
Graphics and Visualization

Holger Kenn

International University Bremen

Spring Semester 2006

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

more on parametric curves

Animation with double buffering

Representing Objects

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Recap

I Coordinate System
I Cohen Sutherland Clipping
I Implicit curves
I Parametric curves

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Coordinate System

I The space in which objects are described uses world
coordinates.

I The part of this space that we want to display is called world
window.

I The window that we see on the screen is our viewport.

I In order to know where to draw something, we need the
world-to-viewport transformation

I Note that these terms can be used both for 2D and for 3D.

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Cohen Sutherland

I Compute 4 test bits for the endpoints of a line segment

I Trivial Accept: all tests false, all bits 0

I Trivial Reject: the words for both points have 1s in the same
position

I Deal with the rest: neither trivial accept nor reject

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Cohen Sutherland (2)

I Identify which point is outside and to which side of the window

I Find the point where the line touches the world window border

I Move the outer point to the border of the window

I repeat all until trivial accept or reject

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Implicit form of curves

I The implicit form is good for testing if a point is on a curve.

I For some cases, we can use the implicit form to define an
“inside” and an “outside” of a curve: F (x , y) < 0 → inside,
F (x , y) > 0 → outside

I some curves are single valued in x: F (x , y) = y − g(x) or in
y:F (x , y) = x − h(y)

I some curves are neiter, e.g. the circle needs two functions
y =

√
R2 − x2 and y = −

√
R2 − x2

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Parametric form of curves

I The parametric form of a curve suggests the movement of a
point through time.

I Example: x(t) = Ax + (Bx −Ax)t,y(t) = Ay + (By −Ay)t,t ∈ [0, 1]

I Example: x(t) = W cos(t), y(t) = H sin(t),t ∈ [0, 2π]

I In order to find an implicit form from a parametric form, we can
use the two x(t) and y(t) equations to eliminate t and find a
relationship that holds true for all t.

I For the Ellipse:
(

x
W

)2
+

(y
H

)2
= 1

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Superellipses

I A superellipse is defined by the implicit form
(

x
W

)n
+

(y
H

)n
= 1

I A supercircle is a superellipse with W = H.

I x(t) = W cos(t)| cos(t)2/n−1|
I y(t) = H sin(t)| sin(t)2/n−1|

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Superellipses

Image from Hill, Pg 125

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Polar coordinates

I Polar coordinates can be used to draw parametric curves.

I The curve is represented by a distance to the center point r and
an angle θ.

I x(t) = r(t) cos(θ(t)),y(t) = r(t) sin(θ(t)) (general form)

I x(θ) = f (θ) cos(θ),y(t) = f (θ) sin(θ) (simple form)

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Polar Coordinates

Image from Hill, Pg 126

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Polar coordinate shapes

I Cardioid f (θ) = K (1 + cos(θ))

I Rose Curves f (θ) = K cos(nθ)

I Archimedian Spiral f (θ) = Kθ

I Conic sections f (θ) = 1
1±e cos(θ)

I Logarithmic Spiral f (θ) = Keaθ

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Examples

Image from Hill, Pg 126

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Examples

Image from Hill, Pg 127

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

3D parametric curves

I We can also specify 3d curves using three functions
x(t), y(t), z(t)

I Helix: x(t) = cos(t), y(t) = sin(t), z(t) = bt

I Toroidal spiral:

I x(t) = (a sin(ct) + b) cos(t)
I y(t) = (a sin(ct) + b) sin(t)
I z(t) = a cos(ct)

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Examples

Image from Hill, Pg 128

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Examples

Image from Hill, Pg 128
Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Animation w. double buffering

I When we do a fast animation, the image starts to flicker.

I This results from the time it takes to draw the lines.

