Graphics and Visualization

Holger Kenn

International University Bremen

Spring Semester 2006
Hierarchical Modeling

Perspective

Modeling Solid Objects

Shading
Recap

- Representing graphic objects by homogenous points and vectors
- Using affine transforms to modify objects
- Using projections to display objects
A vector in a coordinate frame:

\[\vec{v} = (\vec{a}, \vec{b}, \vec{c}, \vartheta) \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ 0 \end{pmatrix} \]
Homogenous Representation

- A point in a coordinate frame:

\[P = (\vec{a}, \vec{b}, \vec{c}, \vartheta) \begin{pmatrix} P_1 \\ P_2 \\ P_3 \\ 1 \end{pmatrix} \]
Homogenous coordinates

- The difference of two points is a vector
- The sum of a point and a vector is a point
- Two vectors can be added
- A vector can be scaled
- Any linear combination of vectors is a vector
- An affine combination of two points is a point. (An affine combination is a linear combination where the coefficients add up to 1.)
- A linear interpolation $P = (a(1 - t) + Bt$ is a point.
- This fact can be used to calculate a “tween” of two points.
Transformations

- Transformations are an easy way to reuse shapes.
- A transformation can also be used to present different views of the same object.
- Transformations are used in animations.
Transformations in OpenGL

- When we’re calling a `glVertex()` function, OpenGL automatically applies some transformations. One we already know is the world-window-to-viewport transformation.
- There are two principle ways do see transformations:
 - *object transformations* are applied to the coordinates of each point of an object, the coordinate system is unchanged
 - *coordinate transformations* defines a new coordinate system in terms of the old coordinate system and represents all points of the object in the new coordinate system.
- A transformation is a function that maps a point P to a point Q, Q is called the image of P.
3D affine transformations

The general form of an affine 3D transformation

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix}
=
\begin{pmatrix}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
Translation...

As expected:

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 & m_{14} \\
0 & 1 & 0 & m_{24} \\
0 & 0 & 1 & m_{34} \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
Scaling in 3D...

Again:

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix}
= \begin{pmatrix}
S_x & 0 & 0 & 0 \\
0 & S_y & 0 & 0 \\
0 & 0 & S_z & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
Shearing...

▶ in one direction

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & f & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
Rotations 3D...

- x-roll, y-roll and z-roll
- x-roll:

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & c & -s & 0 \\
1 & s & c & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
Rotations 3D...

- y-roll:

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix}
= \begin{pmatrix}
c & 0 & s & 0 \\
0 & 1 & 0 & 0 \\
-s & 0 & c & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
Rotations 3D...

- z-roll:

\[
\begin{pmatrix}
Q_x \\
Q_y \\
Q_z \\
1
\end{pmatrix}
=
\begin{pmatrix}
 c & -s & 0 & 0 \\
 s & c & 0 & 0 \\
 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
P_x \\
P_y \\
P_z \\
1
\end{pmatrix}
\]
point vs coordinate system transformations

- If we have an affine transformation M, we can use it to transform a coordinate frame F_1 into a coordinate frame F_2.
- A point $P = (P_x, P_y, 1)^T$ represented in F_2 can be represented in F_1 as MP
- $F_1 \rightarrow^{M_1} F_2 \rightarrow^{M_2} F_3$ then P in F_3 is $M_1 M_2 P$ in F_1.
- To apply the sequence of transformations M_1, M_2, M_3 to a point P, calculate $Q = M_3 M_2 M_1 P$. An additional transformation must be \emph{premultiplied}.
- To apply the sequence of transformations M_1, M_2, M_3 to a coordinate system, calculate $M = M_1 M_2 M_3$. A point P in the transformed coordinate system has the coordinates MP in the original coordinate system. An additional transformation must be \emph{postmultiplied}.
And now in OpenGL...

- Of course we can do everything by hand: build a point and vector datatype, implement matrix multiplication, apply transformations and call `glVertex` in the end.
- In order to avoid this, OpenGL maintains a *current transformation* that is applied to every `glVertex` command. This is independent of the window-to-viewport translation that is happening as well.
- The current transformation is maintained in the *modelview matrix*.
And now in OpenGL...

- It is initialized by calling `glLoadIdentity`
- The modelview matrix can be altered by `glScaled()`, `glRotated` and `glTranslated`.
- These functions can alter any matrix that OpenGL is using. Therefore, we need to tell OpenGL which matrix to modify: `glMatrixMode(GL_MODELVIEW)`.
Often, we need to “go back” to a previous CT. Therefore, OpenGL maintains a “stack” of CTs (and of any matrix if we want to).

We can push the current CT on the stack, saving it for later use: `glPushMatrix()`. This pushes the current CT matrix and makes a copy that we will modify now.

