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Recap

I Representing graphic objects by homogenous points and
vectors

I Using affine transforms to modify objects
I Using projections to display objects
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Homogenous Representation

I A vector in a coordinate frame:

~v = (~a, ~b, ~c, ϑ)









v1

v2

v3

0









Holger Kenn Graphics and Visualization



TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Homogenous Representation

I A point in a coordinate frame:

P = (~a, ~b, ~c, ϑ)
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Homogenous coordinates

I The difference of two points is a vector
I The sum of a point and a vector is a point
I Two vectors can be added
I A vector can be scaled
I Any linear combination of vectors is a vector
I An affine combination of two points is a point. (An affine

combination is a linear combination where the coefficients
add up to 1.)

I A linear interpolation P = (a(1 − t) + Bt is a point.
I This fact can be used to calculate a “tween” of two points.
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Transformations

I Transformations are an easy way to reuse shapes
I A transformation can also be used to present different

views of the same object
I Transformations are used in animations.
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Transformations in OpenGL

I When we’re calling a glVertex() function, OpenGL
automatically applies some transformations. One we
already know is the world-window-to-viewport
transformation.

I There are two principle ways do see transformations:
I object transformations are applied to the coordinates of

each point of an object, the coordinate system is
unchanged

I coordinate transformations defines a new coordinate
system in terms of the old coordinate system and
represents all points of the object in the new coordinate
system.

I A transformation is a function that mapps a point P to a
point Q, Q is called the image of P.
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3D affine transformations

I The general form of an affine 3D transformation
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Translation...

I As expected:
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Scaling in 3D...

I Again:
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Shearing...

I in one direction
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Rotations 3D...

I x-roll, y-roll and z-roll
I x-roll:
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Rotations 3D...

I y-roll:
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Rotations 3D...

I z-roll:
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point vs coordinate system transformations

I If we have an affine transformation M, we can use it to
transform a coordinate frame F1 into a coordinate frame F2.

I A point P = (Px , Py , 1)T represented in F2 can be
represented in F1 as MP

I F1 →
M1 F2 →

M2→ F3 then P in F3 is M1M2P in F1.
I To apply the sequence of transformations M1, M2, M3 to a

point P, calculate Q = M3M2M1P. An additional
transformation must be premultiplied.

I To apply the sequence of transformations M1, M2, M3 to a
coordinate system, calculate M = M1M2M3. A point P in
the transformed coordinate system has the coordinates
MP in the original coordinate system. An additional
transformation must be postmultiplied.
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And now in OpenGL...

I Of course we can do everything by hand: build a point and
vector datatype, implement matrix multiplication, apply
transformations and call glVertex in the end.

I In order to avoid this, OpenGL maintains a current
transformation that is applied to every glVertex
command. This is independent of the window-to-viewport
translation that is happening as well.

I The current transformation is maintained in the modelview
matrix.
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And now in OpenGL...

I It is initialized by calling glLoadIdentity

I The modelview matrix can be altered by
glScaled(),glRotated and glTranslated.

I These functions can alter any matrix that OpenGL is using.
Therefore, we need to tell OpenGL which matrix to modify:
glMatrixMode(GL_MODELVIEW).
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A stack of CTs

I Often, we need to “go back” to a previous CT. Therefore,
OpenGL maintains a “stack” of CTs (and of any matrix if
we want to).

I We can push the current CT on the stack, saving it for later
use: glPushMatrix(). This pushes the current CT
matrix and makes a copy that we will modify now

I We can get the top matrix back: glPopMatrix().
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3D! (finally)

I For our 2D cases, we have been using a very simple
parallel projection that basically ignores the perspective
effect of the z-component.

I the view volume forms a rectangular parallelepiped that is
formed by the border of the window and the near plane
and the far plane.

I everything in the view volume is parallel-projected to the
window and displayed in the viewport. Everything else is
clipped off.

I We continue to use the parallel projection, but make use of
the z component to display 3D objects.
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3D Pipeline

I The 3d Pipeline uses three matrix transformations to
display objects

I The modelview matrix
I The projection matrix
I The viewport matrix

I The modelview matrix can be seen as a composition of two
matrices: a model matrix and a view matrix.
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in OpenGL

I Set up the projection matrix and the viewing volume:

glMatrixMode (GL_PROJECTION) ;
g l L o a d I d e n t i t y ( ) ;
g lOrtho ( l e f t , r i g h t , bottom , top , near , f a r ) ;

I Aiming the camera. Put it at eye, look at look and upwards
is up.

glMatrixMode (GL_MODELVIEW ) ;
g l L o a d I d e n t i t y ( ) ;
g luLookAt ( eye_x , eye_y , eye_z ,

look_x , look_y , look_z , up_x , up_y , up_z ) ;
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Basic shapes in OpenGL

I A wireframe cube:

glutWireCube ( GLdouble s ize ) ;

I A wireframe sphere:

glutWireSphere ( GLdouble rad ius ,
GLint nSl ices , GLint nStacks ) ;

I A wireframe torus:

g lu tWireTorus ( GLdouble inRad , GLdouble outRad
GLint nSl ices , GLint nStacks ) ;
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And the most famous one...