I We can avoid this via double-buffering

I in OpenGL, double buffering is simple:

I glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB);

I glutSwapBuffers();

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Representing Objects

I We have now seen that we can represent complex objects using
many techniques

I Relative drawing lets us move objects around on the screen

I Parametric curves can represent classes of objects, e.g.
Superellipses

I Polar coordinates can be used to draw round or curved objects

I And this also works in 3D.

I But it’s not very practical: We don’t want to use the clumsy
relative drawing functions and we don’t want to define a
parametric representation for every complex form we want to
draw.

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Vectors

I We all remember what vectors are, right?

I Properties of vectors in CG:

I The difference of two points is a vector

I The sum of a point and a vector is a point

I A linear combination a~v + b~w is a vector

I Let’s write w = a1~v1 + a2~v2 + · · · + an~vn

I If a1 + a2 + · · · + an = 1 this is called an affine combination

I if additionally ai ≥ 0 for i = 1 . . . n , this is a convex combination

I To find the length of a vector, we can use Pythagoras:

|~w | =
√

w2
1 + w2

2 + · · · + W 2
n

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Vectors

I When we know the length, we can normalize the vector, i.e.
bring it to unit length: â = ~a/|~a|. We can call such a unit vector a
direction.

I The dot product of two vectors is ~a · ~b =
∑n

i=1 ~vi ~wi has the
well-known properties

I ~a · ~b = ~b · ~a (Symmetry)
I (~a + ~c) · b = ~a · ~b + ~c · ~b (Linearity)
I (s~a) · ~b = s(~a · ~b) (Homogeneity)
I |~b|2 = ~b · ~b

I We can play the usual algebraic games with vectors
(simplification of equations)

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Angles between vectors

I We can use the dot product to find the angle between two
vectors: ~a · ~b = |~a||~b| cos(θ). If the dot product of two
(non-zero-length) vectors is 0 then they are perpendicular or
orthogonal or normal to eachother.

I In 2D, we can find a perpendicular vector by exchanging the two
components and negate one of them: If ~a = (ax , ay) then
~b = (−ay , ax) and we call this the counterclockwise
perpendicluar vector of ~a or short ~a⊥

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

The 2D “Perp” Vector

I The “perp” vector is useful for projections (see book, page 157)

I The distance from a point C to the line through A in direction ~v is
|~v⊥ · (C − A)|/|~v |.

I Projections are used to simulate reflections

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

The cross product

I Everybody remembers ~a × ~b

I One trick to write the cross product: Let~i ,~j, ~k be the 3D standard
unit vectors. Then the cross product of ~a × ~b can be written as
the determinant of a matrix:

~a × ~b =

∣

∣

∣

∣

∣

∣

~i ~j ~k
ax ay az

bx by bz

∣

∣

∣

∣

∣

∣

I and we have the usual algebraic properties: antisymmetry,
linearity, homogeneity...

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Coordinate Systems and
Coordinate Frames

I A coordinate system can be defined by three mutually
perpendicular unit vectors.

I If we put these unit vectors into a specific point ϑ called origin,
we call this a coordinate frame.

I In a coordinate frame, a point can be represented as
P = p1~a + p2

~b + p3~c + ϑ.

I This leads to a distinction between points and vectors by using a
fourth coefficient in the so-called homogenous representation of
points and vectors.

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Homogenous Representation

I A vector in a coordinate frame:

~v = (~a, ~b, ~c, ϑ)









v1

v2

v3

0









Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Homogenous Representation

I A point in a coordinate frame:

P = (~a, ~b, ~c, ϑ)









P1

P2

P3

1









Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Homogenous coordinates

I The difference of two points is a vector

I The sum of a point and a vector is a point

I Two vectors can be added

I A vector can be scaled

I Any linear combination of vectors is a vector

I An affine combination of two points is a point. (An affine
combination is a linear combination where the coefficients add
up to 1.)

I A linear interpolation P = (a(1 − t) + Bt is a point.

I This fact can be used to calculate a “tween” of two points.

