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Coordinate System

I The space in which objects are described uses world
coordinates.

I The part of this space that we want to display is called world
window.

I The window that we see on the screen is our viewport.

I In order to know where to draw something, we need the
world-to-viewport transformation

I Note that these terms can be used both for 2D and for 3D.
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Cohen Sutherland

I Compute 4 test bits for the endpoints of a line segment

I Trivial Accept: all tests false, all bits 0

I Trivial Reject: the words for both points have 1s in the same
position

I Deal with the rest: neither trivial accept nor reject
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Cohen Sutherland (2)

I Identify which point is outside and to which side of the window

I Find the point where the line touches the world window border

I Move the outer point to the border of the window

I repeat all until trivial accept or reject
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Implicit form of curves

I The implicit form is good for testing if a point is on a curve.

I For some cases, we can use the implicit form to define an
“inside” and an “outside” of a curve: F (x , y) < 0 → inside,
F (x , y) > 0 → outside

I some curves are single valued in x: F (x , y) = y − g(x) or in
y:F (x , y) = x − h(y)

I some curves are neiter, e.g. the circle needs two functions
y =

√
R2 − x2 and y = −

√
R2 − x2
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Parametric form of curves

I The parametric form of a curve suggests the movement of a
point through time.

I Example: x(t) = Ax + (Bx −Ax )t,y(t) = Ay + (By −Ay )t,t ∈ [0, 1]

I Example: x(t) = W cos(t), y(t) = H sin(t),t ∈ [0, 2π]

I In order to find an implicit form from a parametric form, we can
use the two x(t) and y(t) equations to eliminate t and find a
relationship that holds true for all t.

I For the Ellipse:
(

x
W

)2
+

( y
H

)2
= 1
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Superellipses

I A superellipse is defined by the implicit form
(

x
W

)n
+

( y
H

)n
= 1

I A supercircle is a superellipse with W = H.

I x(t) = W cos(t)| cos(t)2/n−1|
I y(t) = H sin(t)| sin(t)2/n−1|
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Superellipses

Image from Hill, Pg 125
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Polar coordinates

I Polar coordinates can be used to draw parametric curves.

I The curve is represented by a distance to the center point r and
an angle θ.

I x(t) = r(t) cos(θ(t)),y(t) = r(t) sin(θ(t)) (general form)

I x(θ) = f (θ) cos(θ),y(t) = f (θ) sin(θ) (simple form)
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Polar Coordinates

Image from Hill, Pg 126
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Polar coordinate shapes

I Cardioid f (θ) = K (1 + cos(θ))

I Rose Curves f (θ) = K cos(nθ)

I Archimedian Spiral f (θ) = Kθ

I Conic sections f (θ) = 1
1±e cos(θ)

I Logarithmic Spiral f (θ) = Keaθ
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Examples

Image from Hill, Pg 126
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3D parametric curves

I We can also specify 3d curves using three functions
x(t), y(t), z(t)

I Helix: x(t) = cos(t), y(t) = sin(t), z(t) = bt

I Toroidal spiral:

I x(t) = (a sin(ct) + b) cos(t)
I y(t) = (a sin(ct) + b) sin(t)
I z(t) = a cos(ct)
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Examples

Image from Hill, Pg 128
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Examples

Image from Hill, Pg 128
Holger Kenn Graphics and Visualization



TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Animation w. double buffering

I When we do a fast animation, the image starts to flicker.

I This results from the time it takes to draw the lines.

I We can avoid this via double-buffering

I in OpenGL, double buffering is simple:

I glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB);

I glutSwapBuffers();
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Representing Objects

I We have now seen that we can represent complex objects using
many techniques

I Relative drawing lets us move objects around on the screen

I Parametric curves can represent classes of objects, e.g.
Superellipses

I Polar coordinates can be used to draw round or curved objects

I And this also works in 3D.

I But it’s not very practical: We don’t want to use the clumsy
relative drawing functions and we don’t want to define a
parametric representation for every complex form we want to
draw.
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Vectors

I We all remember what vectors are, right?

I Properties of vectors in CG:

I The difference of two points is a vector

I The sum of a point and a vector is a point

I A linear combination a~v + b~w is a vector

I Let’s write w = a1~v1 + a2~v2 + · · · + an~vn

I If a1 + a2 + · · · + an = 1 this is called an affine combination

I if additionally ai ≥ 0 for i = 1 . . . n , this is a convex combination

I To find the length of a vector, we can use Pythagoras:

|~w | =
√

w2
1 + w2

2 + · · · + W 2
n
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Vectors

I When we know the length, we can normalize the vector, i.e.
bring it to unit length: â = ~a/|~a|. We can call such a unit vector a
direction.

