more on parametric curves

Animation with double buffering

Representing Objects
Recap

- Coordinate System
- Cohen Sutherland Clipping
- Implicit curves
- Parametric curves
The space in which objects are described uses *world coordinates*.

The part of this space that we want to display is called *world window*.

The window that we see on the screen is our *viewport*.

In order to know where to draw something, we need the *world-to-viewport transformation*.

Note that these terms can be used both for 2D and for 3D.
Cohen Sutherland

- Compute 4 test bits for the endpoints of a line segment
- Trivial Accept: all tests false, all bits 0
- Trivial Reject: the words for both points have 1s in the same position
- Deal with the rest: neither trivial accept nor reject
Cohen Sutherland (2)

- Identify which point is outside and to which side of the window
- Find the point where the line touches the world window border
- Move the outer point to the border of the window
- repeat all until trivial accept or reject
The implicit form is good for testing if a point is on a curve.

For some cases, we can use the implicit form to define an “inside” and an “outside” of a curve: \(F(x, y) < 0 \rightarrow \text{inside}, \ F(x, y) > 0 \rightarrow \text{outside} \)

Some curves are *single valued* in \(x \): \(F(x, y) = y - g(x) \) or in \(y \): \(F(x, y) = x - h(y) \)

Some curves are neither, e.g. the circle needs two functions \(y = \sqrt{R^2 - x^2} \) and \(y = -\sqrt{R^2 - x^2} \)
Parametric form of curves

- The parametric form of a curve suggests the movement of a point through time.
- Example: $x(t) = A_x + (B_x - A_x)t, y(t) = A_y + (B_y - A_y)t, t \in [0, 1]$
- Example: $x(t) = W \cos(t), y(t) = H \sin(t), t \in [0, 2\pi]$
- In order to find an implicit form from a parametric form, we can use the two $x(t)$ and $y(t)$ equations to eliminate t and find a relationship that holds true for all t.
- For the Ellipse: $\left(\frac{x}{W}\right)^2 + \left(\frac{y}{H}\right)^2 = 1$
Superellipses

- A superellipse is defined by the implicit form \((\frac{x}{W})^n + (\frac{y}{H})^n = 1\).
- A supercircle is a superellipse with \(W = H\).
- \(x(t) = W \cos(t)|\cos(t)^{2/n-1}|\)
- \(y(t) = H \sin(t)|\sin(t)^{2/n-1}|\)
Superellipses

Image from Hill, Pg 125
Polar coordinates

- Polar coordinates can be used to draw parametric curves.
- The curve is represented by a distance to the center point r and an angle θ.
- $x(t) = r(t) \cos(\theta(t)), y(t) = r(t) \sin(\theta(t))$ (general form)
- $x(\theta) = f(\theta) \cos(\theta), y(t) = f(\theta) \sin(\theta)$ (simple form)
Polar Coordinates

Image from Hill, Pg 126
Polar coordinate shapes

- Cardioid $f(\theta) = K(1 + \cos(\theta))$
- Rose Curves $f(\theta) = K \cos(n\theta)$
- Archimedian Spiral $f(\theta) = K\theta$
- Conic sections $f(\theta) = \frac{1}{1 \pm e \cos(\theta)}$
- Logarithmic Spiral $f(\theta) = Ke^{a\theta}$
Examples

Image from Hill, Pg 126
Examples

Image from Hill, Pg 127
We can also specify 3d curves using three functions $x(t), y(t), z(t)$

Helix: $x(t) = \cos(t), y(t) = \sin(t), z(t) = bt$

Toroidal spiral:
- $x(t) = (a\sin(ct) + b) \cos(t)$
- $y(t) = (a\sin(ct) + b) \sin(t)$
- $z(t) = a\cos(ct)$
Examples

Image from Hill, Pg 128
Examples
Animation w. double buffering

- When we do a fast animation, the image starts to flicker.
- This results from the time it takes to draw the lines.
- We can avoid this via double-buffering
- In OpenGL, double buffering is simple:

  ```c
  glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
  glutSwapBuffers();
  ```
Representing Objects

- We have now seen that we can represent complex objects using many techniques.
- Relative drawing lets us move objects around on the screen.
- Parametric curves can represent classes of objects, e.g., Superellipses.
- Polar coordinates can be used to draw round or curved objects.
- And this also works in 3D.
- But it’s not very practical: We don’t want to use the clumsy relative drawing functions and we don’t want to define a parametric representation for every complex form we want to draw.
We all remember what vectors are, right?