I The Teapot

g lu tWireTeapot ( GLdouble s ize ) ;
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The Teapot
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The five Platonic solids

I Tetrahedron: glutWireTetrahedron()
I Octahedron: glutWireOctahedron()
I Dodecahedron: glutWireDodecahedron()
I Icosahedron: glutWireIcosahedron()
I Missing one?
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Tetrahedron
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Octahedron

Holger Kenn Graphics and Visualization



TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Dodecahedron
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Icosahedron
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Cube

...but we had that already.
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Moving things around

I All objects are drawn at the origin.
I To move things around, use the following approach:

glMatrixMode (GL_MODELVIEW ) ;
g lPushMatr ix ( ) ;
g lT rans la ted ( 0 . 5 , 0 . 5 , 0 . 5 ) ;
glutWireCube ( 1 . 0 ) ;
g lPopMatr ix ( ) ;
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Moving things around

Image from Hill, Figure 5.60 (regenerated)
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Rotating things

I To rotate things, use the following approach:

glMatrixMode (GL_MODELVIEW ) ;
g lPushMatr ix ( ) ;
g l R o t a t e f ( angle , 0 . 0 , 1 . 0 , 0 . 0 ) ;
g lu tWireTeapot ( 1 . 0 ) ;
g lPopMatr ix ( ) ;
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Hierarchical Modeling

I If we try to model an everyday object (like a house), we do
not want to move all its components separately.

I Instead we want to make sure that if we move the house,
the roof of the house move together with the walls.

I The CT stack gives us a simple way to implement this.
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Global motion

I The simple case of hierarchical modeling is global motion.
I To implement it, we apply a number of transforms before

we start drawing objects.

glMatrixMode (GL_MODELVIEW ) ;
g lPushMatr ix ( ) ;
g lT rans la ted ( x , y , z ) ;
g l R o t a t e f ( t u r n i t , 0 . 0 , 1 . 0 , 0 . 0 ) ;
drawMyScene ( ) ;
g lPopMatr ix ( ) ;

Holger Kenn Graphics and Visualization



TZI

Recap
Hierarchical Modeling

Perspective
Modeling Solid Objects

Shading

Local motion

I To implement local motion, apply an extra transformation
before each object is drawn

drawmyteapot ( ) {
glMatrixMode (GL_MODELVIEW ) ;
g lPushMatr ix ( ) ;
g l R o t a t e f ( s p i n i t , 0 . 0 , 0 . 0 , 1 . 0 ) ;
g lu tWireTeapot ( 1 . 0 ) ;
g lPopMatr ix ( ) ;

}
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Robot Arm Example: Box

vo id Box ( f l o a t width , f l o a t he ight , f l o a t depth ) {
char i , j = 0 ;
g l C o l o r 3 f ( 1 , 0 , 0 ) ;
g lPushMatr ix ( ) ;
g l S ca l e f ( width , he ight , depth ) ;
glutWireCube ( 1 . 0 ) ;
g lPopMatr ix ( ) ;

}
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Robot Arm Example:Joint

vo id Jo i n t ( ) {
g l C o l o r 3 f ( 0 , 0 , 1 ) ;
g lPushMatr ix ( ) ;
GLUquadricObj ∗ qobj ;
qobj=gluNewQuadric ( ) ;
g luQuadricDrawStyle ( qobj , GLU_LINE) ;
g l R o t a t e f (90 ,0 ,1 ,0 ) ;
g l T r a n s l a t e f (0 ,0 , −0 .15) ;
g luCy l i nde r ( qobj , 0 . 1 , 0 . 1 , 0 . 3 , 8 , 8 ) ;
g lPopMatr ix ( ) ;

}
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Robot Arm Example:Arm

vo id Arm ( ) {
g lPushMatr ix ( ) ;
Box ( 1 , 0 . 2 , 1 ) ;
g l T r a n s l a t e f ( 0 , 0 . 2 , 0 ) ; /∗ on top o f the box ∗ /
g l R o t a t e f ( dof [ 0 ] , 0 , 1 , 0 ) ; / ∗ r o t a t e around the y ax i
g l R o t a t e f ( dof [ 1 ] , 1 , 0 , 0 ) ; / ∗ r o t a t e around the x ax i
Jo i n t ( ) ;
g l T r a n s l a t e f ( 0 , 0 . 5 , 0 ) ; /∗ move to the middle o f th
Box ( 0 . 2 , 1 , 0 . 2 ) ; /∗ draw a box ∗ /
g l T r a n s l a t e f ( 0 , 0 . 5 , 0 ) ; /∗ move to the end o f the b
g l R o t a t e f ( dof [ 2 ] , 1 , 0 , 0 ) ; /∗ r o t a t e elbow j o i n t ∗ /
Jo i n t ( ) ;

. . .
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Perspective

I Our current parallel projection is quite poor in giving us a
“real” view of things.