I The dot product of two vectors is ~a · ~b =
∑n

i=1 ~vi ~wi has the
well-known properties

I ~a · ~b = ~b · ~a (Symmetry)
I (~a + ~c) · b = ~a · ~b + ~c · ~b (Linearity)
I (s~a) · ~b = s(~a · ~b) (Homogeneity)
I |~b|2 = ~b · ~b

I We can play the usual algebraic games with vectors
(simplification of equations)
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Angles between vectors

I We can use the dot product to find the angle between two
vectors: ~a · ~b = |~a||~b| cos(θ). If the dot product of two
(non-zero-length) vectors is 0 then they are perpendicular or
orthogonal or normal to eachother.

I In 2D, we can find a perpendicular vector by exchanging the two
components and negate one of them: If ~a = (ax , ay ) then
~b = (−ay , ax ) and we call this the counterclockwise
perpendicluar vector of ~a or short ~a⊥
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The 2D “Perp” Vector

I The “perp” vector is useful for projections (see book, page 157)

I The distance from a point C to the line through A in direction ~v is
|~v⊥ · (C − A)|/|~v |.

I Projections are used to simulate reflections
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The cross product

I Everybody remembers ~a × ~b

I One trick to write the cross product: Let~i ,~j, ~k be the 3D standard
unit vectors. Then the cross product of ~a × ~b can be written as
the determinant of a matrix:

~a × ~b =

∣

∣

∣

∣

∣

∣

~i ~j ~k
ax ay az

bx by bz

∣

∣

∣

∣

∣

∣

I and we have the usual algebraic properties: antisymmetry,
linearity, homogeneity...
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Coordinate Systems and
Coordinate Frames

I A coordinate system can be defined by three mutually
perpendicular unit vectors.

I If we put these unit vectors into a specific point ϑ called origin,
we call this a coordinate frame.

I In a coordinate frame, a point can be represented as
P = p1~a + p2

~b + p3~c + ϑ.

I This leads to a distinction between points and vectors by using a
fourth coefficient in the so-called homogenous representation of
points and vectors.
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Homogenous Representation

I A vector in a coordinate frame:

~v = (~a, ~b, ~c, ϑ)









v1

v2

v3

0








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Homogenous Representation

I A point in a coordinate frame:

P = (~a, ~b, ~c, ϑ)









P1

P2

P3

1








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Homogenous coordinates

I The difference of two points is a vector

I The sum of a point and a vector is a point

I Two vectors can be added

I A vector can be scaled

I Any linear combination of vectors is a vector

I An affine combination of two points is a point. (An affine
combination is a linear combination where the coefficients add
up to 1.)

I A linear interpolation P = (a(1 − t) + Bt is a point.

I This fact can be used to calculate a “tween” of two points.
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Representing lines and planes

I A line can be represented by its endpoints B and C

I It can also be represented parametrically with a point and a
vector L(t) = C + ~bt.

I A line can also be represented in point normal form ~n · (R − C)

I For ~n we can use ~b⊥ with ~b = B − C

I A plane can be represented by three points

I It can also be represented parametrically by a point and two
nonparallel vectors: P(s, t) = C + ~as + ~bt

I It can also be represented in a point normal form with a point in
the plane and a normal vector. For any point R in the plane
n · (R − B) = 0.

I A part of the plane restricted by the length of two vectors is
called a planar patch.
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intersections

I Every line segment has a parent line.

I We can first find the intersection of the parent lines

I and then see if the intersection point is in both line segments

I In order to intersect a plane with a line, we describe the line
parametrically and the plane in the point normal form. Solving
this equation gives us a “hit time” t that can be put into the
parametric representation of the line to identify the hitpoint .
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polygon intersections

I In convex polygons, the problem is rather easy: we can test all
the bounding lines/surfaces.

I In order to know which side of a line/plane is “outside”, we
represent them in a point normal form.

I We have to find exactly two “hit times” tin and tout .

I The right tin will be the maximal “hit time” before the ray enters
the polgon.

I The right tout will be the minimal “hit time” after the ray exits the
polgon.

I This approach can be used to clip against convex polygons. This
is called the Cyrus-Beck-Clipping Algorithm.
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Polygon Intersection

Image from Hill 4.43
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Polygon Intersection

Image from Hill 4.44
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Polygon Intersection

Image from Hill 4.45
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Polygon Intersection

Image from Hill 4.46
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Transformations

I Transformations are an easy way to reuse shapes

I A transformation can also be used to present different views of
the same object

I Transformations are used in animations.
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Transformations in OpenGL

I When we’re calling a glVertex() function, OpenGL
automatically applies some transformations. One we already
know is the world-window-to-viewport transformation.