We can get the top matrix back: `glPopMatrix()`.
3D! (finally)

- For our 2D cases, we have been using a very simple parallel projection that basically ignores the perspective effect of the z-component.
- the view volume forms a rectangular parallelepiped that is formed by the border of the window and the near plane and the far plane.
- everything in the view volume is parallel-projected to the window and displayed in the viewport. Everything else is clipped off.
- We continue to use the parallel projection, but make use of the z component to display 3D objects.
The 3D Pipeline uses three matrix transformations to display objects:
- The modelview matrix
- The projection matrix
- The viewport matrix

The modelview matrix can be seen as a composition of two matrices: a model matrix and a view matrix.
Set up the projection matrix and the viewing volume:

```c
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left, right, bottom, top, near, far);
```

Aiming the camera. Put it at eye, look at look and upwards is up.

```c
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(eye_x, eye_y, eye_z,
    look_x, look_y, look_z,
    up_x, up_y, up_z);
```
Basic shapes in OpenGL

- A wireframe cube:
 \[\text{glutWireCube(GLdouble size)}; \]

- A wireframe sphere:
 \[\text{glutWireSphere(GLdouble radius, GLint nSlices, GLint nStacks)}; \]

- A wireframe torus:
 \[\text{glutWireTorus(GLdouble inRad, GLdouble outRad, GLint nSlices, GLint nStacks)}; \]
Cube
Sphere
Torus
And the most famous one...

- The Teapot

```c
glutWireTeapot(GLdouble size);
```
The Teapot
The five Platonic solids

- Tetrahedron: glutWireTetrahedron()
- Octahedron: glutWireOctahedron()
- Dodecahedron: glutWireDodecahedron()
- Icosahedron: glutWireIcosahedron()
- Missing one?
Tetrahedron
Octahedron
Dodecahedron
Icosahedron
...but we had that already.
Moving things around

- All objects are drawn at the origin.
- To move things around, use the following approach:

```c
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glTranslated(0.5, 0.5, 0.5);
glutWireCube(1.0);
glPopMatrix();
```
Moving things around

Image from Hill, Figure 5.60 (regenerated)
To rotate things, use the following approach:

```c
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glRotatef(angle, 0.0, 1.0, 0.0);
gluWireTeapot(1.0);
glPopMatrix();
```
If we try to model an everyday object (like a house), we do not want to move all its components separately.

Instead we want to make sure that if we move the house, the roof of the house move together with the walls.

The CT stack gives us a simple way to implement this.
Global motion

- The simple case of hierarchical modeling is global motion.
- To implement it, we apply a number of transforms before we start drawing objects.

```c
glMatrixMode (GL_MODELVIEW) ;
glPushMatrix () ;
glTranslated (x,y,z) ;
glRotatef (turnit , 0.0, 1.0, 0.0) ;
drawMyScene () ;
glPopMatrix () ;
```
Local motion

To implement local motion, apply an extra transformation before each object is drawn

```c
void drawmyteapot()
{
    glMatrixMode(GL_MODELVIEW);
    glPushMatrix();
    glTranslatef(spinit, 0.0, 0.0, 1.0);
    glutWireTeapot(1.0);
    glPopMatrix();
}
```
void Box(float width, float height, float depth) {
 char i, j = 0;
 glColor3f(1,0,0);
 glPushMatrix();
 glScalef(width, height, depth);
 glutWireCube(1.0);
 glPopMatrix();
}
Robot Arm Example: Joint

```c
void Joint() {
    glColor3f(0, 0, 1);
    glPushMatrix();
    GLUquadricObj * qobj;
    qobj = gluNewQuadric();
    gluQuadricDrawStyle(qobj, GLU_LINE);
    glRotatef(90, 0, 1, 0);
    glTranslatef(0, 0, -0.15);
    gluCylinder(qobj, 0.1, 0.1, 0.3, 8, 8);
    glPopMatrix();
}
```
Robot Arm Example: Arm

```c
void Arm() {
    glPushMatrix();
    Box(1,0.2,1);
    glTranslatef(0,0.2,0); /* on top of the box */
    glRotatef(dof[0],0,1,0); /* rotate around the y axis */
    glRotatef(dof[1],1,0,0); /* rotate around the x axis */
    Joint();
    glTranslatef(0,0.5,0); /* move to the middle of the arm */
    Box(0.2,1,0.2); /* draw a box */
    glTranslatef(0,0.5,0); /* move to the end of the arm */
    glRotatef(dof[2],1,0,0); /* rotate elbow joint */
    Joint();
    ...
}
```
Robot Arm
Robot Arm
Our current parallel projection is quite poor in giving us a “real” view of things.