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Representing lines and planes

I A line can be represented by its endpoints B and C

I It can also be represented parametrically with a point and a
vector L(t) = C + ~bt.

I A line can also be represented in point normal form ~n · (R − C)

I For ~n we can use ~b⊥ with ~b = B − C

I A plane can be represented by three points

I It can also be represented parametrically by a point and two
nonparallel vectors: P(s, t) = C + ~as + ~bt

I It can also be represented in a point normal form with a point in
the plane and a normal vector. For any point R in the plane
n · (R − B) = 0.

I A part of the plane restricted by the length of two vectors is
called a planar patch.

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

intersections

I Every line segment has a parent line.

I We can first find the intersection of the parent lines

I and then see if the intersection point is in both line segments

I In order to intersect a plane with a line, we describe the line
parametrically and the plane in the point normal form. Solving
this equation gives us a “hit time” t that can be put into the
parametric representation of the line to identify the hitpoint .

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

polygon intersections

I In convex polygons, the problem is rather easy: we can test all
the bounding lines/surfaces.

I In order to know which side of a line/plane is “outside”, we
represent them in a point normal form.

I We have to find exactly two “hit times” tin and tout .

I The right tin will be the maximal “hit time” before the ray enters
the polgon.

I The right tout will be the minimal “hit time” after the ray exits the
polgon.

I This approach can be used to clip against convex polygons. This
is called the Cyrus-Beck-Clipping Algorithm.

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Polygon Intersection

Image from Hill 4.43

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Polygon Intersection

Image from Hill 4.44

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Polygon Intersection

Image from Hill 4.45

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Polygon Intersection

Image from Hill 4.46

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Transformations

I Transformations are an easy way to reuse shapes

I A transformation can also be used to present different views of
the same object

I Transformations are used in animations.

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Transformations in OpenGL

I When we’re calling a glVertex() function, OpenGL
automatically applies some transformations. One we already
know is the world-window-to-viewport transformation.

I There are two principle ways do see transformations:

I object transformations are applied to the coordinates of
each point of an object, the coordinate system is
unchanged

I coordinate transformations defines a new coordinate
system in terms of the old coordinate system and
represents all points of the object in the new coordinate
system.

I A transformation is a function that mapps a point P to a point Q,
Q is called the image of P.

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

2d affine transformations

I A subset of transformations that uses transformation functions
that are linear in the coordinates of the original point are the
affine transformations.

I We can write them as a class of linear functions:




Qx

Qy

1



 =





m11Px + m12Py + m13

m21Px + m22Py + m23

1





Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

2d affine transformations

I or we can just use matrix multiplication




Qx

Qy

1



 =





m11 m12 m13

m21 m22 m23

0 0 1









Px

Py

1





I or we can also transform vectors with the same matrix




Wx

Wy

0



 =





m11 m12 m13

m21 m22 m23

0 0 1









Vx

Vy

0





Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

standard transformations

I Translation




Qx

Qy

1



 =





1 0 m13

0 1 m23

0 0 1









Px

Py

1





I scaling (and reflection for S{x,y} < 0)





Wx

Wy

1



 =





Sx 0 0
0 Sy 0
0 0 1









Vx

Vy

1





Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

standard transformations

I Rotation (positive θ is CCW rotation)




Qx

Qy

1



 =





cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1









Px

Py

1





I shearing




Qx

Qy

1



 =





1 h 0
g 1 0
0 0 1









Px

Py

1





Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Inverse transformations

I inverse Rotation (positive θ is CW rotation)




Qx

Qy

1



 =





cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1









Px

Py

1





I inverse Scaling





Qx

Qy

1



 =





1
Sx

0 0
0 1

Sy
0

0 0 1









Px

Py

1





Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Inverse transformations

I inverse shearing




Qx

Qy

1



 =





1 −h 0
−g 1 0
0 0 1









Px

Py

1





I inverse translation




Qx

Qy

1



 =





1 0 −m13

0 1 −m23

0 0 1









Px

Py

1





Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Inverse transformations

I In general (provided that M is nonsingular)

P = M−1Q

I But as M is quite simple:

det M = m11m22 − m12m21

M−1 =
1

det M

(

m22 −m12

−m21 m11

)

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

composing affine transformations

I As affine transformations are simple matrix multiplications, we
can combine several operations to a single matrix.