I There are two principle ways do see transformations:

I object transformations are applied to the coordinates of
each point of an object, the coordinate system is
unchanged

I coordinate transformations defines a new coordinate
system in terms of the old coordinate system and
represents all points of the object in the new coordinate
system.

I A transformation is a function that mapps a point P to a point Q,
Q is called the image of P.
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2d affine transformations

I A subset of transformations that uses transformation functions
that are linear in the coordinates of the original point are the
affine transformations.

I We can write them as a class of linear functions:




Qx

Qy

1



 =





m11Px + m12Py + m13

m21Px + m22Py + m23

1




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2d affine transformations

I or we can just use matrix multiplication




Qx

Qy

1



 =





m11 m12 m13

m21 m22 m23

0 0 1









Px

Py

1





I or we can also transform vectors with the same matrix




Wx

Wy

0



 =





m11 m12 m13

m21 m22 m23

0 0 1









Vx

Vy

0




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standard transformations

I Translation




Qx

Qy

1



 =





1 0 m13

0 1 m23

0 0 1









Px

Py

1





I scaling (and reflection for S{x,y} < 0)





Wx

Wy

1



 =





Sx 0 0
0 Sy 0
0 0 1









Vx

Vy

1




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standard transformations

I Rotation (positive θ is CCW rotation)




Qx

Qy

1



 =





cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1









Px

Py

1





I shearing




Qx

Qy

1



 =





1 h 0
g 1 0
0 0 1









Px

Py

1




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Inverse transformations

I inverse Rotation (positive θ is CW rotation)




Qx

Qy

1



 =





cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1









Px

Py

1





I inverse Scaling





Qx

Qy

1



 =





1
Sx

0 0
0 1

Sy
0

0 0 1









Px

Py

1




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Inverse transformations

I inverse shearing




Qx

Qy

1



 =





1 −h 0
−g 1 0
0 0 1









Px

Py

1





I inverse translation




Qx

Qy

1



 =





1 0 −m13

0 1 −m23

0 0 1









Px

Py

1




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Inverse transformations

I In general (provided that M is nonsingular)

P = M−1Q

I But as M is quite simple:

det M = m11m22 − m12m21

M−1 =
1

det M

(

m22 −m12

−m21 m11

)
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composing affine transformations

I As affine transformations are simple matrix multiplications, we
can combine several operations to a single matrix.

I In a matrix multiplication of transformations, the sequence of
translations can be read from right to left.

I We can also take this combined matrix and reconstruct the four
basic operations M =(translation)(shear)(scaling)(rotation) (this
is for 2D only)
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Some more facts

I Affine transformations preserve affine combinations of points

I Affine transformations preserve lines and planes

I Affine transformations preserve parallelism of lines and planes

I The column vectors of an affine transformation reveal the effect
of the transformation on the coordinate system.

I An affine transformation has an interesting effect on the area of

an object: area after transformation
area before transformation = | det M|
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The same game in 3D...

I The general form of an affine 3D transformation








Qx

Qy

Qz

1









=









m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1

















Px

Py

Pz

1








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Translation...

I As expected:








Qx

Qy

Qz

1









=









1 0 0 m14

0 1 0 m24

0 0 1 m34

0 0 0 1

















Px

Py

Pz

1








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Scaling in 3D...

I Again:








Qx

Qy

Qz

1









=









Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

















Px

Py

Pz

1








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Shearing...

I in one direction








Qx

Qy

Qz

1









=









1 0 0 0
f 1 0 0
0 0 1 0
0 0 0 1

















Px

Py

Pz

1









Holger Kenn Graphics and Visualization



TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Rotations 3D...

I x-roll, y-roll and z-roll

I x-roll:








Qx

Qy

Qz

1









=









1 0 0 0
0 c −s 0
1 s c 0
0 0 0 1

















Px

Py

Pz

1








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Rotations 3D...

I y-roll:








Qx

Qy

Qz

1









=









c 0 s 0
0 1 0 0
−s 0 c 0
0 0 0 1

















Px

Py

Pz

1








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Rotations 3D...

I z-roll:








Qx

Qy

Qz

1









=









c −s 0 0
s c 0 0
0 0 1 0
0 0 0 1

















Px

Py

Pz

1








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Some facts about Rotations 3D

I 3D affine transformations can be composed as in 2D

I 3D rotation matrices do not commute (unlike 2D).

I Question: how to rotate around an arbitrary axis?

I Every 3D affine transformation can be decomposed into
(translation)(scaling)(rotation)(shear1)(shear2).

I A 3D affine transformation has an effect on the volume of an
object: volume after transformation

volume before transformation = | det M|
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point vs coordinate system transformations

I If we have an affine transformation M, we can use it to transform
a coordinate frame F1 into a coordinate frame F2.

