
Graphics and Visualization

Holger Kenn

International University Bremen

Spring Semester 2006

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Hierarchical Modeling

Perspective

Modeling Solid Objects

Shading

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Recap

I Representing graphic objects by homogenous points and
vectors

I Using affine transforms to modify objects
I Using projections to display objects

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Homogenous Representation

I A vector in a coordinate frame:

~v = (~a, ~b, ~c, ϑ)

v1

v2

v3

0

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Homogenous Representation

I A point in a coordinate frame:

P = (~a, ~b, ~c, ϑ)

P1

P2

P3

1

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Homogenous coordinates

I The difference of two points is a vector
I The sum of a point and a vector is a point
I Two vectors can be added
I A vector can be scaled
I Any linear combination of vectors is a vector
I An affine combination of two points is a point. (An affine

combination is a linear combination where the coefficients
add up to 1.)

I A linear interpolation P = (a(1 − t) + Bt is a point.
I This fact can be used to calculate a “tween” of two points.

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Transformations

I Transformations are an easy way to reuse shapes
I A transformation can also be used to present different

views of the same object
I Transformations are used in animations.

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Transformations in OpenGL

I When we’re calling a glVertex() function, OpenGL
automatically applies some transformations. One we
already know is the world-window-to-viewport
transformation.

I There are two principle ways do see transformations:
I object transformations are applied to the coordinates of

each point of an object, the coordinate system is
unchanged

I coordinate transformations defines a new coordinate
system in terms of the old coordinate system and
represents all points of the object in the new coordinate
system.

I A transformation is a function that mapps a point P to a
point Q, Q is called the image of P.

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

3D affine transformations

I The general form of an affine 3D transformation

Qx

Qy

Qz

1

=

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1

Px

Py

Pz

1

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Translation...

I As expected:

Qx

Qy

Qz

1

=

1 0 0 m14

0 1 0 m24

0 0 1 m34

0 0 0 1

Px

Py

Pz

1

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Scaling in 3D...

I Again:

Qx

Qy

Qz

1

=

Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

Px

Py

Pz

1

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Shearing...

I in one direction

Qx

Qy

Qz

1

=

1 0 0 0
f 1 0 0
0 0 1 0
0 0 0 1

Px

Py

Pz

1

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Rotations 3D...

I x-roll, y-roll and z-roll
I x-roll:

Qx

Qy

Qz

1

=

1 0 0 0
0 c −s 0
1 s c 0
0 0 0 1

Px

Py

Pz

1

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Rotations 3D...

I y-roll:

Qx

Qy

Qz

1

=

c 0 s 0
0 1 0 0
−s 0 c 0
0 0 0 1

Px

Py

Pz

1

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Rotations 3D...

I z-roll:

Qx

Qy

Qz

1

=

c −s 0 0
s c 0 0
0 0 1 0
0 0 0 1

Px

Py

Pz

1

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

point vs coordinate system transformations

I If we have an affine transformation M, we can use it to
transform a coordinate frame F1 into a coordinate frame F2.

I A point P = (Px , Py , 1)T represented in F2 can be
represented in F1 as MP

I F1 →
M1 F2 →

M2→ F3 then P in F3 is M1M2P in F1.
I To apply the sequence of transformations M1, M2, M3 to a

point P, calculate Q = M3M2M1P. An additional
transformation must be premultiplied.

I To apply the sequence of transformations M1, M2, M3 to a
coordinate system, calculate M = M1M2M3. A point P in
the transformed coordinate system has the coordinates
MP in the original coordinate system. An additional
transformation must be postmultiplied.

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

And now in OpenGL...

I Of course we can do everything by hand: build a point and
vector datatype, implement matrix multiplication, apply
transformations and call glVertex in the end.

I In order to avoid this, OpenGL maintains a current
transformation that is applied to every glVertex
command. This is independent of the window-to-viewport
translation that is happening as well.

I The current transformation is maintained in the modelview
matrix.

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

And now in OpenGL...