I In a matrix multiplication of transformations, the sequence of
translations can be read from right to left.

I We can also take this combined matrix and reconstruct the four
basic operations M =(translation)(shear)(scaling)(rotation) (this
is for 2D only)

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Some more facts

I Affine transformations preserve affine combinations of points

I Affine transformations preserve lines and planes

I Affine transformations preserve parallelism of lines and planes

I The column vectors of an affine transformation reveal the effect
of the transformation on the coordinate system.

I An affine transformation has an interesting effect on the area of

an object: area after transformation
area before transformation = | det M|

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

The same game in 3D...

I The general form of an affine 3D transformation








Qx

Qy

Qz

1









=









m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1

















Px

Py

Pz

1









Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Translation...

I As expected:








Qx

Qy

Qz

1









=









1 0 0 m14

0 1 0 m24

0 0 1 m34

0 0 0 1

















Px

Py

Pz

1









Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Scaling in 3D...

I Again:








Qx

Qy

Qz

1









=









Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

















Px

Py

Pz

1









Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Shearing...

I in one direction








Qx

Qy

Qz

1









=









1 0 0 0
f 1 0 0
0 0 1 0
0 0 0 1

















Px

Py

Pz

1









Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Rotations 3D...

I x-roll, y-roll and z-roll

I x-roll:








Qx

Qy

Qz

1









=









1 0 0 0
0 c −s 0
1 s c 0
0 0 0 1

















Px

Py

Pz

1









Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Rotations 3D...

I y-roll:








Qx

Qy

Qz

1









=









c 0 s 0
0 1 0 0
−s 0 c 0
0 0 0 1

















Px

Py

Pz

1









Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Rotations 3D...

I z-roll:








Qx

Qy

Qz

1









=









c −s 0 0
s c 0 0
0 0 1 0
0 0 0 1

















Px

Py

Pz

1









Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Some facts about Rotations 3D

I 3D affine transformations can be composed as in 2D

I 3D rotation matrices do not commute (unlike 2D).

I Question: how to rotate around an arbitrary axis?

I Every 3D affine transformation can be decomposed into
(translation)(scaling)(rotation)(shear1)(shear2).

I A 3D affine transformation has an effect on the volume of an
object: volume after transformation

volume before transformation = | det M|

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

point vs coordinate system transformations

I If we have an affine transformation M, we can use it to transform
a coordinate frame F1 into a coordinate frame F2.

I A point P = (Px , Py , 1)T represented in F2 can be represented in
F1 as MP

I F1 →M1 F2 →M2→ F3 then P in F3 is M1M2P in F1.

I To apply the sequence of transformations M1, M2, M3 to a point
P, calculate Q = M3M2M1P. An additional transformation must
be premultiplied.

I To apply the sequence of transformations M1, M2, M3 to a
coordinate system, calculate M = M1M2M3. A point P in the
transformed coordinate system has the coordinates MP in the
original coordinate system. An additional transformation must be
postmultiplied.

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

And now in OpenGL...

I Of course we can do everything by hand: build a point and
vector datatype, implement matrix multiplication, apply
transformations and call glVertex in the end.

I In order to avoid this, OpenGL maintains a current
transformation that is applied to every glVertex command.
This is independent of the window-to-viewport translation that is
happening as well.

I The current transformation is maintained in the modelview
matrix.

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

And now in OpenGL...

I It is initialized by calling glLoadIdentity

I The modelview matrix can be altered by
glScaled(),glRotated and glTranslated.