I That is because it is “ignoring” the z component which
leads to ambiguities.
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Perspective

from http://www.leinroden.de/
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Perspective in OpenGL

I Set up the projection matrix and the viewing volume:

glMatrixMode (GL_PROJECTION) ;
g l L o a d I d e n t i t y ( ) ;
g luPerspect ive ( viewAngle , aspectRatio ,N, F ) ;

I Aiming the camera. Put it at eye, look at look and upwards
is up. (no change here)

glMatrixMode (GL_MODELVIEW ) ;
g l L o a d I d e n t i t y ( ) ;
g luLookAt ( eye_x , eye_y , eye_z ,

look_x , look_y , look_z , up_x , up_y , up_z ) ;
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Perspective

I The point perspective in OpenGL resolves some
ambiguities

I but it cannot solve all ambiguities
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Perspective

from http://www.worldofescher.com
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Solid Modeling

I We can model a solid object as a collection of polygonal
faces.

I Each face can be specified as a number of vertices and a
normal vector (to define the inside and the outside)

I For clipping and shading, it is useful to associate a normal
vector with every vertex. Multiple vertices can be
associated with the same normal vector and a vertex can
be associated with multiple normal vectors.

I To represent and object, we could store all vertices for all
polygons together with a normal vector for every vertex.
That would be highly redundant.
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Storing polygonal meshes

I Instead, we can use three lists:
I the vertex list

It contains all distinct vertices
I the normal list

It contains all distinct normal vectors
I the face list

It only contains lists of indices of the two other lists
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The basic barn

vertex x y z

0 0 0 0
1 1 0 0
2 1 1 0
3 0.5 1.5 0
4 0 1 0
5 0 0 1
6 1 0 1
7 1 1 1
8 0.5 1.5 1
9 0 1 1

normal nx ny nz

0 -1 0 0
1 -0.707 0.707 0
2 0.707 0.707 0
3 1 0 0
4 0 -1 0
5 0 0 1
6 0 0 -1
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The basic barn

face vertices normals

0 0,5,9,4 0,0,0,0
1 3,4,9,8 1,1,1,1
2 2,3,8,7 2,2,2,2
3 1,2,7,6 3,3,3,3
4 0,1,6,5 4,4,4,4
5 5,6,7,8,9 5,5,5,5,5
6 0,4,3,2,1 6,6,6,6,6
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Finding the normal vectors

I We can compute the normal of a face using three vectors
and the cross product m = (V1 − V2) × (V3 − V2) and
normalize it to unit length.

I Two problems arrise:
I What if (V1 − V2) and (V3 − V2) are almost parallel?
I What to do with faces that are defined through more than

three vertices?
I Instead, we can use Newell’s method:

I mx =
∑N−1

i=0 (yi − ynext(i))(zi + znext(i))

I my =
∑N−1

i=0 (zi − znext(i))(xi + xnext(i))

I mz =
∑N−1

i=0 (xi − xnext(i))(yi + ynext(i))
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Properties of polygonal meshes

I Solidity (if the faces enclose a positive and finite amount of
space)

I Connectedness (if there is a path between every two
vertices along the polygon edges)

I Simplicity (if the object is solid and has no “holes”)
I Planarity (if every face is planar, i.e. every vertex of a

polygon lies in a plane)
I Convexity (if a line connecting any two points in the object

lies completely within the object)
I A Polyhedron is a connected mesh of simple planar

polygons that encloses a finite amount of space
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Properties of polyhedrons

I Every edge is shared by exactly two faces
I at least three edges meet at each vertex
I faces do not interpenetrate: they either touch at a common

edge or not at all.
I Euler’s formula for simple polyhedrons: V + F − E = 2

(E:Edges, F: Faces, V: Vertices)
I For non-simple polyhedrons: V + F − E = 2 + H − 2G (G:

holes in the polyhedron, H: holes in faces)
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Summary

I Hierarchical Modeling
I Perspective vs Parallel Projection
I Representing solid objects
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Shading

I Displaying Wireframe models is easy from a computational
viewpoint

I But it creates lots of ambiguities that even perspective
projection cannot remove

I If we model objects as solids, we would like them to look
“normal”. One way to produce such a normal view is to
simulate the physical processes that influence their
appearance (Ray Tracing). This is computationally very
expensive.

I We need a cheaper way that gives us some realism but is
easy to compute. This is shading.
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Types of shading

I Remove hidden lines in wireframe models
I Flat Shading
I Smooth Shading
I Adding specular light
I Adding shadows
I Adding texture
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Toy-Physics for CG

I There are two types of light sources: ambient light and
point light sources.

I If all incident light is absorbed by a body, it only radiates
with the so-called blackbody radiation that is only
dependent of its temperature. We’re dealing with cold
bodys here, so blackbody radiation is ignored.

I Diffiuse Scattering occurs if light penetrates the surface of
a body and is then re-radiated uniformily in all directions.
Scattered lights interact strongly with the surface, so it is
usually colored.

I Specular reflections occur in metal- or plastic-like surfaces.
These are mirrorlike and highly directional.

I A typical surface displays a combination of both effects.
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