I It is initialized by calling glLoadIdentity

I The modelview matrix can be altered by
glScaled(),glRotated and glTranslated.

I These functions can alter any matrix that OpenGL is using.
Therefore, we need to tell OpenGL which matrix to modify:
glMatrixMode(GL_MODELVIEW).

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

A stack of CTs

I Often, we need to “go back” to a previous CT. Therefore,
OpenGL maintains a “stack” of CTs (and of any matrix if
we want to).

I We can push the current CT on the stack, saving it for later
use: glPushMatrix(). This pushes the current CT
matrix and makes a copy that we will modify now

I We can get the top matrix back: glPopMatrix().

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

3D! (finally)

I For our 2D cases, we have been using a very simple
parallel projection that basically ignores the perspective
effect of the z-component.

I the view volume forms a rectangular parallelepiped that is
formed by the border of the window and the near plane
and the far plane.

I everything in the view volume is parallel-projected to the
window and displayed in the viewport. Everything else is
clipped off.

I We continue to use the parallel projection, but make use of
the z component to display 3D objects.

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

3D Pipeline

I The 3d Pipeline uses three matrix transformations to
display objects

I The modelview matrix
I The projection matrix
I The viewport matrix

I The modelview matrix can be seen as a composition of two
matrices: a model matrix and a view matrix.

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

in OpenGL

I Set up the projection matrix and the viewing volume:

glMatrixMode (GL_PROJECTION) ;
g l L o a d I d e n t i t y () ;
g lOrtho (l e f t , r i g h t , bottom , top , near , f a r) ;

I Aiming the camera. Put it at eye, look at look and upwards
is up.

glMatrixMode (GL_MODELVIEW) ;
g l L o a d I d e n t i t y () ;
g luLookAt (eye_x , eye_y , eye_z ,

look_x , look_y , look_z , up_x , up_y , up_z) ;

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Basic shapes in OpenGL

I A wireframe cube:

glutWireCube (GLdouble s ize) ;

I A wireframe sphere:

glutWireSphere (GLdouble rad ius ,
GLint nSl ices , GLint nStacks) ;

I A wireframe torus:

g lu tWireTorus (GLdouble inRad , GLdouble outRad
GLint nSl ices , GLint nStacks) ;

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Cube

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Sphere

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Torus

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

And the most famous one...

I The Teapot

g lu tWireTeapot (GLdouble s ize) ;

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

The Teapot

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

The five Platonic solids

I Tetrahedron: glutWireTetrahedron()
I Octahedron: glutWireOctahedron()
I Dodecahedron: glutWireDodecahedron()
I Icosahedron: glutWireIcosahedron()
I Missing one?

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Tetrahedron

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Octahedron

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Dodecahedron

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Icosahedron

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Cube

...but we had that already.

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Moving things around

I All objects are drawn at the origin.
I To move things around, use the following approach:

glMatrixMode (GL_MODELVIEW) ;
g lPushMatr ix () ;
g lT rans la ted (0 . 5 , 0 . 5 , 0 . 5) ;
glutWireCube (1 . 0) ;
g lPopMatr ix () ;

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Moving things around

Image from Hill, Figure 5.60 (regenerated)

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Rotating things

I To rotate things, use the following approach:

glMatrixMode (GL_MODELVIEW) ;
g lPushMatr ix () ;
g l R o t a t e f (angle , 0 . 0 , 1 . 0 , 0 . 0) ;
g lu tWireTeapot (1 . 0) ;
g lPopMatr ix () ;

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Hierarchical Modeling

I If we try to model an everyday object (like a house), we do
not want to move all its components separately.

I Instead we want to make sure that if we move the house,
the roof of the house move together with the walls.

I The CT stack gives us a simple way to implement this.