Properties of vectors in CG:

- The difference of two points is a vector
- The sum of a point and a vector is a point
- A linear combination $a\vec{v} + b\vec{w}$ is a vector
- Let’s write $\vec{w} = a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_n\vec{v}_n$
- If $a_1 + a_2 + \cdots + a_n = 1$ this is called an affine combination
- If additionally $a_i \geq 0$ for $i = 1 \ldots n$, this is a convex combination
- To find the length of a vector, we can use Pythagoras:
 $$|\vec{w}| = \sqrt{w_1^2 + w_2^2 + \cdots + w_n^2}$$
When we know the length, we can normalize the vector, i.e. bring it to unit length: $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$. We can call such a unit vector a direction.

The dot product of two vectors is $\vec{a} \cdot \vec{b} = \sum_{i=1}^{n} \vec{v}_i \vec{w}_i$ has the well-known properties

- $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (Symmetry)
- $(\vec{a} + \vec{c}) \cdot \vec{b} = \vec{a} \cdot \vec{b} + \vec{c} \cdot \vec{b}$ (Linearity)
- $(s\vec{a}) \cdot \vec{b} = s(\vec{a} \cdot \vec{b})$ (Homogeneity)
- $|\vec{b}|^2 = \vec{b} \cdot \vec{b}$

We can play the usual algebraic games with vectors (simplification of equations)
We can use the dot product to find the angle between two vectors: \(\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta) \). If the dot product of two (non-zero-length) vectors is 0 then they are perpendicular or orthogonal or normal to each other.

In 2D, we can find a perpendicular vector by exchanging the two components and negate one of them: If \(\vec{a} = (a_x, a_y) \) then \(\vec{b} = (-a_y, a_x) \) and we call this the counterclockwise perpendicular vector of \(\vec{a} \) or short \(\vec{a} \perp \)
The 2D "Perp" Vector

- The “perp” vector is useful for projections (see book, page 157)
- The distance from a point C to the line through A in direction \vec{v} is $|\vec{v} \perp \cdot (C - A)| / |\vec{v}|$.
- Projections are used to simulate reflections
Everybody remembers \(\vec{a} \times \vec{b} \)

One trick to write the cross product: Let \(\vec{i}, \vec{j}, \vec{k} \) be the 3D standard unit vectors. Then the cross product of \(\vec{a} \times \vec{b} \) can be written as the determinant of a matrix:

\[
\vec{a} \times \vec{b} = \begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
ax & ay & az \\
bx & by & bz
\end{vmatrix}
\]

and we have the usual algebraic properties: antisymmetry, linearity, homogeneity...
A coordinate system can be defined by three mutually perpendicular unit vectors.

If we put these unit vectors into a specific point \(\vartheta \) called origin, we call this a coordinate frame.

In a coordinate frame, a point can be represented as

\[P = p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c} + \vartheta. \]

This leads to a distinction between points and vectors by using a fourth coefficient in the so-called homogenous representation of points and vectors.
Homogenous Representation

- A vector in a coordinate frame:

\[
\vec{v} = (\vec{a}, \vec{b}, \vec{c}, \vartheta) \begin{pmatrix} v_1 \\ \vartheta \\ v_2 \\ v_3 \\ 0 \end{pmatrix}
\]
A point in a coordinate frame:

\[P = (\vec{a}, \vec{b}, \vec{c}, \psi) \begin{pmatrix} P_1 \\ P_2 \\ P_3 \\ 1 \end{pmatrix} \]
Homogenous coordinates

- The difference of two points is a vector
- The sum of a point and a vector is a point
- Two vectors can be added
- A vector can be scaled
- Any linear combination of vectors is a vector
- An affine combination of two points is a point. (An affine combination is a linear combination where the coefficients add up to 1.)
- A linear interpolation $P = (a(1 - t) + Bt$ is a point.
- This fact can be used to calculate a “tween” of two points.
Representing lines and planes