That is because it is “ignoring” the z component which leads to ambiguities.
Perspective

from http://www.leinroden.de/
Perspective in OpenGL

- Set up the projection matrix and the viewing volume:

  ```
  glMatrixMode(GL_PROJECTION);
  glLoadIdentity();
  gluPerspective(viewAngle, aspectRatio, N, F);
  ```

- Aiming the camera. Put it at eye, look at look and upwards is up. (no change here)

  ```
  glMatrixMode(GL_MODELVIEW);
  glLoadIdentity();
  gluLookAt(eye_x, eye_y, eye_z,
            look_x, look_y, look_z, up_x, up_y, up_z);
  ```
Robot Arm
Robot Arm
The point perspective in OpenGL resolves some ambiguities.

but it cannot solve all ambiguities.
Perspective

from http://www.worldofescher.com
Solid Modeling

- We can model a solid object as a collection of polygonal faces.
- Each face can be specified as a number of vertices and a normal vector (to define the inside and the outside).
- For clipping and shading, it is useful to associate a normal vector with every vertex. Multiple vertices can be associated with the same normal vector and a vertex can be associated with multiple normal vectors.
- To represent an object, we could store all vertices for all polygons together with a normal vector for every vertex. That would be highly redundant.
Instead, we can use three lists:

- the vertex list
 It contains all distinct vertices
- the normal list
 It contains all distinct normal vectors
- the face list
 It only contains lists of indices of the two other lists
The basic barn

<table>
<thead>
<tr>
<th>vertex</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0.5</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>normal</th>
<th>nx</th>
<th>ny</th>
<th>nz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-0.707</td>
<td>0.707</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.707</td>
<td>0.707</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>
The basic barn

<table>
<thead>
<tr>
<th>face</th>
<th>vertices</th>
<th>normals</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,5,9,4</td>
<td>0,0,0,0</td>
</tr>
<tr>
<td>1</td>
<td>3,4,9,8</td>
<td>1,1,1,1</td>
</tr>
<tr>
<td>2</td>
<td>2,3,8,7</td>
<td>2,2,2,2</td>
</tr>
<tr>
<td>3</td>
<td>1,2,7,6</td>
<td>3,3,3,3</td>
</tr>
<tr>
<td>4</td>
<td>0,1,6,5</td>
<td>4,4,4,4</td>
</tr>
<tr>
<td>5</td>
<td>5,6,7,8,9</td>
<td>5,5,5,5,5</td>
</tr>
<tr>
<td>6</td>
<td>0,4,3,2,1</td>
<td>6,6,6,6,6</td>
</tr>
</tbody>
</table>
Finding the normal vectors

- We can compute the normal of a face using three vectors and the cross product \(m = (V_1 - V_2) \times (V_3 - V_2) \) and normalize it to unit length.

- Two problems arise:
 - What if \((V_1 - V_2)\) and \((V_3 - V_2)\) are almost parallel?
 - What to do with faces that are defined through more than three vertices?

- Instead, we can use Newell’s method:
 - \(m_x = \sum_{i=0}^{N-1} (y_i - y_{next(i)}) (z_i + z_{next(i)}) \)
 - \(m_y = \sum_{i=0}^{N-1} (z_i - z_{next(i)}) (x_i + x_{next(i)}) \)
 - \(m_z = \sum_{i=0}^{N-1} (x_i - x_{next(i)}) (y_i + y_{next(i)}) \)
Properties of polygonal meshes

- Solidity (if the faces enclose a positive and finite amount of space)
- Connectedness (if there is a path between every two vertices along the polygon edges)
- Simplicity (if the object is solid and has no “holes”)
- Planarity (if every face is planar, i.e. every vertex of a polygon lies in a plane)
- Convexity (if a line connecting any two points in the object lies completely within the object)
- A Polyhedron is a connected mesh of simple planar polygons that encloses a finite amount of space
Properties of polyhedrons

- Every edge is shared by exactly two faces
- At least three edges meet at each vertex
- Faces do not interpenetrate: they either touch at a common edge or not at all.
- Euler’s formula for simple polyhedrons: \(V + F - E = 2 \)
 (E: Edges, F: Faces, V: Vertices)
- For non-simple polyhedrons: \(V + F - E = 2 + H - 2G \)
 (G: holes in the polyhedron, H: holes in faces)
Summary

- Hierarchical Modeling
- Perspective vs Parallel Projection
- Representing solid objects
Displaying Wireframe models is easy from a computational viewpoint

But it creates lots of ambiguities that even perspective projection cannot remove

If we model objects as solids, we would like them to look “normal”. One way to produce such a normal view is to simulate the physical processes that influence their appearance (Ray Tracing). This is computationally very expensive.

We need a cheaper way that gives us some realism but is easy to compute. This is shading.
Types of shading

- Remove hidden lines in wireframe models
- Flat Shading
- Smooth Shading
- Adding specular light
- Adding shadows
- Adding texture
There are two types of light sources: ambient light and point light sources.

If all incident light is absorbed by a body, it only radiates with the so-called blackbody radiation that is only dependent of its temperature. We’re dealing with cold bodys here, so blackbody radiation is ignored.

Diffuse Scattering occurs if light penetrates the surface of a body and is then re-radiated uniformly in all directions. Scattered lights interact strongly with the surface, so it is usually colored.

Specular reflections occur in metal- or plastic-like surfaces. These are mirrorlike and highly directional.

A typical surface displays a combination of both effects.