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Global motion

I The simple case of hierarchical modeling is global motion.
I To implement it, we apply a number of transforms before

we start drawing objects.

glMatrixMode (GL_MODELVIEW) ;
g lPushMatr ix () ;
g lT rans la ted (x , y , z) ;
g l R o t a t e f (t u r n i t , 0 . 0 , 1 . 0 , 0 . 0) ;
drawMyScene () ;
g lPopMatr ix () ;

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Local motion

I To implement local motion, apply an extra transformation
before each object is drawn

drawmyteapot () {
glMatrixMode (GL_MODELVIEW) ;
g lPushMatr ix () ;
g l R o t a t e f (s p i n i t , 0 . 0 , 0 . 0 , 1 . 0) ;
g lu tWireTeapot (1 . 0) ;
g lPopMatr ix () ;

}

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Robot Arm Example: Box

vo id Box (f l o a t width , f l o a t he ight , f l o a t depth) {
char i , j = 0 ;
g l C o l o r 3 f (1 , 0 , 0) ;
g lPushMatr ix () ;
g l S ca l e f (width , he ight , depth) ;
glutWireCube (1 . 0) ;
g lPopMatr ix () ;

}

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Robot Arm Example:Joint

vo id Jo i n t () {
g l C o l o r 3 f (0 , 0 , 1) ;
g lPushMatr ix () ;
GLUquadricObj ∗ qobj ;
qobj=gluNewQuadric () ;
g luQuadricDrawStyle (qobj , GLU_LINE) ;
g l R o t a t e f (90 ,0 ,1 ,0) ;
g l T r a n s l a t e f (0 ,0 , −0 .15) ;
g luCy l i nde r (qobj , 0 . 1 , 0 . 1 , 0 . 3 , 8 , 8) ;
g lPopMatr ix () ;

}

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Robot Arm Example:Arm

vo id Arm () {
g lPushMatr ix () ;
Box (1 , 0 . 2 , 1) ;
g l T r a n s l a t e f (0 , 0 . 2 , 0) ; /∗ on top o f the box ∗ /
g l R o t a t e f (dof [0] , 0 , 1 , 0) ; / ∗ r o t a t e around the y ax i
g l R o t a t e f (dof [1] , 1 , 0 , 0) ; / ∗ r o t a t e around the x ax i
Jo i n t () ;
g l T r a n s l a t e f (0 , 0 . 5 , 0) ; /∗ move to the middle o f th
Box (0 . 2 , 1 , 0 . 2) ; /∗ draw a box ∗ /
g l T r a n s l a t e f (0 , 0 . 5 , 0) ; /∗ move to the end o f the b
g l R o t a t e f (dof [2] , 1 , 0 , 0) ; /∗ r o t a t e elbow j o i n t ∗ /
Jo i n t () ;

. . .
Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Robot Arm

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Robot Arm

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Perspective

I Our current parallel projection is quite poor in giving us a
“real” view of things.

I That is because it is “ignoring” the z component which
leads to ambiguities.

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Perspective

from http://www.leinroden.de/

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Perspective in OpenGL

I Set up the projection matrix and the viewing volume:

glMatrixMode (GL_PROJECTION) ;
g l L o a d I d e n t i t y () ;
g luPerspect ive (viewAngle , aspectRatio ,N, F) ;

I Aiming the camera. Put it at eye, look at look and upwards
is up. (no change here)

glMatrixMode (GL_MODELVIEW) ;
g l L o a d I d e n t i t y () ;
g luLookAt (eye_x , eye_y , eye_z ,

look_x , look_y , look_z , up_x , up_y , up_z) ;

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Robot Arm

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Robot Arm

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Robot Arm

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Perspective

I The point perspective in OpenGL resolves some
ambiguities

I but it cannot solve all ambiguities

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Perspective

from http://www.worldofescher.com

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Solid Modeling

I We can model a solid object as a collection of polygonal
faces.

I Each face can be specified as a number of vertices and a
normal vector (to define the inside and the outside)

I For clipping and shading, it is useful to associate a normal
vector with every vertex. Multiple vertices can be
associated with the same normal vector and a vertex can
be associated with multiple normal vectors.

I To represent and object, we could store all vertices for all
polygons together with a normal vector for every vertex.
That would be highly redundant.