- A line can be represented by its endpoints B and C.
- It can also be represented parametrically with a point and a vector $L(t) = C + \vec{b}t$.
- A line can also be represented in *point normal form* $\vec{n} \cdot (R - C)$.
- For \vec{n} we can use $\vec{b} \perp$ with $\vec{b} = B - C$.
- A plane can be represented by three points.
- It can also be represented parametrically by a point and two nonparallel vectors: $P(s, t) = C + \vec{a}s + \vec{b}t$.
- It can also be represented in a point normal form with a point in the plane and a normal vector. For any point R in the plane $n \cdot (R - B) = 0$.
- A part of the plane restricted by the length of two vectors is called a *planar patch*.
intersections

- Every line segment has a *parent line*.
- We can first find the intersection of the parent lines
- and then see if the intersection point is in both line segments
- In order to intersect a plane with a line, we describe the line parametrically and the plane in the point normal form. Solving this equation gives us a “hit time” \(t \) that can be put into the parametric representation of the line to identify the *hitpoint*.
In convex polygons, the problem is rather easy: we can test all the bounding lines/surfaces.

In order to know which side of a line/plane is “outside”, we represent them in a point normal form.

We have to find exactly two “hit times” t_{in} and t_{out}.

The right t_{in} will be the maximal “hit time” before the ray enters the polygon.

The right t_{out} will be the minimal “hit time” after the ray exits the polygon.

This approach can be used to clip against convex polygons. This is called the Cyrus-Beck-Clipping Algorithm.
Polygon Intersection

Image from Hill 4.43
Polygon Intersection

Image from Hill 4.44
Polygon Intersection

Image from Hill 4.45
Polygon Intersection

Image from Hill 4.46
Transformations

- Transformations are an easy way to reuse shapes
- A transformation can also be used to present different views of the same object
- Transformations are used in animations.
When we’re calling a `glVertex()` function, OpenGL automatically applies some transformations. One we already know is the world-window-to-viewport transformation.

There are two principle ways do see transformations:

- **Object transformations** are applied to the coordinates of each point of an object, the coordinate system is unchanged.
- **Coordinate transformations** defines a new coordinate system in terms of the old coordinate system and represents all points of the object in the new coordinate system.

A transformation is a function that maps a point \(P \) to a point \(Q \), \(Q \) is called the image of \(P \).
2d affine transformations

- A subset of transformations that uses transformation functions that are linear in the coordinates of the original point are the affine transformations.

- We can write them as a class of linear functions:

\[
\begin{pmatrix}
Q_x \\
Q_y \\
1
\end{pmatrix}
= \begin{pmatrix}
m_{11} P_x + m_{12} P_y + m_{13} \\
m_{21} P_x + m_{22} P_y + m_{23} \\
1
\end{pmatrix}
\]
2d affine transformations

- or we can just use matrix multiplication

\[
\begin{pmatrix}
Q_x \\
Q_y \\
1
\end{pmatrix} = \begin{pmatrix}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
P_x \\
P_y \\
1
\end{pmatrix}
\]

- or we can also transform vectors with the same matrix

\[
\begin{pmatrix}
W_x \\
W_y \\
0
\end{pmatrix} = \begin{pmatrix}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
V_x \\
V_y \\
0
\end{pmatrix}
\]
standard transformations

- **Translation**

 \[
 \begin{pmatrix}
 Q_x \\
 Q_y \\
 1
 \end{pmatrix}
 =
 \begin{pmatrix}
 1 & 0 & m_{13} \\
 0 & 1 & m_{23} \\
 0 & 0 & 1
 \end{pmatrix}
 \begin{pmatrix}
 P_x \\
 P_y \\
 1
 \end{pmatrix}
 \]

- **Scaling (and reflection for \(S_{\{x,y\}} < 0 \))**

 \[
 \begin{pmatrix}
 W_x \\
 W_y \\
 1
 \end{pmatrix}
 =
 \begin{pmatrix}
 S_x & 0 & 0 \\
 0 & S_y & 0 \\
 0 & 0 & 1
 \end{pmatrix}
 \begin{pmatrix}
 V_x \\
 V_y \\
 1
 \end{pmatrix}
 \]
standard transformations

- Rotation (positive θ is CCW rotation)

\[
\begin{pmatrix}
Q_x \\
Q_y \\
1
\end{pmatrix}
= \begin{pmatrix}
\cos(\theta) & -\sin(\theta) & 0 \\
\sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
1
\end{pmatrix}
\]