I A point P = (Px , Py , 1)T represented in F2 can be represented in
F1 as MP

I F1 →M1 F2 →M2→ F3 then P in F3 is M1M2P in F1.

I To apply the sequence of transformations M1, M2, M3 to a point
P, calculate Q = M3M2M1P. An additional transformation must
be premultiplied.

I To apply the sequence of transformations M1, M2, M3 to a
coordinate system, calculate M = M1M2M3. A point P in the
transformed coordinate system has the coordinates MP in the
original coordinate system. An additional transformation must be
postmultiplied.
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And now in OpenGL...

I Of course we can do everything by hand: build a point and
vector datatype, implement matrix multiplication, apply
transformations and call glVertex in the end.

I In order to avoid this, OpenGL maintains a current
transformation that is applied to every glVertex command.
This is independent of the window-to-viewport translation that is
happening as well.

I The current transformation is maintained in the modelview
matrix.
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And now in OpenGL...

I It is initialized by calling glLoadIdentity

I The modelview matrix can be altered by
glScaled(),glRotated and glTranslated.

I These functions can alter any matrix that OpenGL is using.
Therefore, we need to tell OpenGL which matrix to modify:
glMatrixMode(GL_MODELVIEW).
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The 2D transformations

I Scaling in 2d:

glMatr ixMode (GL_MODELVIEW) ;
g lScaled ( sx , sy , 1 . 0 ) ;

I Translation in 2d:

glMatr ixMode (GL_MODELVIEW) ;
g lT rans la ted ( dx , dy , 0 ) ;

I Rotation in 2d:

glMatr ixMode (GL_MODELVIEW) ;
g lRotated ( angle , 0 . 0 , 0 . 0 , 1 . 0 ) ;
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A stack of CTs

I Often, we need to “go back” to a previous CT. Therefore,
OpenGL maintains a “stack” of CTs (and of any matrix if we want
to).

I We can push the current CT on the stack, saving it for later use:
glPushMatrix(). This pushes the current CT matrix and
makes a copy that we will modify now

I We can get the top matrix back: glPopMatrix().
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3D! (finally)

I For our 2D cases, we have been using a very simple parallel
projection that basically ignores the perspective effect of the
z-component.

I the view volume forms a rectangular parallelepiped that is
formed by the border of the window and the near plane and the
far plane.

I everything in the view volume is parallel-projected to the window
and displayed in the viewport. Everything else is clipped off.

I We continue to use the parallel projection, but make use of the z
component to display 3D objects.
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3D Pipeline

I The 3d Pipeline uses three matrix transformations to display
objects

I The modelview matrix
I The projection matrix
I The viewport matrix

I The modelview matrix can be seen as a composition of two
matrices: a model matrix and a view matrix.
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in OpenGL

I Set up the projection matrix and the viewing volume:

glMatr ixMode (GL_PROJECTION) ;
g l L o a d I d e n t i t y ( ) ;
g lOr tho ( l e f t , r i g h t , bottom , top , near , f a r ) ;

I Aiming the camera. Put it at eye, look at look and upwards is up.

glMatr ixMode (GL_MODELVIEW) ;
g l L o a d I d e n t i t y ( ) ;
gluLookAt ( eye_x , eye_y , eye_z ,

look_x , look_y , look_z , up_x , up_y , up_z ) ;
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Basic shapes in OpenGL

I A wireframe cube:

glutWireCube ( GLdouble s ize ) ;

I A wireframe sphere:

glutWireSphere ( GLdouble radius ,
GLint nSl ices , GLint nStacks ) ;

I A wireframe torus:

g lutWireTorus ( GLdouble inRad , GLdouble outRad ,
GLint nSl ices , GLint nStacks ) ;
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Cube
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Sphere
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Torus
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And the most famous one...

I The Teapot

g lutWireTeapot ( GLdouble s ize ) ;
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The Teapot
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The five Platonic solids

I Tetrahedron: glutWireTetrahedron()

I Octahedron: glutWireOctahedron()

I Dodecahedron: glutWireDodecahedron()

I Icosahedron: glutWireIcosahedron()

I Missing one?
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Tetrahedron
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Octahedron
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Dodecahedron
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Icosahedron
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Cube

...but we had that already.
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Moving things around

I All objects are drawn at the origin.

I To move things around, use the following approach:

glMatr ixMode (GL_MODELVIEW) ;
g lPushMatr ix ( ) ;
g lT rans la ted ( 0 . 5 , 0 . 5 , 0 . 5 ) ;
glutWireCube ( 1 . 0 ) ;
g lPopMatr ix ( ) ;
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Moving things around

Image from Hill, Figure 5.60 (regenerated)
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Summary

I Representing graphic objects by homogenous points and vectors

I Using affine transforms to modify objects

I Using projections to display objects
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