I These functions can alter any matrix that OpenGL is using.
Therefore, we need to tell OpenGL which matrix to modify:
glMatrixMode(GL_MODELVIEW).

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

The 2D transformations

I Scaling in 2d:

glMatr ixMode (GL_MODELVIEW) ;
g lScaled (sx , sy , 1 . 0) ;

I Translation in 2d:

glMatr ixMode (GL_MODELVIEW) ;
g lT rans la ted (dx , dy , 0) ;

I Rotation in 2d:

glMatr ixMode (GL_MODELVIEW) ;
g lRotated (angle , 0 . 0 , 0 . 0 , 1 . 0) ;

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

A stack of CTs

I Often, we need to “go back” to a previous CT. Therefore,
OpenGL maintains a “stack” of CTs (and of any matrix if we want
to).

I We can push the current CT on the stack, saving it for later use:
glPushMatrix(). This pushes the current CT matrix and
makes a copy that we will modify now

I We can get the top matrix back: glPopMatrix().

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

3D! (finally)

I For our 2D cases, we have been using a very simple parallel
projection that basically ignores the perspective effect of the
z-component.

I the view volume forms a rectangular parallelepiped that is
formed by the border of the window and the near plane and the
far plane.

I everything in the view volume is parallel-projected to the window
and displayed in the viewport. Everything else is clipped off.

I We continue to use the parallel projection, but make use of the z
component to display 3D objects.

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

3D Pipeline

I The 3d Pipeline uses three matrix transformations to display
objects

I The modelview matrix
I The projection matrix
I The viewport matrix

I The modelview matrix can be seen as a composition of two
matrices: a model matrix and a view matrix.

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

in OpenGL

I Set up the projection matrix and the viewing volume:

glMatr ixMode (GL_PROJECTION) ;
g l L o a d I d e n t i t y () ;
g lOr tho (l e f t , r i g h t , bottom , top , near , f a r) ;

I Aiming the camera. Put it at eye, look at look and upwards is up.

glMatr ixMode (GL_MODELVIEW) ;
g l L o a d I d e n t i t y () ;
gluLookAt (eye_x , eye_y , eye_z ,

look_x , look_y , look_z , up_x , up_y , up_z) ;

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Basic shapes in OpenGL

I A wireframe cube:

glutWireCube (GLdouble s ize) ;

I A wireframe sphere:

glutWireSphere (GLdouble radius ,
GLint nSl ices , GLint nStacks) ;

I A wireframe torus:

g lutWireTorus (GLdouble inRad , GLdouble outRad ,
GLint nSl ices , GLint nStacks) ;

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Cube

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Sphere

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Torus

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

And the most famous one...

I The Teapot

g lutWireTeapot (GLdouble s ize) ;

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

The Teapot

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

The five Platonic solids

I Tetrahedron: glutWireTetrahedron()

I Octahedron: glutWireOctahedron()

I Dodecahedron: glutWireDodecahedron()

I Icosahedron: glutWireIcosahedron()

I Missing one?

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Tetrahedron

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Octahedron

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Dodecahedron

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Icosahedron

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Cube

...but we had that already.

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Moving things around

I All objects are drawn at the origin.

I To move things around, use the following approach:

glMatr ixMode (GL_MODELVIEW) ;
g lPushMatr ix () ;
g lT rans la ted (0 . 5 , 0 . 5 , 0 . 5) ;
glutWireCube (1 . 0) ;
g lPopMatr ix () ;

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Moving things around

Image from Hill, Figure 5.60 (regenerated)

Holger Kenn Graphics and Visualization

TZI

Recap
more on parametric curves

Animation with double buffering
Representing Objects

Summary

I Representing graphic objects by homogenous points and vectors

I Using affine transforms to modify objects

I Using projections to display objects

Holger Kenn Graphics and Visualization

	Recap
	more on parametric curves
	Animation with double buffering
	Representing Objects