- Shearing

\[
\begin{pmatrix}
Q_x \\
Q_y \\
1
\end{pmatrix}
= \begin{pmatrix}
1 & h & 0 \\
g & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
1
\end{pmatrix}
\]
Inverse transformations

- inverse Rotation (positive θ is CW rotation)

$$
\begin{pmatrix}
Q_x \\
Q_y \\
1
\end{pmatrix} =
\begin{pmatrix}
\cos(\theta) & \sin(\theta) & 0 \\
-\sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
1
\end{pmatrix}
$$

- inverse Scaling

$$
\begin{pmatrix}
Q_x \\
Q_y \\
1
\end{pmatrix} =
\begin{pmatrix}
\frac{1}{S_x} & 0 & 0 \\
0 & \frac{1}{S_y} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
1
\end{pmatrix}
$$
Inverse transformations

- inverse shearing

\[
\begin{pmatrix}
Q_x \\
Q_y \\
1
\end{pmatrix} = \begin{pmatrix}
1 & -h & 0 \\
-g & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
P_x \\
P_y \\
1
\end{pmatrix}
\]

- inverse translation

\[
\begin{pmatrix}
Q_x \\
Q_y \\
1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & -m_{13} \\
0 & 1 & -m_{23} \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
P_x \\
P_y \\
1
\end{pmatrix}
\]
Inverse transformations

- In general (provided that M is nonsingular)
 \[P = M^{-1} Q \]

- But as M is quite simple:
 \[\det M = m_{11} m_{22} - m_{12} m_{21} \]
 \[M^{-1} = \frac{1}{\det M} \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix} \]
composing affine transformations

- As affine transformations are simple matrix multiplications, we can combine several operations to a single matrix.
- In a matrix multiplication of transformations, the sequence of translations can be read from right to left.
- We can also take this combined matrix and reconstruct the four basic operations $M = \text{(translation)}(\text{shear})(\text{scaling})(\text{rotation})$ (this is for 2D only).
Some more facts

- Affine transformations preserve affine combinations of points
- Affine transformations preserve lines and planes
- Affine transformations preserve parallelism of lines and planes
- The column vectors of an affine transformation reveal the effect of the transformation on the coordinate system.
- An affine transformation has an interesting effect on the area of an object: \[
\frac{\text{area after transformation}}{\text{area before transformation}} = \left| \det M \right|
\]
The same game in 3D...

The general form of an affine 3D transformation:

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix}
=
\begin{pmatrix}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
Translation...

As expected:

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & m_{14} \\
0 & 1 & 0 & m_{24} \\
0 & 0 & 1 & m_{34} \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
Scaling in 3D...

Again:

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix}
= \begin{pmatrix}
S_x & 0 & 0 & 0 \\
0 & S_y & 0 & 0 \\
0 & 0 & S_z & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
Shearing... in one direction

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
f & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
Rotations 3D...

- x-roll, y-roll and z-roll
- x-roll:

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & c & -s & 0 \\
1 & s & c & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
Rotations 3D...

▶ y-roll:

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix}
= \begin{pmatrix}
c & 0 & s & 0 \\
0 & 1 & 0 & 0 \\
-s & 0 & c & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
Rotations 3D...

- \(\text{z-roll:} \)

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix} =
\begin{pmatrix}
c & -s & 0 & 0 \\
s & c & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
Some facts about Rotations 3D

- 3D affine transformations can be composed as in 2D.
- 3D rotation matrices do not commute (unlike 2D).
- Question: how to rotate around an arbitrary axis?
- Every 3D affine transformation can be decomposed into \((\text{translation})(\text{scaling})(\text{rotation})(\text{shear}_1)(\text{shear}_2)\).
- A 3D affine transformation has an effect on the volume of an object:
 \[
 \frac{\text{volume after transformation}}{\text{volume before transformation}} = |\det M|\]
If we have an affine transformation M, we can use it to transform a coordinate frame F_1 into a coordinate frame F_2.

A point $P = (P_x, P_y, 1)^T$ represented in F_2 can be represented in F_1 as MP.

$F_1 \xrightarrow{M_1} F_2 \xrightarrow{M_2} F_3$ then P in F_3 is $M_1 M_2 P$ in F_1.

