
g l C o l o r 3 f (0 .0 f , 0.0 f , 0.0 f) ;
g lPo in tS ize (4 . 0) ;
glMatrixMode (GL_PROJECTION) ;
g l L o a d I d e n t i t y () ;
gluOrtho2D (0 . 0 , 640.0 , 0 .0 , 480 .0) ;

}

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Algorithmic Drawing

vo id S i e r p i n s k i (vo id) {
GL in tPo in t T [3] = { {10 ,10 } , {300 ,30 } , {200 , 3 0 0 } } ;
i n t index = random (3) ;
GL in tPo in t p o i n t = T [index] ;
drawDot (p o i n t . x , p o i n t . y) ;
f o r (i n t i = 0 ; i < 4000; i ++) {

index = random (3) ;
p o i n t . x = (p o i n t . x + T [index] . x) / 2 ;
p o i n t . y = (p o i n t . y + T [index] . y) / 2 ;
drawDot (p o i n t . x , p o i n t . y) ;

}
g lF lush () ;

}

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Coordinate System

I For now, we have used a simple coordinate system:
x : 0 . . . ScreenWidth − 1, y = 0 . . . ScreenHeight − 1

I In case ScreenWidth or ScreenHeight change, glut can inform
us via the glutReshapeFunc(myReshape);

I We can manually apply a coordinate transformation in order to
display arbitrary coordinate systems.

I Or we can have OpenGL do this for us

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Some terms

I The space in which objects are described uses world
coordinates.

I The part of this space that we want to display is called world
window.

I The window that we see on the screen is our viewport.

I In order to know where to draw something, we need the
world-to-viewport transformation

I Note that these terms can be used both for 2D and for 3D.

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

A simple example

sx = Ax + C

sy = By + D

A =
V .r − V .l
W .r − W .l

C = V .l − AW .l

B =
V .t − V .b
W .t − W .b

D = V .b − bW .b

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

In OpenGL

vo id setWindow (f l o a t l e f t , f l o a t r i g h t ,
f l o a t bottom , f l o a t top)

{
glMatrixMode (GL_PROJECTION) ;
g l L o a d I d e n t i t y () ;
gluOrtho2D (l e f t , r i g h t , bottom , top) ;

}
vo id setV iewport (i n t l e f t , i n t r i g h t ,

i n t bottom , i n t top)
{

g lV iewpor t (l e f t , bottom , r i g h t− l e f t , top−bottom) ;
}

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Clipping

I What happens to parts of the “world” that are outside of the
world window?
Answer: They are not drawn.

I How to identify the parts of the world that are to be drawn?

I Clipping Lines: identifying the segment of a line to be drawn

I Input: the endpoints of a line and a world window

I Output: the new endpoints of the line (if anything is to be drawn)

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Clipping

I First step: Testing for trivial accept or reject

I Cohen Sutherland Clipping Algorithm

I For each point do four tests, compute 4 bit word:

1. Is P to the left of the world window?
2. Is P above the top of the world window?
3. Is P to the right of the world window?
4. Is P below the bottom of the world window?

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Cohen Sutherland

I Compute tests for both points of the line

I Trivial Accept: all tests false, all bits 0

I Trivial Reject: the words for both points have 1s in the same
position

I Deal with the rest: neither trivial accept nor reject

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

The rest

I Identify which point is outside and to which side of the window

I Find the point where the line touches the world window border

I Move the outer point to the border of the window

I repeat all until trivial accept or reject

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

CLIPSEGMENT(p1, p2, W)

1: while (TRUE) do
2: if (trivial accept) then
3: RETURN 1
4: end if
5: if (trivial reject) then
6: RETURN 0
7: end if
8: if (p1 is outside) then
9: if (p1 is to the left) then
10: chop against the left edge of W

11: else
12: if (p1 is to the right) then
13: chop against the right edge of W

14: else
15: if (. . .) then
16: · · ·

17: end if
18: end if
19: end if
20: end if
21: end while

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Relative drawing

I It is often convenient to draw figures relative to a current pen
position

I Idea: maintain the current position (CP) a static global variable

I use two functions MOVEREL and LINEREL to move/draw relative
to CP

I implementation is obvious. (or can be found in the book on page
105)

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Application of relative drawing

I Turtle graphics: originally from the logo programming language

I logo has been invented at MIT to teach children how to
program. try google for more info

I Simple primitives: TURNTO (absolute angle) TURN (relative
angle) FORWARD (distance, isVisible)

I Implementation obvious: maintain additional current direction
(CD) in a static global variable, use simple (sin, cos)
trigonometry functions for FORWARD.

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Application of relative drawing: n-gons

I The vertices of an n-gon lie on a circle

I divide the circle into n equal parts

I connect the endpoints of the parts on the circle with lines

I using relative drawing, this is very easy to implement

I by connecting every endpoint to every other endpoint, a rosette
can be drawn

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

relative hexagon

f o r (i =0; i <6; i ++)
{

forward (L , 1) ;
tu rn (6 0) ;

}

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Circles and Arcs

I Circles can be approximated with n-gons (with a high n)

I Arcs are partially drawn circles, instead of dividing the circle,
divide the arc

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Representing curves

I Two principle ways of describing a curve: implicitly and
parametrically

I Implicitly: Give a function F so that F (x , y) = 0 for all points of
the curve

I Example: F (x , y) = (y − Ay)(Bx − Ax) − (x − Ax)(By − Ay) (a
line)

I Example: F (x , y) = x2 + y2 − R2 (a circle)

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Implicit form of curves

I The implicit form is good for testing if a point is on a curve.

I For some cases, we can use the implicit form to define an
“inside” and an “outside” of a curve: F (x , y) < 0 → inside,
F (x , y) > 0 → outside

I some curves are single valued in x: F (x , y) = y − g(x) or in
y:F (x , y) = x − h(y)

I some curves are neiter, e.g. the circle needs two functions
y =

√
R2 − x2 and y = −

√
R2 − x2

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Parametric form of curves

I The parametric form of a curve suggests the movement of a
point through time.

I Example: x(t) = Ax + (Bx −Ax)t,y(t) = Ay + (By −Ay)t,t ∈ [0, 1]

I Example: x(t) = W cos(t), y(t) = H sin(t),t ∈ [0, 2π]

I In order to find an implicit form from a parametric form, we can
use the two x(t) and y(t) equations to eliminate t and find a
relationship that holds true for all t.

I For the Ellipse:
(

x
W

)2
+

(y
H

)2
= 1

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Drawing parametric curves

I In order to draw a parametric curve, we have to approximate it.

I In order to do that, we chose some values of t and sample the
functions x and y at ti .

I One option is to approximate the function in between with line
segments.

g lBegin (GL_LINES) ;
f o r (i =0; i <n ; i ++)

g lVe r tex2 f (x (t [i]) , y (t [i])) ;
glEnd () ;

Holger Kenn Graphics and Visualization

TZI

Recap
First steps in OpenGL

Coordinates
Representing Curves

Superellipses

I A superellipse is defined by the implicit form
(

x
W

)n
+

(y
H

)n
= 1

I A supercircle is a superellipse with W = H.

I x(t) = W cos(t)| cos(t)2/n−1|
I y(t) = H sin(t)| sin(t)2/n−1|

Holger Kenn Graphics and Visualization

	Recap
	First steps in OpenGL
	Coordinates
	Representing Curves