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Storing polygonal meshes

I Instead, we can use three lists:
I the vertex list

It contains all distinct vertices
I the normal list

It contains all distinct normal vectors
I the face list

It only contains lists of indices of the two other lists

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

The basic barn

vertex x y z

0 0 0 0
1 1 0 0
2 1 1 0
3 0.5 1.5 0
4 0 1 0
5 0 0 1
6 1 0 1
7 1 1 1
8 0.5 1.5 1
9 0 1 1

normal nx ny nz

0 -1 0 0
1 -0.707 0.707 0
2 0.707 0.707 0
3 1 0 0
4 0 -1 0
5 0 0 1
6 0 0 -1

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

The basic barn

face vertices normals

0 0,5,9,4 0,0,0,0
1 3,4,9,8 1,1,1,1
2 2,3,8,7 2,2,2,2
3 1,2,7,6 3,3,3,3
4 0,1,6,5 4,4,4,4
5 5,6,7,8,9 5,5,5,5,5
6 0,4,3,2,1 6,6,6,6,6

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Finding the normal vectors

I We can compute the normal of a face using three vectors
and the cross product m = (V1 − V2) × (V3 − V2) and
normalize it to unit length.

I Two problems arrise:
I What if (V1 − V2) and (V3 − V2) are almost parallel?
I What to do with faces that are defined through more than

three vertices?
I Instead, we can use Newell’s method:

I mx =
∑N−1

i=0 (yi − ynext(i))(zi + znext(i))

I my =
∑N−1

i=0 (zi − znext(i))(xi + xnext(i))

I mz =
∑N−1

i=0 (xi − xnext(i))(yi + ynext(i))

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Properties of polygonal meshes

I Solidity (if the faces enclose a positive and finite amount of
space)

I Connectedness (if there is a path between every two
vertices along the polygon edges)

I Simplicity (if the object is solid and has no “holes”)
I Planarity (if every face is planar, i.e. every vertex of a

polygon lies in a plane)
I Convexity (if a line connecting any two points in the object

lies completely within the object)
I A Polyhedron is a connected mesh of simple planar

polygons that encloses a finite amount of space

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Properties of polyhedrons

I Every edge is shared by exactly two faces
I at least three edges meet at each vertex
I faces do not interpenetrate: they either touch at a common

edge or not at all.
I Euler’s formula for simple polyhedrons: V + F − E = 2

(E:Edges, F: Faces, V: Vertices)
I For non-simple polyhedrons: V + F − E = 2 + H − 2G (G:

holes in the polyhedron, H: holes in faces)

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Summary

I Hierarchical Modeling
I Perspective vs Parallel Projection
I Representing solid objects

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Shading

I Displaying Wireframe models is easy from a computational
viewpoint

I But it creates lots of ambiguities that even perspective
projection cannot remove

I If we model objects as solids, we would like them to look
“normal”. One way to produce such a normal view is to
simulate the physical processes that influence their
appearance (Ray Tracing). This is computationally very
expensive.

I We need a cheaper way that gives us some realism but is
easy to compute. This is shading.

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Types of shading

I Remove hidden lines in wireframe models
I Flat Shading
I Smooth Shading
I Adding specular light
I Adding shadows
I Adding texture

Holger Kenn Graphics and Visualization

TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Toy-Physics for CG

I There are two types of light sources: ambient light and
point light sources.

I If all incident light is absorbed by a body, it only radiates
with the so-called blackbody radiation that is only
dependent of its temperature. We’re dealing with cold
bodys here, so blackbody radiation is ignored.

I Diffiuse Scattering occurs if light penetrates the surface of
a body and is then re-radiated uniformily in all directions.
Scattered lights interact strongly with the surface, so it is
usually colored.

I Specular reflections occur in metal- or plastic-like surfaces.
These are mirrorlike and highly directional.

I A typical surface displays a combination of both effects.
Holger Kenn Graphics and Visualization

	Recap
	Hierarchical Modeling
	Perspective
	Modeling Solid Objects
	Shading