To apply the sequence of transformations M_1, M_2, M_3 to a point P, calculate $Q = M_3 M_2 M_1 P$. An additional transformation must be premultiplied.

To apply the sequence of transformations M_1, M_2, M_3 to a coordinate system, calculate $M = M_1 M_2 M_3$. A point P in the transformed coordinate system has the coordinates MP in the original coordinate system. An additional transformation must be postmultiplied.
Of course we can do everything by hand: build a point and vector datatype, implement matrix multiplication, apply transformations and call `glVertex` in the end.

In order to avoid this, OpenGL maintains a current transformation that is applied to every `glVertex` command. This is independent of the window-to-viewport translation that is happening as well.

The current transformation is maintained in the `modelview matrix`.
And now in OpenGL...

- It is initialized by calling `glLoadIdentity`.
- The modelview matrix can be altered by `glScaled()`, `glRotated` and `glTranslated`.
- These functions can alter any matrix that OpenGL is using. Therefore, we need to tell OpenGL which matrix to modify: `glMatrixMode(GL_MODELVIEW)`.
The 2D transformations

- Scaling in 2d:

  ```
  glMatrixMode(GL_MODELVIEW);
  glScaled(sx, sy, 1.0);
  ```

- Translation in 2d:

  ```
  glMatrixMode(GL_MODELVIEW);
  glTranslated(dx, dy, 0);
  ```

- Rotation in 2d:

  ```
  glMatrixMode(GL_MODELVIEW);
  glRotated(angle, 0.0, 0.0, 1.0);
  ```
Often, we need to “go back” to a previous CT. Therefore, OpenGL maintains a “stack” of CTs (and of any matrix if we want to).

We can push the current CT on the stack, saving it for later use: `glPushMatrix()`. This pushes the current CT matrix and makes a copy that we will modify now.

We can get the top matrix back: `glPopMatrix()`.
3D! (finally)

▶ For our 2D cases, we have been using a very simple parallel projection that basically ignores the perspective effect of the z-component.

▶ the view volume forms a rectangular parallelepiped that is formed by the border of the window and the near plane and the far plane.

▶ everything in the view volume is parallel-projected to the window and displayed in the viewport. Everything else is clipped off.

▶ We continue to use the parallel projection, but make use of the z component to display 3D objects.
3D Pipeline

- The 3D pipeline uses three matrix transformations to display objects:
 - The modelview matrix
 - The projection matrix
 - The viewport matrix
- The modelview matrix can be seen as a composition of two matrices: a model matrix and a view matrix.
Set up the projection matrix and the viewing volume:

```c
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left, right, bottom, top, near, far);
```

Aiming the camera. Put it at eye, look at look and upwards is up.

```c
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(eye_x, eye_y, eye_z, look_x, look_y, look_z, up_x, up_y, up_z);
```
Basic shapes in OpenGL

- A wireframe cube:

 \[\text{glutWireCube}(\text{GLdouble size}) ; \]

- A wireframe sphere:

 \[\text{glutWireSphere}(\text{GLdouble radius}, \text{GLint nSlices}, \text{GLint nStacks}) ; \]

- A wireframe torus:

 \[\text{glutWireTorus}(\text{GLdouble inRad}, \text{GLdouble outRad}, \text{GLint nSlices}, \text{GLint nStacks}) ; \]
Cube
Sphere
Torus
And the most famous one...

- The Teapot

  ```c
  glutWireTeapot(GLdouble size);
  ```
The Teapot
The five Platonic solids

- Tetrahedron: `glutWireTetrahedron()`
- Octahedron: `glutWireOctahedron()`
- Dodecahedron: `glutWireDodecahedron()`
- Icosahedron: `glutWireIcosahedron()`
- Missing one?
Tetrahedron
Octahedron
Dodecahedron
Icosahedron
...but we had that already.
Moving things around

- All objects are drawn at the origin.
- To move things around, use the following approach:

```c
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glTranslated(0.5, 0.5, 0.5);
glutWireCube(1.0);
glPopMatrix();
```
Moving things around

Image from Hill, Figure 5.60 (regenerated)
Summary

- Representing graphic objects by homogenous points and vectors
- Using affine transforms to modify objects
- Using projections to display objects